### Sample Pages

Download the sample pages (includes Chapter 3)

### Table of Contents

Introduction

**Part I Laying the Groundwork of Machine Learning**

**Chapter 1** How Humans Learn

The Journey Toward Thinking Machines

The Dawn of Mechanical Reasoning

Godel’s Incompleteness Theorems

Formalization of Computing Machines

Toward the Formalization of Human Thought

The Birth of Artificial Intelligence as a Discipline

The Biology of Learning

What Is Intelligent Software, Anyway?

How Neurons Work

The Carrot-and-Stick Approach

Adaptability to Changes

Artificial Forms of Intelligence

Primordial Intelligence

Expert Systems

Autonomous Systems

Artificial Forms of Sentiment

Summary

**Chapter 2** Intelligent Software

Applied Artificial Intelligence

Evolution of Software Intelligence

Expert Systems

General Artificial Intelligence

Unsupervised Learning

Supervised Learning

Summary

**Chapter 3** Mapping Problems and Algorithms

Fundamental Problems

Classifying Objects

Predicting Results

Grouping Objects

More Complex Problems

Image Classification

Object Detection

Text Analytics

Automated Machine Learning

Aspects of an AutoML Platform

The AutoML Model Builder in Action

Summary

**Chapter 4** General Steps for a Machine Learning Solution

Data Collection

Data-Driven Culture in the Organization

Storage Options

Data Preparation

Improving Data Quality

Cleaning Data

Feature Engineering

Finalizing the Training Dataset

Model Selection and Training

The Algorithm Cheat Sheet

The Case for Neural Networks

Evaluation of the Model Performance

Deployment of the Model

Choosing the Appropriate Hosting Platform

Exposing an API

Summary

**Chapter 5** The Data Factor

Data Quality

Data Validity

Data Collection

Data Integrity

Completeness

Uniqueness

Timeliness

Accuracy

Consistency

What’s a Data Scientist, Anyway?

The Data Scientist at Work

The Data Scientist Tool Chest

Data Scientists and Software Developers

Summary

**Part II Machine Learning In .NET**

**Chapter 6** The .NET Way

Why (Not) Python?

Why Is Python So Popular in Machine Learning?

Taxonomy of Python Machine Learning Libraries

End-to-End Solutions on Top of Python Models

Introducing ML.NET

Creating and Consuming Models in ML.NET

Elements of the Learning Context

Summary

**Chapter 7** Implementing the ML.NET Pipeline

The Data to Start From

Exploring the Dataset

Applying Common Data Transformations

Considerations on the Dataset

The Training Step

Picking an Algorithm

Measuring the Actual Value of an Algorithm

Planning the Testing Phase

A Look at the Metrics

Price Prediction from Within a Client Application

Getting the Model File

Setting Up the ASP.NET Application

Making a Taxi Fare Prediction

Devising an Adequate User Interface

Questioning Data and Approach to the Problem

Summary

**Chapter 8** ML.NET Tasks and Algorithms

The Overall ML.NET Architecture

Involved Types and Interfaces

Data Representation

Supported Catalogs

Classification Tasks

Binary Classification

Multiclass Classification

Clustering Tasks

Preparing Data for Work

Training the Model

Evaluating the Model

Transfer Learning

Steps for Building an Image Classifier

Applying Necessary Data Transformations

Composing and Training the Model

Margin Notes on Transfer Learning

Summary

**Part III Fundamentals of Shallow Learning**

**Chapter 9** Math Foundations of Machine Learning

Under the Umbrella of Statistics

The Mean in Statistics

The Mode in Statistics

The Median in Statistics

Bias and Variance

The Variance in Statistics

The Bias in Statistics

Data Representation

Five-number Summary

Histograms

Scatter Plots

Scatter Plot Matrices

Plotting at the Appropriate Scale

Summary

**Chapter 10** Metrics of Machine Learning

Statistics vs. Machine Learning

The Ultimate Goal of Machine Learning

From Statistical Models to Machine Learning Models

Evaluation of a Machine Learning Model

From Dataset to Predictions

Measuring the Precision of a Model

Preparing Data for Processing

Scaling

Standardization

Normalization

Summary

**Chapter 11** How to Make Simple Predictions: Linear Regression

The Problem

Guessing Results Guided by Data

Making Hypotheses About the Relationship

The Linear Algorithm

The General Idea

Identifying the Cost Function

The Ordinary Least Square Algorithm

The Gradient Descent Algorithm

How Good Is the Algorithm?

Improving the Solution

The Polynomial Route

Regularization

Summary

**Chapter 12** How to Make Complex Predictions and Decisions: Trees

The Problem

What’s a Tree, Anyway?

Trees in Machine Learning

A Sample Tree-Based Algorithm

Design Principles for Tree-Based Algorithms

Decision Trees versus Expert Systems

Flavors of Tree Algorithms

Classification Trees

How the CART Algorithm Works

How the ID3 Algorithm Works

Regression Trees

How the Algorithm Works

Tree Pruning

Summary

**Chapter 13** How to Make Better Decisions: Ensemble Methods

The Problem

The Bagging Technique

Random Forest Algorithms

Steps of the Algorithms

Pros and Cons

The Boosting Technique

The Power of Boosting

Gradient Boosting

Pros and Cons

Summary

**Chapter 14** Probabilistic Methods: Naïve Bayes

Quick Introduction to Bayesian Statistics

Introducing Bayesian Probability

Some Preliminary Notation

Bayes’ Theorem

A Practical Code Review Example

Applying Bayesian Statistics to Classification

Initial Formulation of the Problem

A Simplified (Yet Effective) Formulation

Practical Aspects of Bayesian Classifiers

Naïve Bayes Classifiers

The General Algorithm

Multinomial Naïve Bayes

Bernoulli Naïve Bayes

Gaussian Naïve Bayes

Naïve Bayes Regression

Foundation of Bayesian Linear Regression

Applications of Bayesian Linear Regression

Summary

**Chapter 15** How to Group Data: Classification and Clustering

A Basic Approach to Supervised Classification

The K-Nearest Neighbors Algorithm

Steps of the Algorithm

Business Scenarios

Support Vector Machine

Overview of the Algorithm

A Quick Mathematical Refresher

Steps of the Algorithm

Unsupervised Clustering

A Business Case: Reducing the Dataset

The K-Means Algorithm

The K-Modes Algorithm

The DBSCAN Algorithm

Summary

**Part IV Fundamentals of Deep Learning**

**Chapter 16** Feed-Forward Neural Networks

A Brief History of Neural Networks

The McCulloch-Pitt Neuron

Feed-Forward Networks

More Sophisticated Networks

Types of Artificial Neurons

The Perceptron Neuron

The Logistic Neuron

Training a Neural Network

The Overall Learning Strategy

The Backpropagation Algorithm

Summary

**Chapter 17** Design of a Neural Network

Aspects of a Neural Network

Activation Functions

Hidden Layers

The Output Layer

Building a Neural Network

Available Frameworks

Your First Neural Network in Keras

Neural Networks versus Other Algorithms

Summary

**Chapter 18** Other Types of Neural Networks

Common Issues of Feed-Forward Neural Networks

Recurrent Neural Networks

Anatomy of a Stateful Neural Network

LSTM Neural Networks

Convolutional Neural Networks

Image Classification and Recognition

The Convolutional Layer

The Pooling Layer

The Fully Connected Layer

Further Neural Network Developments

Generative Adversarial Neural Networks

Auto-Encoders

Summary

**Chapter 19** Sentiment Analysis: An End-to-End Solution

Preparing Data for Training

Formalizing the Problem

Getting the Data.

Manipulating the Data

Considerations on the Intermediate Format

Training the Model

Choosing the Ecosystem

Building a Dictionary of Words

Choosing the Trainer

Other Aspects of the Network

The Client Application

Getting Input for the Model

Getting the Prediction from the Model

Turning the Response into Usable Information

Summary

**Part V Final Thoughts**

**Chapter 20 **AI Cloud Services for the Real World

Azure Cognitive Services

Azure Machine Learning Studio

Azure Machine Learning Service

Data Science Virtual Machines

On-Premises Services

SQL Server Machine Learning Services

Machine Learning Server

Microsoft Data Processing Services

Azure Data Lake

Azure Databricks

Azure HDInsight

.NET for Apache Spark

Azure Data Share

Azure Data Factory

Summary

**Chapter 21** The Business Perception of AI

Perception of AI in the Industry

Realizing the Potential

What Artificial Intelligence Can Do for You

Challenges Around the Corner

End-to-End Solutions

Let’s Just Call It Consulting

The Borderline Between Software and Data Science

Agile AI

Summary

9780135565667 TOC 12/19/2019