The field of hep-th has always been quite faddish, with many of the fads easily recognizable just from looking at the buzzwords appearing in paper titles. In recent years “entanglement” is a buzzword that has been all the rage, and John Preskill has some data here (slide 3) on how many hep-th papers have it in their title. Extrapolating from 62 in 2011, 119 in 2013 and a projected 220 this year, long before we see a new accelerator, all hep-th papers will have “entanglement” in their titles. Another very visible trend is that an increasingly large fraction of these and other papers in hep-th (which used to mean high-energy particle physics) are now about low-energy non-particle physics topics.
I make periodic attempts to listen to talks or read papers explaining the hot topics at issue, but have to confess that I tend to lose interest, not seeing anything relevant to the standard model or unification, or to the kind of deep mathematics that in the past has provided insights into those topics. Suggestions of what to read to follow these latest fads are welcome, when I have more free time I’ll look into them. In the meantime, I’m just reporting a trend, will leave it to others to decide what it all means.
This brave new world of hep-th is generating a lot of activity. The week before last saw a big “The Information Universe” conference in the Netherlands, that addressed questions such as
– Is the universe one big information processing machine?
– Is there a deeper layer in quantum mechanics?
– Is the universe a hologram?
– Is there a deeper physical description of the world based on information?
Last week was the kick-off meeting of the It from Qubit collaboration, which is supposed to bring together quantum information theory and fundamental physics. This is an extremely large effort, very well-funded by the Simons Foundation. They just announced that they’re planning on hiring a dozen or so postdocs this year. If you get one of those jobs, there’s a warning that you’ll have a “significant burden” of having to travel to collaboration meetings in places like Bariloche, but at least on long flights you’ll be flying business class.
For a detailed explanation of the plans of It from Qubit, see here.
After the Simons-funded meeting a few days ago at Stanford, this weekend there’s yet another quantum information/entanglement/HEP meeting at Stanford, this one funded by the Templeton Foundation. The program for the Templeton Program meeting is here.
Update: It seems that this page has been edited this weekend to remove reference to the It from Qubit collaboration travel policy, however you can still find it here.
Update: For popular expositions of these ideas, there’s a new article in Science News, and a book coming out by George Musser, reviewed today by Sabine Hossenfelder. I haven’t seen the book, but the Science News article doesn’t help me understand much: all I get out of it and the papers its links to are some very vague conjectures about understanding quantum gravity via AdS/CFT. Standard facts about quantum mechanics on the CFT side become more exciting sounding conjectures about gravity on the AdS side, but it remains unclear to me exactly how any of this is supposed to really work. For one thing, we don’t live in AdS space.