The long awaited FNAL muon g-2 result was announced today, you can watch a video of the seminar here, look at the paper and a discussion of it at Physical Review Letters, or read stories from Natalie Wolchover at Quanta and Dennis Overbye at the New York Times. Tommaso Dorigo has an extensive discussion at his blog. In terms of the actual new result, it’s not very surprising: quite similar to the previous Brookhaven result (see here), with similar size uncertainties. It’s in some sense a confirmation of the Brookhaven result. If you combine the two you get a new, somewhat smaller uncertainty and ($a_\mu=\frac{1}{2}(g-2)$)
$$a_\mu(Exp)=116592061(41)×10^{−11}$$
The measurement uncertainties are largely statistical, and this is just using data from Run 1 of the experiment. They have accumulated a lot more data since Run 1, and once that is analyzed the FNAL experiment should be able to provide an experimental value with much lower uncertainty.
The big excitement over the g-2 experimental number has to do with it being in conflict (by 4.2 sigma now) with the Standard Model theoretical calculation, described here, which gives
$$a_\mu(Theory)=116591810(43)×10^{−11}$$
An actual discrepancy between the SM theory and experimental value would be quite exciting, indicating that something was missing from our understanding of fundamental particle physics.
The problem is that while the situation with the experimental value is pretty clear (and uncertainties should drop further in coming years as new data is analyzed), the theoretical calculation is a different story. It involves hard to calculate strong-interaction contributions, and the muon g-2 Theory Initiative number quoted above is not the full story. The issues involved are quite technical and I certainly lack the expertise to evaluate the competing claims. To find out more, I’d suggest watching the first talk from the FNAL seminar today, by Aida El-Khadra, who lays out the justification for the muon g-2 Theory Initiative number, but then looking at a new paper out today in Nature from the BMW collaboration. They have a competing calculation, which gives a number quite consistent with the experimental result:
$$a_\mu(BMW)=116591954(55)×10^{−11}$$
So, the situation today is that unfortunately we still don’t have a completely clear conflict between the SM and experiment. In future years the experimental result will get better, but the crucial question will be whether the theoretical situation can be clarified, resolving the current issue of two quite different competing theory values.
Update: Also recommended, as always: Jester’s take.