An article by Steven Weinberg entitled On the Development of Effective Field Theory appeared on the arXiv last night. It’s based on a talk he gave in September, surveys the history of effective field theories and argues for what I’d call the “SM is just a low energy approximation” point of view on fundamental physics. I’ve always found this point of view quite problematic, and think that it’s at the root of the sad state of particle theory these days. That Weinberg gives a clear and detailed version of the argument makes this a good opportunity to look at it carefully.

A lot of Weinberg’s article is devoted to history, especially the history of the late 60s-early 70s current algebra and phenomenological Lagrangian theory of pions. We now understand this subject as a low energy effective theory for the true theory (QCD), in which the basic fields are quarks and gluons, not the pion fields of the effective theory. The effective theory is largely determined by the approximate SU(2) x SU(2) chiral flavor symmetry of QCD. It’s a non-linear sigma model, so non-renormalizable. The non-renormalizability does not make the theory useless, it just means that as you go to higher and higher energies, more possible terms in the effective Lagrangian need to be taken into account, introducing more and more undetermined parameters into the theory. Weinberg interprets this as indicating that the right way to understand the non-renormalizability problem of quantum gravity is that the GR Lagrangian is just an effective theory.

So far I’m with him, but where I part ways is his extrapolation to the idea that all QFTs, in particular the SM, are just effective field theories:

The Standard Model, we now see – we being, let me say, me and a lot of other people – as a low-energy approximation to a fundamental theory about which we know very little. And low energy means energies much less than some extremely high energy scale 10

^{15}−10^{18}GeV.

Weinberg goes on to give an interesting discussion of his general view of QFT, which evolved during the pre-SM period of the 1960s, when the conventional wisdom was that QFTs could not be fundamental theories (since they did not seem capable of describing strong interactions).

I was a student in one of Weinberg’s graduate classes at Harvard on gauge theory (roughly, volume II of his three-volume textbook). For me though, the most formative experience of my student years was working on lattice gauge theory calculations. On the lattice one fixes the theory at the lattice cut-off scale, and what is difficult is extrapolating to large distance behavior. The large distance behavior is completely insensitive to putting in more terms in the cut-off scale Lagrangian. This is the exact opposite of the non-renormalizable theory problem: as you go to short distances you don’t get more terms and more parameters, instead all but one term gets killed off. Because of this, pure QCD actually has no free parameters: there’s only one, and its choice depends on your choice of distance units (Sidney Coleman liked to call this dimensional transvestitism).

The deep lesson I came out of graduate school with is that the asymptotically free part of the SM (yes, the Higgs sector and the U(1) are a different issue) is exactly what you want a fundamental theory to look like at short distances. I’ve thus never been able to understand the argument that Weinberg makes that at short distances a fundamental theory should be something very different. An additional big problem with Weinberg’s argument is its practical implications: with no experiments at these short distances, if you throw away the class of theories that you know work at those distances you have nothing to go on. Now fundamental physics is all just a big unresolvable mystery. The “SM is just a low-energy approximation” point of view fit very well with string theory unification, but we’re now living with how that turned out: a pseudo-scientific ideology that short distance physics is unknowable, random and anthropically determined.

In Weinberg’s article he does give arguments for why the “SM just a low-energy approximation” point of view makes predictions and can be checked. They are:

- There should be baryon number violating terms of order $(E/M)^2$. The problem with this of course is that no one has ever observed baryon number violation.
- There should be lepton number violating terms of order $E/M$, “and they apparently have been discovered, in the form of neutrino masses.” The problem with this is that it’s not really true. One can easily get neutrino masses by extending the SM to include right-handed neutrinos and Dirac masses, no lepton number violation. You only get non-renormalizable terms and lepton number violation when you try to get masses using just left-handed neutrinos.

He does acknowledge that there’s a problem with the “SM just a low-energy approximation to a theory with energy scale M=10^{15}−10^{18} GeV” point of view: it implies the well-known “naturalness” or “fine-tuning” problems. The cosmological constant and Higgs mass scale should be up at the energy scale M, not the values we observe. This is why people are upset at the failure of “naturalness”: it indicates the failure not just of specific models, but of the point of view that Weinberg is advocating, which has now dominated the subject for decades.

As a parenthetical remark, I’ve today seen news stories here and here about the failure to find supersymmetry at the LHC. At least one influential theorist still thinks SUSY is our best hope:

Arkani-Hamed views split supersymmetry as the most promising theory given current data.

Most theorists though think split supersymmetry is unpromising since it doesn’t solve the problem created by the point of view Weinberg advocates. For instance:

“My number-one priority is to solve the Higgs problem, and I don’t see that split supersymmetry solves that problem,” Peskin says.

On the issue of quantum gravity, my formative years left me with a different interpretation of the story Weinberg tells about the non-renormalizable effective low-energy theory of pions. This got solved not by giving up on QFT, but by finding a QFT valid at arbitrarily short distances, based on different fundamental variables and different short distance dynamics. By analogy, one needs a standard QFT to quantize gravity, just with different fundamental variables and different short distance dynamics. Yes, I know that no one has yet figured out a convincing way to do this, but that doesn’t imply it can’t be done.

**Update**: I just noticed that Cliff Burgess’s new book Introduction to Effective Field Theory is available online at Cambridge University Press. Chapter 9 gives a more detailed version of the same kind of arguments that Weinberg is making, as well as explaining how the the Higgs and CC are in conflict with the effective field theory view. His overall evaluation of the case

“Much about the model carries the whiff of a low energy limit” isn’t very compelling when you start comparing this smell to that of the proposals (SUSY/string theory) for what the SM is supposed to be a low energy limit of.