A few quick items before the holiday:

- I hear that Luis Alvarez-Gaumé will be the next Director of the Simons Center, starting next Fall, taking over from John Morgan, the founding Director. My understanding is that the hope was to have the directorship alternate between mathematicians and physicists, and with the hire of Alvarez-Gaumé, they’ve managed to achieve this. His early work on supersymmetric path integrals and the index theorem (see here) was characteristically lucid and this remains one of the great points of intersection between modern mathematics and the quantum theory. One of the best relatively short introductions to QFT is this one (with a shorter arXiv version here). I think he’s an excellent choice.
- In physics blogger news, Tommaso Dorigo reports that he has found a publisher for the book he has been writing: Anomaly! – Scientific Discoveries and the Quest for the Unknown, and it should appear next year. I’m very much looking forward to seeing a copy. His insightful but irreverent take on experimental HEP I’m sure will make this a fascinating read for anyone interested in the subject.
- Matt Strassler’s blog has been dormant for a while, but he has now been heard from. After a couple year visiting position at Harvard, he says he’s now “employed outside of science”, but working on a book about particle physics for non-experts.
- Jim Holt has a review in the latest New York Review of Books of my colleague Michael Harris’s Mathematics Without Apologies.
- By some accounting, today is the 100th anniversary of Einstein’s GR field equations, which he presented November 25, 1915 at a lecture in
~~Gottingen~~Berlin. This anniversary has been celebrated in many places, in many ways this year, so there’s not any need for me to chime in. Among many excellent treatments of the topic, there’s also an unfortunate tendency of some to use Einstein to grind their particular axes. Sean Carroll I suspect has Einstein spinning in his grave, using the PBS NewsHour to enlist Einstein as a multiverse fan:

The ability for seemingly constant things to evolve and change is an important aspect of Einstein’s legacy. If space and time can change, little else is sacred. Modern cosmologists like to contemplate an extreme version of this idea: a multiverse in which the very laws of physics themselves can change from place to place and time to time. Such changes, if they do in fact exist, wouldn’t be arbitrary; like spacetime in general relativity, they would obey very specific equations.

Perhaps Carroll could enlighten the public by writing down these “very specific equations” he’s advertising, for comparison to the Einstein field equations.

If I were to grind my own ax here, it would be to note that Einstein’s great breakthrough came about through close collaboration with some of the best pure mathematicians around, adopting difficult but deep ideas about geometry. Without the mathematicians, I’d guess that the theory of general relativity would have taken many more decades to come to fruition. Maybe there’s a lesson there…