Columbia Home
Graduate Topics Courses

Fall 2018

** Click on the title of each course for location and time **

MATH GR8255 – PDE in Geometry

Section 001: Partial differential equations in geometry
Instructor: Simon Brendle
Abstract
: This course will focus on geometric flows (such as the Ricci flow and the mean curvature flow) and singularity formation. A central issue is to find quantities which are monotone under the evolution. For the Ricci flow, this includes Perelman’s entropy formula, or Perelman’s monotonicity formula for the reduced volume. We will discuss these monotonicity formulas and their consequences.

 

MATH GR8674 – Topics in Number Theory

Section 001: Arithmetic of L-functions
Instructor: Chao Li
Abstract: We will discuss the conjecture of Birch and Swinnerton-Dyer, which predicts deep connections between the L-function of an elliptic curve and its arithmetic, and the vast conjectural generalizations for motives due to Beilinson, Bloch and Kato. In the first half, we will provide necessary background and explain a proof of the BSD conjecture in the rank 0 or 1 case. We will emphasize new tools which generalize to higher dimensional motives. In the second half, we will study recent results on the Beilinson-Bloch-Kato conjecture for Rankin-Selberg motives.

Section 002: Topics in Analytic Number Theory
Instructor: Dorian Goldfeld
Abstract: This course will focus on recent developments in the spectral theory of automorphic forms on GL(n,R) with n > 2. I will begin by reviewing the basic theory of automorphic forms and L-functions on the upper half plane H^n. A reference is my book: Automorphic forms and L-functions for the group GL(n,R), Cambridge University Press (2015).  One of the main goals is to present new methods to derive the Fourier expansion of Langlands Eisenstein series twisted by cusp forms of lower rank and then obtain spectral expansions of L^2 automorphic forms into cusp forms, Langlands Eisenstein series, and residues of Langlands Eisenstein series.  We will then give applications that have been developed recently to the trace formula, spectral reciprocity, special values of L-functions, and other topics.

Section 003: Arithmetic Statistics
Instructor: Wei Ho
Abstract: We will discuss a range of topics in the field of “arithmetic statistics”, which focuses on understanding distributions of arithmetic invariants in families. A sample question would be: for all degree d number fields with Galois group G, under some reasonable ordering, what proportion of such fields have trivial class group? We will study both heuristics and theorems related to class groups of number fields and invariants for elliptic curves and Jacobians of higher genus curves over Q. As time permits, we may also consider similar questions over function fields. Students are expected to be comfortable with standard graduate courses in algebraic and analytic number theory and algebraic geometry.

 

 

Print this page