Lee Smolin’s new book, Time Reborn, is out today. For more about the ideas in the book, see video of a talk here, and an interview here.
While I mostly vehemently agreed with what Smolin had to say in his last book, The Trouble With Physics, I find myself equally vehemently in disagreement with this one. On some of the topics covered, I’m indifferent to his arguments mostly as a matter of taste. While my views on human society are likely similar to Smolin’s, I’ve never found the scientific insights of fundamental mathematics or physics to have anything significant to tell me about this part of life. Similarly, while I’ve spent some time studying philosophy, I’ve mostly found this of little help in gaining deeper understanding of math or physics. Others though have a very different experience than me, and I’m not about to argue against people looking for enlightenment wherever they happen to find it.
On some of the scientific issues dealt with in the book, again I’m mostly just indifferent. Smolin accurately explains how the lack of predictivity makes typical multiverse models empty, but I’m not convinced that his favored alternative (“cosmological natural selection”) does much better. While I understand well the human appeal of wondering about what came before the big bang, I’ve yet to see any specific models of this that carry enough explanatory power about anything to make them particularly attractive or interesting.
Many of the ideas Smolin is arguing for are clearly labeled as what they are: speculative challenges from a very much minority point of view to some of the received wisdom of this kind of science. Unfortunately, parts of his argument that are most problematic are ones which are in danger of becoming the new received wisdom of the subject. The refusal to admit the failure of the idea of string/M-theory unification has left many of our most prominent theorists pushing the idea that fundamental physics is based on some new and very different degrees of freedom, with dynamics that just happens to be too complicated to allow them to find vindication by seeing how the Standard Model emerges at low energies. For his own reasons, Smolin signs on to a version of this point of view, writing:
I’m inclined to believe that just about everything we now think is fundamental will also eventually be understood as approximate and emergent: gravity and the laws of Newton and Einstein that govern it, the laws of quantum mechanics, even space itself…
A large part of the elegance of general relativity and the Standard Model is explained by understanding them as effective theories. The beauty is a consequence of their being effective and approximate. Simplicity and beauty, then, are the signs not of truth, but of a well-constructed approximate model of a limited domain of phenomena.
The notion of an effective theory represents a maturing of the profession of elementary-particle theory. Our young, romantic selves dreamed we had the fundamental laws of nature in our hands. After working with the Standard Model for several decades, we are now simultaneously more confident that it’s correct within the limited domain in which it has been tested and less confident of its extendability outside that domain.
This notion that the SM is “just an effective theory”, with its fascinating and deep mathematical structures nothing but an artifact of low-energy approximation has become the reigning ideology of the last few decades. One impetus for this has been string/M-theory, with its conjectured very different physics at short distances. This has been put together with our modern understanding of renormalization, according to which non-renormalizable theories make perfect sense as effective theories. The argument is then made that this is all there is to the SM, neglecting to note that to a large degree the SM couplings are asymptotically free, meaning that (most of) the quantized geometric degrees of freedom make perfectly good sense at all energy scales.
Smolin’s view that the recent history of particle physics makes us “less confident of its [the SM’s] extendability outside that domain [where it has been tested]” is one I strongly disagree with. Despite endless “naturalness” and “fine-tuning” predictions based on the “nothing but an effective theory” argument, the SM has not only been vindicated at the LHC over a large new energy range, but the discovery of the Higgs has shown it to have just the right characteristics to make perfectly good sense up to extremely high energies, far beyond anything we can test.
I’ve been teaching a course this past year on quantum mechanics for mathematicians, emphasizing the role of Lie groups, unitary representations and symmetries in providing not only useful calculational methods, but governing the underlying structure of the theory. Smolin argues instead that, based on Leibniz’s “identity of the indiscernibles”, symmetries cannot be fundamental (although a footnote says this doesn’t apply to gauge symmetries):
Symmetries are common in all the physical theories we know. Several of the most useful tools in the physicist’s toolbox exploit the presence of symmetries. Yet if Leibniz’s principles are right, they must not be fundamental.
This applies to the very structure of quantum mechanics:
Quantum mechanics, too, is likely an approximation to a more fundamental theory.
since it is linear, and he bets thus just a linear approximation to some fundamentally non-linear theory. Again, mathematical simplicity is seen as an artifact of approximation, not indication of something fundamental.
Smolin ends with a vision that is pretty much the exact opposite of mine, one with a vastly diminished role for mathematics in understanding the nature of reality:
The most radical suggestion arising from this direction of thought is the insistence on the reality of the present moment and, beyond that, the principle that all that is real is so in the present moment. To the extent that this is a fruitful idea, physics can no longer be understood as the search for a precisely identical mathematical double of the universe. That dream must be seen now as a metaphysical fantasy that may have inspired generations of theorists but is now blocking the path to further progress. Mathematics will continue to be a handmaiden to science, but she can no longer be the Queen.
Unfortunately it seems possible that Smolin’s arguments about mathematics will resonate well with the current backlash against sophisticated mathematics that one sees at many physics departments in the wake of the failure of string theory. In a footnote he explicitly argues that the problem with string theory was too much symmetry:
Indeed, we see from the example of string theory that the more symmetry a theory has, the less its explanatory power.
I don’t understand this argument at all. The problems with string theory are something I’ve written about endlessly here, but too much symmetry is not one of these problems.
Smolin has been quite right to point out in recent years that fundamental physical theory is in a state of crisis, but I think his diagnosis in this book is the wrong one. Abandoning the search for a more powerful mathematical understanding of the world because the huge success of this in the past has made further progress more difficult is the wrong lesson to draw from recent failures (the nature of which he lucidly described in his previous book).
My own interpretation of the history of the Standard Model is that progress came not from finding more, larger symmetries, but from a deeper appreciation of the various ways in which gauge symmetry could be realized (spontaneous symmetry breaking, confinement, asymptotic freedom). The arrival of string theory pushed the study of gauge symmetry into the background, and these days one often hears arguments against its fundamental nature, such as this one from Arkani-Hamed
What’s as a misnomer called gauge symmetry, whose beauty is extolled at length in all the textbooks on the subject, is completely garbage. It’s completely content free, there’s nothing to it.
Smolin’s arguments against the fundamental nature of symmetries, even if gauge symmetry is let off the hook in a footnote, just reinforce some of the attitudes at the root of our present-day crisis. The problems that remain in fundamental theory are difficult, but denigrating now the powerful ideas that have led to success in the past won’t help find a way forward.
Update: For more about this, there’s a review in the NYRB, and a piece at edge.org (with responses).