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Part I

Fundamentals of étale cohomology

1 The étale topos

1.1 Definition and cohomology

Recall that in ordinary sheaf cohomology, one computes the cohomology of a sheaf F over a
topological spaceX by taking an injective resolution

0→ F → I0 → I1 → · · · ,

taking global sections, then taking cohomology. By treating a schemeX as a topological space
with the Zariski topology, we obtain the usual cohomology groups of X. We can consider dif-
ferent Grothendieck topologies on X. For example, the objects of the big fppf site Xfppf are
schemes over X and its covering families are those that are jointly surjective, flat, and locally
of finite presentation. The objects of the small fppf site Xét are étale schemes over X and its
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covering families are those that are jointly surjective1. We recall the definition of étale mor-
phism.

Definition 1.1. A morphism of schemes f : X → Y is étale if it satisfies the following equivalent
conditions.

1. f is flat and unramified.2

2. f is smooth and unramified.

3. f is smooth of relative dimension 0.

Example 1.2 (Non-example). Normalizations are generally not flat. The classic example is the
normalization

A1 → SpecC[x, y]/(y2 − x3 − x2)

defined by (x, y) 7→ (t2 − 1, t3 − t). Indeed, flatness is a local condition, so in fact f∗OX should
be locally free. But we see that the corresponding extension of modules here is an isomorphism
localized away from 0, but has rank 2 at 0.

Example 1.3. Standard étale maps. These are of the form SpecA[x]f/(g) → SpecA, where g
is monic and g′ is invertible in A[x]f/(g). The main result here is that every étale map is locally
standard étale.

The small étale site Xét is the category whose objects are étale morphisms U → X and
whose morphisms are morphisms of schemes over X. By a 2-out-of-3 property, such mor-
phisms are themselves étale. A covering of an object is a collection of morphisms in this cat-
egory {Ui → U} which are étale (this is automatic) and jointly surjective. This allows us to
define sheaves onXét. The étale topos ofX is defined as the category of sheaves on the small
étale siteXét. These are the presheaves F that satisfy the sheaf property:

0→ F (U)→
∏
i

F (Ui) ⇒
∏
ij

F (Ui ×U Uj)

for all étale coverings {Ui → U}. Since all Zariski coverings are étale coverings, this is stronger
than the condition of being a Zariski sheaf. We have the following criterion.

Proposition 1.4. Let P be a presheaf onXfppf orXét. Then P is a sheaf if and only if

• P is a Zariski sheaf.

• 0→ P (U)→ P (U ′) ⇒ P (U ′×U U ′) is exact given any surjective morphism of affine schemes
U ′ → U .

We define the étale cohomology groups (or those from a different site) as the derived func-
tors of the global sections functor Γ(X,−) : Sh(Xt)→ Ab. We note that étale sheavesmaywell
produce different cohomology groups in the Zariski topology, since injective Zariski sheaves
may not even be sheaves, let alone injective! What we see, however, is that the category of
sheaves is what determines the cohomology. Probably motivated by this, and certainly many
more deep considerations, Grothendieck formulated his definition of a topos.

Definition 1.5. The étale topos ofX is the category of sheaves onXét.

More generally a topos is a category equivalent to the category of sheaves over some site.
Unfortunately we will not (due to the current ignorance of the author) say much more about
topos theory.

1By the 2/3 property, such maps are automatically étale
2Technically we may want to say G-unramified: locally of finite presentation and ΩX/Y = 0, but this doesn’t

matter much for us.

3



Caleb Ji Weil II

1.2 Stalks in the étale site

Definition 1.6. An étale neighborhood of a point x ∈ X is a pair (Y, y) and an étale morphism
f : Y → X with f(y) = x and k(y) = k(x)3.

In particular, étale neighborhoods of a geometric point are commutative diagrams that look
like the following.

U

x̄ X

Definition 1.7. The stalk of a sheaf F ∈ Sh(Xét) at a point x ∈ X is defined as

lim−→
(Y,y)

F(Y )

where the colimit is taken over all étale neighborhoods of x. The stalk at a geometric point is defined
similarly.

The Henselization of a local ring is the smallest ring containing it that satisfies Hensel’s
lemma, while the strict Henselization is the same thing with the added condition that the
residue field is separably closed. The main result is the following.

Proposition 1.8. The stalk of the structure sheaf in the étale topology is the Henselization of the
stalk in the Zariski topology. If we work over a geometric point, we get the strict Henselization.

A key property of étale neighborhoods is that they are cofiltered. In particular, is we have
two étale neighborhoods (U, ū), (V, v̄) of some geometric point x̄ → X, then taking the fiber
product gives another étale neighborhood which factors through (U, ū), (V, v̄). Note this uses
that étale morphisms are preserved under composition and base change.

Proposition 1.9. A sequence of sheaves in Sh(Xét)

0→ F → G → H → 0

is exact if and only if it is exact on all stalks of geometric points

0→ Fx̄ → Gx̄ → Hx̄ → 0.

Proof. Let us first prove left-exactness. As we will soon see, the inclusion i : Sh(Xét)→ Sh(Yét)
is left exact (because its left adjoint is sheafification). So say 0 → F(U) → G(U) → H(U) is
exact. Taking direct limits of exact sequences preserves exactness. Now the other direction
boils down to sū = 0 → s = 0 ∈ F(U). But the former implies that s is zero on an étale cover
of U , so it must be 0.

For right-exactness, one shows that G α−→ H → 0 is equivalent to α being locally surjective.
It is not hard to see that this implies surjectivity on geometric stalks. In the other direction,
by what we have shown above we have that in fact Gū → Hū is surjective for every geometric
ū→ U → X with U → X étale. Then α is clearly locally surjective by definition.

Generally, being exact on the level of sheaves implies being exact on the level of stalks. The
other direction is essentially the statement that a given topos has enough points.

3Some sources, e.g. Stacks, omit the last condition. Then we get the strict Henselization for stalks, which we
would get if we were working over geometric points. But we will take stalks over geometric points anyways

4



Caleb Ji Weil II

1.3 Sheafification, direct and inverse images

We claim that the natural inclusion i : PSh(Xét)→ Sh(Xét) has an exact left adjoint, sheafifi-
cation: sh : Sh(Xét)→ PSh(Xét). That is,

HomSh(Xét)
(shF ,G) ∼= HomPSh(Xét)

(F , i(G))

The construction is similar to the classical case. The sheafification has the same stalks as the
original presheaf, so sh is exact. This implies that i also preserves injectives.

Given a morphism f : X → Y , there are several associated functors between Sh(Xét) and
Sh(Yét). The two most basic ones, the direct and inverse image, form an adjoint pair (f∗, f∗).
First, we define them on presheaves.

Definition 1.10. Take F ∈ PSh(Xét). Then f∗F ∈ PSh(Yét) is defined by f∗F(U) = F (U ×Y X).
We use the same exact definition for f∗ : Sh(Xét)→ Sh(Yét).

Indeed, these definitions are consistent in that π∗ of a sheaf in the presheaf category is a
sheaf, as it clearly satisfies the sheaf conditions.

Definition 1.11. Take G ∈ PSh(Yét). Then f∗G ∈ PSh(Xét) is defined as the direct limit

f∗G(V ) = lim−→G(V )

where we take the direct limit over all commutative diagrams

U V

X Y

with étale columns. Since π∗ of a sheaf is not necessarily a sheaf, in the sheaf category we define it
to be the sheafification sh(π∗G).

Now we have the adjunction

HomXét(π
∗G,F) ∼= HomYét(G, π∗F)

because both index families of maps G(V ) → F(U) by the definition of fiber product and the
universal property of sheafification. One sees immediately from the definition of π∗ that if π
is étale, then π∗ is just the restriction map.

In general, π∗ is exact because it preserves stalks. Indeed, given x̄
i−→ X

π−→ Y where the
composition is denoted ȳ, we have

(π∗F)x̄ = i∗(π∗F)(x̄) = Fȳ.

Therefore, π∗ preserves injectives.

Definition 1.12. Let j : U ↪→ X be an open immersion. Then for F ∈ PSh(Uét), we have j!F ∈
PSh(Xét) defined by j!F(π : V → X) = F(V ) if imπ ⊂ U and 0 otherwise. This does not always
turn a sheaf into a sheaf. Thus in the category of sheaves, we define it to be sh(j!F). This is known
by extension by 0, or lower shriek or proper direct image.

We have an adjunction (j!, j
∗) because

HomSh(Xét)
(j!F ,G) ∼= HomPSh(Xét)

(j!F ,G) ∼= HomPSh(Uét)
(F ,G|U ) ∼= HomPSh(Uét)

(F , j∗G)
∼= HomSh(Uét)

(F , j∗G),

as desired. As we will soon see, by looking at stalks we have that j! is exact, so j∗ preserves
injectives.
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Proposition 1.13. For π : X → Y an open immersion, stalks are given by (πF )ȳ = Fȳ for y ∈ X;
otherwise it is not clear. For π a closed immersion, (πF )ȳ = Fȳ for y ∈ X and 0 otherwise. Ditto
for π! if π is an open immersion.

In particular, π∗ is exact for closed immersions. The closed immersion one is the only one
that is not immediate; it follows from the description of étale morphisms as locally standard
étale.

Take F ∈ Sh(Xét). Given U
j
↪−→ X

i←− Z a decomposition ofX into open and closed subsets,
we have the short exact sequence of sheaves onXét

0→ j!j
∗F → F → i∗i

∗F → 0.

This follows immediately from the adjunctions and checking stalks. This exact sequence will
be very useful for computations.

1.4 Spectral sequences

Let us list the principal spectral sequences we will use for calculations.

Theorem 1.14 (Grothendieck spectral sequence). Let A F−→ B G−→ C be left-exact functors be-
tween abelian categories such that F sends injectives to acyclics. Then for A ∈ Ob(A), there is a
spectral sequence

RpG ◦RqF (A)⇒ Rp+q(G ◦ F )(A).

Corollary 1.15 (Leray spectral sequence). Let F be a sheaf on Xét. Applying the Grothendieck
spectral sequence to

Sh(Xét)
π∗−→ Sh(Yét)

Γ−→ Ab,

we have a spectral sequence
Hp(Y,Rqπ∗F)⇒ Hp+q(X,F).

1.5 Morphisms of sites and comparisons of topology

TODO

2 Eilenberg-Steenrod and Weil cohomology axioms

TODO

3 Examples and calculations

In this section we do a lot of computations of étale cohomology groups. For fun, we sometimes
also do them for other sites (mainly Zariski).

3.1 The étale site Spec(k)ét

The goal of this section is to describe the sheaves on Spec(k)ét and show that their cohomology
is given by the Galois cohomology of k.

We claim that the category of sheaves on Spec(k)ét is equivalent to the category of discrete
Gk modules. Recall that the latter refers to Gk-modules that are discrete given the discrete
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topology, which is equivalent to stabilizers being open.

Take F ∈ Sh(Spec(k)ét). The étale maps to Spec k are given by finite disjoint unions of
SpecL → Spec k where L/k is finite separable. For each such L, letML = F(SpecL) and de-
fineM = lim−→L

F(SpecL). Alternatively, we can viewM as the stalk FSpecKsep . First we claim
that this is discrete. Indeed, we have thatM = ∪MH , where H runs over the open subgroups
ofGk. This implies that the stabilizer of a point is a union of open subgroups ofGk, and is thus
open.

To go further, it will be useful to identify the category (Spec k)ét itself with continuous Gk

sets through the functor sendingX → Spec k toHomSpec k(Spec k
sep, X). Then we see that ifM

is a discreteGk-module, the corresponding sheaf hM on the category ofGk-modules translates
to the sheaf FM ∈ Sh(Xét) defined by

FM (U) = HomGk
(HomSpec k(Spec k

sep, U),M).

This gives the desired quasi-inverse. Now to compute cohomology, one notes that

H0
ét(Spec k,F) = HomSh(Spec(k)ét)

(hSpec k,F) = HomGk
({∗},MF ) = MGk .

Then the derived functors are those of Galois cohomology, as desired.
Now let us compute cohomology. Wewould like to identifyH i

ét(Spec k,F)withH
i(Gk,MF ).

3.2 Cohomology of curves

3.2.1 Smooth projective curves over k = k

Recall that if A is an integrally closed domain, then Ap is a DVR for ht(p) = 1 and A =⋂
ht(p)=1Ap. We begin with the Weil-divisor sequence. Let g : η → X be the generic point

of an integral normal schemeX. LetK = K(X).

Proposition 3.1. For connected integral NoetherianX, there is a left-exact sequence

0→ Gm → g∗Gm,K →
⊕

codim z=1

i∗Z→ 0

which is right exact ifX is regular.

Proof. For left-exactness, one sees that for any connected étaleU → X andopen affineSpecA ⊂
U , this just becomes

0→ A∗ → K∗ →
⊕

ht(p)=1

Z.

This is exact by the commutative algebra result we cited, because A is an integrally closed
domain. For right-exactness, we can check on stalks. IfX is regular, then U is regular. Regular
local rings are UFDs, and in UFDs every prime ideal of height 1 are prinicpal. The result follows.

We are currently interested in the case thatX/k is a smooth projective curve over an alge-
braically closed field. We have

H0(Xét,Gm) = k∗, H0(Xét, g∗Gm,K) = K∗, H0(Xét,
⊕

codim z=1

i∗Z) = Div(X)

7
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Indeed, the sheaf
⊕

ht(p)=1 Z is given by DivX . Thus one obtains the long exact sequence

0→ k∗ → K∗ → Div(X)

→ H1(Xét,Gm)→ H1(Xét, g∗Gm,K)→ H1(Xét,DivX)

→ H2(Xét,Gm)→ H2(Xét, g∗Gm,K)→ H2(Xét,DivX)

→ H3(Xét,Gm)→ · · ·

Now we will show higher vanishing of both Hr(Xét, g∗Gm,K) and Hr(Xét,DivX). This will
imply thatH0(Xét,Gm) = OX(X)∗ = k∗,H1(Xét,Gm) = Pic(X), and higher groups are 0.

The case of DivX is easier. Indeed, recall that i∗ is exact for closed immersions i. Since we
are working on a curve, the codimension 1 points are closed. Thus each copy

Hr(Xét, i∗Z) = Hr(Gk,Z) = 0

for r > 0, because k is algebraically closed. ThusHr(Xét,DivX) = 0.

In the other case, the Leray spectral sequence gives

Hp(Xét, R
qg∗Gm,K)⇒ Hp+q((SpecK)ét, (K

sep)∗).

We claim that all higher (i.e. q > 0) Rqg∗Gm,K are 0. This is nontrivial. We have

(Rqg∗Gm,K)ȳ = Hq(SpecKȳ,Gm)).

Here, Kȳ is the field of fractions of OX,ȳ. For example, when the underlying point of y is the
generic point, this cohomology group is indeed 0 for q > 0. In general, one has to use Lang’s
theorem, which gives us thatKȳ is quasi-algebraically closed. Then theorems of Galois coho-
mology give us that

Hq(SpecKȳ,Gm)) = Hq(GKȳ , (K
sep)∗) = 0

for q > 0. For example, q = 1 is just Hilbert theorem 90, and q = 2 is a Brauer group calcula-
tion. We note that these theorems don’t apply to e.g. K = Fq, which we will consider in future
calculations.

All this proves that the Leray spectral sequence degenerates and

Hr(Xét, g∗Gm,K) = Hr((SpecK)ét, (K
sep)∗).

Again by our Galois cohomology results, this is 0 for r > 0 as desired.

By using the Kummer sequence and basic results about the Picard scheme of a curve, we
get that if (n, char(k)) = 1, then

H0(X,µn) ∼= Z/n,H1(X,µn) ∼= (Z/nZ)2g, H2(X,µn) ∼= Z/nZ, Hr(X,µn) = 0

for r > 2.
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3.2.2 Open subschemes

3.2.3 Singularities

3.2.4 Curves over non-algebraically closed fields

3.3 Cohomology of number fields

Cohomology of a DVR

Recall the localization exact sequence for U
j
↪−→ X

i←− Z a decomposition of X into open and
closed subsets.

0→ j!j
∗F → F → i∗i

∗F → 0.

Then the category of sheaves on Xét is equivalent to the category of triples (G,H, ϕ) with G ∈
Sh(Yét),H ∈ Sh(Zét), and ϕ : G → i∗j∗H, by the functor

F 7→ (FZ ,FU , ϕ).

The starting point is again the Weil-divisor exact sequence, which we reproduce here for
convenience.

Proposition 3.2. For connected normalX, there is a left-exact sequence ...

In particular, this holds forX = SpecR where R is a DVR.

Cohomology of SpecOK

Let X = SpecOK , where OK is the ring of integers in a totally imaginary number field. The
Weil-divisor exact sequence takes the form

0→ Gm → g∗Gm,K →
⊕

0̸=p∈SpecOK

i∗Z→ 0.

Of coursewehaveH0(Xét,Gm) = O∗
K . ByHilbert theorem90, wehaveH

1((SpecOK)ét, g∗Gm,K) =
H1(GK ,K

∗
) = 0. So we have the exact sequence

0→ O∗
K → K∗ →

⊕
p

Z→ H1(Xét,Gm)→ 0

from which we conclude thatH1(Xét,Gm) = Pic(OK) = Cl(OK).

So we have

0→ O∗
K → K∗ → Div(X)

→ Cl(OK)→ H1(Xét, g∗Gm,K)→ H1(Xét,DivX)

→ H2(Xét,Gm)→ H2(Xét, g∗Gm,K)→ H2(Xét,DivX)

→ H3(Xét,Gm)→ H3(Xét, g∗Gm,K)→ H3(Xét,DivX)

→ H4(Xét,Gm)→ · · ·

Let us computeHr(Xét,DivX). Well, this is just

Hr(Xét,
∐
p

i∗Z) =
⊕
p

Hr((SpecFq)ét,Z).

This can be computed to be Q/Z for r = 2 and 0 for all other r > 0.

9



Caleb Ji Weil II

Next, we again have a Leray spectral sequence which can be shown to degenerate to give

Hr(Xét, g∗Gm,K) ∼= Hn((SpecK)ét,K
∗
) = Hn(GK ,K

∗
).

We currently have the exact sequence

0→ H2(Xét,Gm)→ H2(GK ,K
∗
)→

⊕
p

Q/Z→ H3(Xét,Gm)→ H3(GK ,K
∗
)→ 0

and
Hr(Xét,Gm)→ Hr(GK ,K

∗
)

for r > 3. Now we use the exact sequence of global class field theory

0→ H2(GK ,K
∗
)→

⊕
p

Q/Z→ Q/Z→ 0

and the result thatHr(GK ,K
∗
) = 0 for r > 2. The maps to

⊕
pQ/Z are the same, so at last we

obtain
H3(Xét,Gm) ∼= Q/Z, Hr(Xét,Gm) = 0

for all other r > 1.

3.4 Cohomology of surfaces

3.5 Other

3.5.1 Affine and projective space

4 Constructible sheaves

4.1 Constructible sets

We recall that a constructible set is one that is a finite disjoint union of locally closed subsets.
By some combinatorial manipulation, one sees that constructible sets are closed under finite
unions and complements. The importance of constructible sets may is illustrated by Cheval-
ley’s theorem.

Theorem 4.1 (Chevalley’s theorem). Let f : X → Y be a quasi-compact morphism locally
of finite presentation where Y is quasicompact. Then the image of a constructible set in X is a
constructible set in Y .

Let us outline a proof. Note that it suffices to prove that the image of X is constructible.
We first note that by restricting to Noetherian schemes, we just need to prove that the image
of a morphism of finite type is constructible. Such a proof is outlined through in different ways
in Hartshorne both in

5 Proper base change

5.1 Statement and initial reductions

Theorem 5.1. Let X → S be a proper morphism of schemes and let F be a torsion abelian sheaf
onX. Then in the following Cartesian diagram:

X ′ X

S′ S

g′

ff ′

g

10
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the natural morphism
g∗Rqf∗F → Rqf ′

∗(g
′∗F)

is an isomorphism.

An important case of this arises when S′ is some geometric point g : s̄→ S. In this case if
we take the stalk at s̄, the statement becomes

(Rqf∗F)s̄ ∼= Hq(Xs,F|Xs).

In fact, we want to perform a series of reductions that reduces the proof to an even more
simple case. We first note that since there is a map between the two étale sheaves we are inter-
ested in, we just have to check that there is an isomorphism on the stalks of geometric points.

Looking at the left hand side, we can reduce further. Indeed, for a geometric point s̄ given
by Spec k(s) of the point s it lies over, we have

(Rqf∗F)s̄ = lim−→
V

Hq(X ×S V,F) = Hq(X ×S Spec(OS,s̄),F).

Letting (A,m, k) be the strictly Henselian local ring OS,s̄, we have the following Cartesian
diagrams for every geometric point Spec k′ → S lying over s.

X ′′ X ′ X

Spec k′ SpecA S

RelabelingX = X ′, We conclude that it suffices to show that

Hq(X,F) ∼= Hq(X ′′,F)

where we simply write F for F|Xs . By a limiting argument, we reduce to the case that k′ = k.
Thus we would like to show that cohomology is preserved on passing from SpecA (a strictly
Henselian local ring) to the special fiber:

Hq(X,F) ∼= Hq(X0, Spec k).

X0 X

Spec k SpecA

5.2 Dévissage I: reduction to case of a curve

We want to reduce to the case where the fibers Xs are curves. Furthermore, we would like to
reduce to the case where F = Z/n is constant. We do this by dévissage. Our first order of
business will be to reduce to the case of X = P1

S → S. This is done through the use of the
following three lemmas.

Lemma 5.2. Cohomology commutes with base change for finite morphisms.

This is because finite morphisms are exact for the étale topology, and the q = 0 case can be
checked by hand.

11
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Lemma 5.3. Let f : X → Y be surjective and proper, g : Y → Z be proper. If cohomology
commutes with base change for f and g ◦ f , then it does so for g.

Lemma 5.4. Let f : X → Y, g : Y → Z be proper. If cohomology commutes with base change for
f and g, then it does so for g ◦ f .

Proving these two involves the Leray spectral sequence.

Assuming these, we can reduce to the case of P1
S → S as follows. For convenience, say a

morphisms has property C if cohomology commutes with base change for it. We first reduce
to showing that Pn

S → S has C. By Chow’s lemma, there is a birational, proper and surjective
S-morphismX ′ → X such thatX ′ is projective over S.

X X ′ Pn
Y

S

g
f

π

By our lemmas we just need to show that g and π have C. Since π factors asX ′ → X×Pn
Y =

Pn
X → X, we see that both factor as a closed immersion after something of the form Pn

S → S.
The first is finite, so from our lemmas we are reduced to showing that Pn

S → S has C.

From here, we can construct a finite surjective morphism (P1
S)

n → Pn
S . Thus again from our

lemmas it suffices to show that (P1
S)

n → S has C, and this reduces to showing that P1
S → S has

C. From the previous section, we see that we just need to prove that

Hq(P1
A,F) ∼= Hq(P1

k,F).

This is still not that easy! In fact, as we will soon see, we will have to prove this for curves
in general.

5.3 Dévissage II: reduction to constant coefficients

Recall that F is a torsion sheaf. Torsion sheaves are a pretty general class, and we will want to
reduce to the case of constructible, then finite constant sheaves to prove our desired equality.
Clearly proving the result for finite constant sheaves is equivalent to proving it for sheaves of
the form Z/n. In the second reduction, we will have to prove results for finite morphisms to
P1, so we end up dealing with curves in general. We may as well just start with trying to prove
that Hq(X,F) ∼= Hq(X0,F) for curves X. As a matter of fact, we will reduce the statement to
the map being an isomorphism for q = 0 and a surjection for q > 0.

The first reduction is from torsion sheaves to constructible sheaves. For this, we should
define constructible sheaves.

Definition 5.5. • A sheaf F ∈ Sh(Xét) is locally constant constructible (lcc) if it is finite and
locally constant.

• Let X be Noetherian (or qcqs). Then F is constructible if there is a stratification of X into
locally closed subsetsX =

∐
iXi such that F|Xi is lcc for all i.

Remark. Finite refers to F (U) being finite for all quasi-compact U . We will be working with
Noetherian schemeshere, so this implies finite stalks. In the locally constant case, the opposite
implication also holds. Also, F|Xi refers to the pullback of F toXi.

12



Caleb Ji Weil II

We now note that torsion sheaves F ∈ Sh(Xét) are filtered direct limits of constructible
sheaves. Indeed, for n-torsion elements x ∈ F(U), consider the subsheaf j!(U) ⊂ F . This is
clearly constructible, and F is the filtered direct limit of these sheaves as desired. Now co-
homology commutes with filtered colimits ([2, Tag 073D]), so we have reduced to the case of
constructible sheaves.

The situation is now the following. In the following sections, we will show that for X a
curve, the map Hq(X,Z/n) → Hq(X0,Z/n) is an isomorphism for q = 0 and surjective for
q > 0. So let us assume this. Thenwewill use the following three lemmas, which combinedwith
an inductive argument involving a long exact sequence will show the result for constructible
sheaves.

Lemma 5.6. Let pi : Xi → X be a finite set of finite morphisms to X. If Ci is a finite constant
sheaf on Xi, then Hq(X,

∏
i(pi)∗Ci) → Hq(X0,

∏
i(pi)∗Ci) is bijective for q = 0 and surjective for

q > 0.

Proof. We are assuming the result for the Ci. But the pushforwards of finite morphisms are
exact, so this statement is immediate.

Recall that an effaceable functor between abelian categories F : C → D is one such that
for all A ∈ Ob(C), there is a monomorphism u : A→M such that F (u) = 0.

Lemma 5.7. The functors Hq(X,−) for q > 0 are effaceable in the category of constructible
sheaves onX.

Proof. See [1], Lemma IV.3.5.

Lemma 5.8. Every constructible sheaf F ∈ Sh(Xét) injects onto a finite product
∏
(pi)∗Ci, where

the pi are finite morphismsXi → X and Ci is a finite constant sheaf onXi.

Details omitted. Being locally constant constructible is, by descent theory, equivalent to being
represented by a finite étale group scheme. Since étale morphisms are local isomorphisms in
the étale topology, one obtains finite étale Uij → Xi for eachXi → X in the stratification over
which F is finite constant. This gives the desired injection.

We are now going to show that Hq(X,F) ∼= Hq(X0,F) given that F is constructible. We
have the surjectivity statement (and isomorphism for q = 0) for constant sheaves. We will
induct on q, so that we can use the result for q − 1 while for q we only have surjectivity for
constant sheaves (and thus for suitable products of pushforwards of constant sheaves by one
of our lemmas). By our lemmas we embedF in a product of pushforwards of constant sheaves;
call this G. The category of constructible sheaves is abelian, so G/F is constructible. We have
exact sequences

0 H0(X,F) H0(X,G) H0(X,G/F)

0 H0(X0,F) H0(X0,G) Hq(X0,G/F)

∼=

By a diagram chase the left arrow is injective, so the right is as well, so they are also iso-
morphisms by the five lemma.

For larger q we have the following exact sequences.

13

https://stacks.math.columbia.edu/tag/073D


Caleb Ji Weil II

Hq−1(X,G/F) Hq(X,F) Hq(X,G) Hq(X,G/F)

Hq−1(X0,G/F) Hq(X0,F) Hq(X0,G) Hq(X0,G/F)

∼=

Diagram chasing gives surjectivity. For injectivity, we need to use effaceability ofHq(X,−).
We embed F into an effacing constructible sheaf and diagram chase the corresponding dia-
grams, and we win.

5.4 Formal geometry

We list the main theorems from formal geometry which we will use here.

Theorem 5.9 (Formal functions). Let f : X → Y be a projective morphism of Noetherian
schemes. If F is a coherent sheaf onX, then

̂Rif∗(F)y ∼= lim←−
n

H i(Xn,Fn).

Corollary 5.10. Taking i = 0, we have

Γ(X
Â
,OX

Â
) = lim←−

n

Γ(Xn,OXn)

Theorem 5.11 (Formal GAGA). LetX be a Noetherian scheme, separated and of finite type over
Y = SpecA, whereA is an adic4 Noetherian ring. Let X̂ be its I-adic completion. Then the functor
F 7→ F̂ is an equivalence of categories between the category of coherent sheaves onX whose support
is proper over Y to the category of coherent sheaves on X̂ whose support is proper over Ŷ .

A Noetherian local ring B has the approximation property if, given some system of polyno-
mials Pi ∈ B[Y1, . . . , Ym], a solution (b̂1, b̂2, . . . , b̂m) ∈ B̂m, and some N ≥ 1, then one can find
a solution (b1, b2, . . . , bm) ∈ Bm such that bj ≡ b̂j (mod mN ).

Theorem 5.12 (Artin approximation). The Henselization of a finitely generated algebra over a
field or excellent Dedekind domain has the approximation property.

5.5 Proof in the case of a curve

We have calculated that étale cohomology of curves with coefficients Z/n vanishes in degrees
higher than 2. Thus from our reductions, it suffices to show that Hq(X,Z/n) → Hq(X0,Z/n)
under the natural map in the diagram below for is an isomorphism for q = 0 and surjective for
q = 1, 2.

X0 X

SpecA/m SpecA

4Hausdorff and complete wrt In

14
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q = 0

Because the connected components of a scheme X correspond to the primitive idempotents
of Γ(X,OX), we must show that the mapX0 → X induces a bijection

IdemΓ(X,OX)→ IdemΓ(X0,OX0).

LetXk = X ×A SpecA/mk+1 for all k ≥ 0. Then allXk have the same topological space, so
we have

Idem lim←−
k

Γ(Xk,OXk
) ∼= IdemΓ(X0,OX0).

Now by the formal functions theorem, we have that

lim←−
k

Γ(Xk,OXk
) = Γ(X

Â
,OX

Â
).

Now this latter ring is simply Γ(X,OX)⊗A Â by definition. Thus it suffices to show that the
idemportents of Γ(X,OX) are in natural bijection with those of Γ(X,OX)⊗A Â. Recall that A
is a strictly Henselian local ring. Then Γ(X,OX) is an A-algebra and a finite A-module, which
implies that it is a direct product of local rings. Then Γ(X,OX) has the same idempotents as
any Γ(X,OX)⊗A A/mk+1, and thus has the same idempotents as Γ(X,OX)⊗A Â as desired.

q = 1

We wish to show that H1(X,Z/n) → H1(X0,Z/n) is surjective. As we have that H1
ét(X,Z/n)

classifies the finite étale Z/n-torsors overX, it suffices to show that the Z/n-torsors Y0 → X0

can be lifted to torsors Y → X.

Now we use the topological invariance of the étale site [2, Tag 04DY]. This gives that every
Z/n-torsor lifts uniquely to a Z/n-torsor Yk → Xk, and thus to one over the formal scheme
X̂. Now we apply formal GAGA, which allows us to lift coherent sheaves, and thus finite étale
torsors (as they are finite morphisms) from Ŷ → X̂ to Y ′ → X ⊗A Â. Our goal is to obtain an
appropriate Y → X itself. This is done through Artin approximation.

We won’t literally lift Y ′ → X ⊗A Â to Y → X (this might not be possible); we simply
need some finite étale Z/n-torsor Y → X that induces the same special fiber over X0. The
idea is that finite étale maps can be described by finitely many equations, so we can use Artin
approximation to find an appropriate approximate solution.

To formalize this, we consider the functor

F : R 7→ {finite étale covers ofX ⊗A R}/ ∼ .

Now becauseX is Noetherian, this functor is locally of finite presentation, which just means
that

lim−→F (Ai) ∼= F (lim−→Ai)

for A-algebras {Ai}. Pick the Ai to be the finitely generated A-subalgebras of Â. Then any
element of F (Â) comes from an element of some F (Ai). If Ai = A[X1, . . . , Xt]/(f1, . . . , fr),
then we have a solution to the fi in Â. Then by Artin approximation, there is a solution in A
that gives the same result when quotienting out by the maximal ideals. Thus we are done.

15
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q = 2

We want to show that the map

H2(X,Z/n)→ H2(X0,Z/n)

is surjective. We may assume n is a power of a prime. Then if (n, char k) > 0, then Artin-
Schreier theory shows that H2(X0,Z/n) = 0. Otherwise, we use the Kummer sequence and
reduce the problem to showing that Pic(X)→ Pic(X0) is surjective.

For this, one may give an elementary argument as in [1]. One may also give a similar argu-
ment to the one in the previous case as follows. First, we can lift line bundles to Xn, because
we can do so locally and the global obstruction lies in H2(X0,OX0) = 0. Thus we obtain the
corresponding line bundle L̃ on X̃, and by formal GAGAwe have the corresponding line bundle
L′ onX ⊗A Â. Now to apply Artin approximation, we consider the functor

F : R 7→ {Pic(X ⊗A R)}.

Using the same argument as in the previous case, it suffices to show that this functor is locally
of finite presentation. As before, this is true becauseX is Noetherian.

5.6 Applications

There are a lot of applications of proper base change, and we will see it used extensively later.
But here we list a few important ones.

5.6.1 Compactly supported cohomology

Nagata’s compactification theorem states that if X is a separated scheme of finite type over a
field k5, then there is an open immersion j : X ↪→ X into a proper k-schemeX.

Definition 5.13. Let F be a torsion sheaf on X. Then we define cohomology with proper support
as

Hq
c (X,F) := Hq(X, j!F).

The fact that this is well-defined depends on the proper base change theorem. Indeed, take
two different compactifications j1, j2. Then we have a factorization

X X3 X1 ×X2 X1

X2 Spec k

whereX3 is the closure of the image ofX. SinceX3/k is proper, we reduce to showing that
Hq(X1, j1!F) = Hq(X3, j3!F).

X X3

X1

j3!

p proper
j1!

5or any qcqs base, following Deligne
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Since j1! = p∗j3!, by the Leray spectral sequence we have

Hq(X1, R
qp∗(j3!F))⇒ Hp+q(X3, j3!F).

Thus it suffices to show that Rqp∗(j3!F) = 0 for q > 0. Now we use the proper base change
theorem on the following diagram.

X X3

X X1

id

j1!

j3!

p

We have
j∗1(R

qp∗(j3!F)) = Rq id(j∗3(j3!F)) = 0.

Looking at stalks, the result follows immediately.

Remark. More generally, for separated morphisms of finite type of Noetherian schemes f :
X → S, we may define

Rqf!F := Rqf∗(j!F).

Then we have the base change formula

g∗(Rqf!F) ∼= Rqf ′
! (g

′∗F).

5.6.2 Constructible sheaves

Theorem 5.14. Let f : X → S be a separated morphism of finite type and letF be a constructible
sheaf onX. Then the sheaves Rqf!F are constructible.

5.6.3 Computations with dévissage

Theorem5.15. Let f : X → S be a separatedmorphismof finite typewhose fibers are of dimension
≤ n and let F be a torsion sheaf onX. Then Rqf!F = 0 for q > 2n.

Theorem 5.16. Let f : X → S be a separated morphism of schemes of finite type over C and let
F be a torsion sheaf onX. Then

(Rqf!F)an ∼= Rqfan
! Fan.

In particular,
Hq

c (X,Z/n) ∼= Hq
c (X

an,Z/n).

Theorem 5.17. Let X be an affine scheme of finite type over a separably closed field and F a
torsion sheaf onX. ThenHq(X,F) = 0 for q > dimX.

6 Purity, Gysin sequence, and the weak Lefschetz theorem

6.1 Purity

Let Z → X be a closed immersion of smooth schemes over a separably closed field k whose
characteristic is prime to some positive integer n. If Z has codimension c, we call (Z,X) be a
smooth pair of codimension c.

17
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Theorem 6.1. Let (Z,X) be a smooth pair of codimension c. and let F be a locally constant sheaf
of Λ-modules. Then there is a canonical isomorphism

Hr−2c(Z,F(−c))
∼=−→ Hr

Z(X,F)

for r ≥ 0.

The existence of such a canonical isomorphism has a lot of content. Indeed, abstract co-
homological purity only gives an isomorphism, and the map itself represents a choice of fun-
damental class. When Z is not smooth, we still have the following result.

Proposition 6.2 (Semi-purity). For any closed Z ⊂ X of codimension c, we have Hr
Z(X,Λ) = 0

for r < 2c.

6.2 Gysin sequence

Recall the long exact sequence of a pair.

0→ H0
Z(X,F)→ H0(X,F)→ H0(U,F)→ H1

Z(X,F)→ · · · .

Applying purity immediately gives the following results.

Proposition 6.3. For 0 ≤ r ≤ 2c− 1, we haveHr
Z(X,F) = 0 andHr(X,F) ∼= Hr(U,F).

Proposition 6.4 (Gysin sequence). We have a long exact sequence

0→ H2c(X,F)→ H2c(U,F)→ · · ·
→ Hr−2c

Z (X,F)→ Hr(X,F)→ Hr(U,F)→ · · · .

6.3 Vanishing and finiteness theorems

Here is an application of the Gysin sequence.

Proposition 6.5. Let X/k be a smooth variety and let F be a finite locally constant sheaf whose
torsion is relatively prime to char(k). ThenH i(X,F) is finite.

Sketch of proof. ???

Proposition 6.6. LetX/k be an affine variety of dimension d over a separably closed field and let
F be a torsion sheaf. Then cd(X) ≤ d.

Sketch of proof. We only give the proof for curves. The general case is more complicated but is
an induction from this base case using the proper base change theorem. ???

First, since every torsion sheaf is a direct limit of constructible sheaves, if suffices to prove
the statement for constructibleF . ThenF is locally constant on some nonempty open U ⊂ X.
We have an exact sequence

0→ j!(F|U )→ F → Q→ 0.

Then Q is just a finite direct sum of points ix∗(Qx), which has no higher cohomology. After
passing to the normalization, we can assume X is smooth. So we’ve reduced to the case of
smooth X and F = j!(G|U ) for G finite locally constant. One can now conclude with Poincaré
duality and general vanishing for i ≥ 3. ???
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6.4 Weak Lefschetz theorem

Theorem 6.7. Let X be a smooth projective variety over a separably closed field of dimension d
and letH be a hyperplane section. If F is a torsion sheaf, then the morphisms

H i(X,F)→ H i(Z,F)

are isomorphisms for i ≤ d− 2 and is injective for i = d− 1.

Theorem 6.8. Let U = X − X ∩ H; this is affine. The long exact sequence associated to the
localization exact sequence is of the form

H i−1(Z,F)→ H i
c(U,F)→ H i(X,F)→ H i(Z,F)→ H i+1

c (U,F)→ · · ·

We will use Poincaré duality, which gives that

H i
c(U,F) ∼= H2d−i(U, F̂ (d)).

By the vanishing theorem above for affines, this is 0 for i ≤ d− 1. The result follows.

7 Fundamental classes, cycle classes, and Chern classes

The cycle class map allows us to analyze cohomology classes coming from subvarieties. It
can be fairly easily defined through the Gysin sequence, along with the purity statement in the
previous section. However, it will be useful to develop a theory of fundamental classes to prove
key properties, such as the fact that intersection product corresponds to cup product. These
will be further complemented by Chern classes in étale cohomology.

7.1 Fundamental class

Let Z → X be a closed immersion of smooth schemes over a separably closed field k whose
characteristic is prime to some positive integer n. If Z has codimension c, we call (Z,X) be a
smooth pair of codimension c. Let Λ = Z/n. We will define an associated fundamental class

sZ/X ∈ H2c(X,Λ(c)).

Wewill first define an element inH2c
Z (X,Λ(c)) and take sZ/X to be its image inH2c(X,Λ(c)).

Recall that purity implies that for 0 ≤ r ≤ 2c − 1, we have RrΓZ(X,F) = Hr
Z(X,F) = 0.

Therefore in the Leray spectral sequence of

Sh(X)
i!−→ Sh(Z)

Γ−→ Ab

we get

H i(Z,Hj
Z(X,F))⇒ H i+j

Z (X,F) so H i(Z,H2c
Z (X,F)) ∼= H2c+i

Z (X,F).

In particular, when i = 0, we haveH2c
Z (X,Λ(c)) ∼= Γ(Z,H2c

Z (X,Λ(2c))) which is locally iso-
morphic to Λ. Our fundamental class will have order n, and thus show that this sheaf is indeed
isomorphic to the constant sheaf Λ.

We proceed by first defining the fundamental class in the case that c = 1. In this case we
use the Kummer sequence as follows. Assume Z is irreducible.

H1
Z(X,Gm)

n−→ H1
Z(X,Gm)

δ−→ H2
Z(X,Λ(1))
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The exact sequence of a pair shows thatH1
Z(X,Gm) ∼= Z, so we see that the image of 1 under δ

has order n as desired.

In general, there is a unique way of assigning a fundamental class

sZ/X ∈ H2c
Z (X,Λ(c))

of order n extending what we just did in a functorial manner. More precisely, if (ϕ : (Z ′, X ′)→
(Z,X) is a morphism of smooth pairs of codimension c, then ϕ∗(sZ/X) = sZ′/X′ . Furthermore,
if (Z, Y,X) is a smooth triple, we have sZ/Y ⊗ sY/X = sZ/X . These conditions imply, using
induction, that the fundamental class is unique. Existence follows from showing that they can
be patched from local data.

We cannow identify sZ/X with 1 ∈ H0(Z,Λ) and thus their images inH2c(X,Λ(c)). Through
some homological algebra, we have the following commutative diagram.

Hr(Z,Λ) × Hs(Z,Λ) Hr+s(Z,Λ)

Hr(X,Λ) × Hs+2c(X,Λ) Hr+s+2c(X,Λ)

⌣

i∗ i∗

⌣

i∗

The key is that i∗i∗(x) = x ⌣ i∗(1Z) for x ∈ Hr(X,Λ).

7.2 Cycle class

Recall the Gysin sequence for smooth pairs (Z,X) of codimension c:

0→ H2c−1(X,F)→ H2c−1(U,F)
→H0

Z(X,F)→ H2c(X,F)→ H2c(U,F)→ · · ·
→Hr−2c

Z (X,F)→ Hr(X,F)→ Hr(U,F)→ · · · .

When Z is smooth, we can define the cycle class clX(Z) ∈ H2c(X,Λ(c)) as the image of
1 ∈ H0

Z(X,Λ) ∼= H2c
Z (X,Λ(c))→ H2c(X,Λ(c)).

When Z is not smooth, we can define it using semi-purity. Let Y be the singular locus of
Z. The exact sequence of the triple (X,X\Y,X, \Z) is of the form

· · · → Hr
Y (X,Z)→ Hr

Z(X,Λ)→ Hr
Z\Y (X\Y,Λ)→ · · · .

By semi-purity forY , whichhas codimension at least c+1, we obtainH2c
Z (X,Λ) ∼= H2c

Z\Y (X\Y,Λ).
Thus we can define clX(Z) to be the image of 1 under the composite

Λ ∼= H0(Z\Y,Λ) ∼= H2c
Z\Y (X\Y,Λ(c)) ∼= H2c

Z (X,Λ(c))→ H2c(X,Λ(c)).

The key property we would like to have is that the intersection product on cycles is com-
patible, at least in nice scenarios, with the cup product on cohomology. We begin with a few
lemmas.

Lemma 7.1. Let π : Y → X be a morphism of varieties and let Z be a cycle on X. Assuming
Y ×X Z is smooth, we have clY (π∗Z) = π∗ clX(Z).

Indeed, this is true by functoriality of the fundamental class. (e.g. the LHS is just the image
of sZ×Y/Y .
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Lemma 7.2. ForW ∈ C∗(X) and Z ∈ C∗(Y ), we have

clX×Y (W × Z) = p∗ clX(W ) ∪ q∗ clY (Z).

This uses the key fact that i∗i∗(x) = x ⌣ i∗(1Z) for x ∈ Hr(X,Λ).

From these, we get the following proposition, noting that in the transverse case, we have
W · Z = W ×X Z.

Proposition 7.3. Let W and Z be cycles on X whose primes intersect each other transversally.
Then

clX(W · Z) = clX(W ) ⌣ clX(Z).

7.3 Chern classes

8 Poincaré duality

8.1 Statements

There are multiple different levels of generality of Poincaré duality in étale cohomology: con-
stant sheaves, locally constant sheaves, and constructible sheaves, and curves, varieties, rela-
tive version.

8.2 The trace morphism

8.3 The cup product

8.4 Poincaré duality for curves

Theorem 8.1. LetU be a smooth curve over k = k. For all constructible sheavesF ofZ/n-modules
on U and all r ≥ 0, there is a canonical perfect pairing of finite groups

Hr
c (U,F)× Ext2−r

U,n (F , µn)→ H2
c (U, µn) ∼= Z/n.

Corollary 8.2. With the same conditions, if F is locally free we have a perfect pairing

Hr
c (U,F)×H2−r(U,F∨(1))→ H2

c (U, µn) ∼= Z/n

Proof. Consider the Grothendieck spectral sequence associated to

Sh(U)
Hom(F ,−)−−−−−−→ Sh(U)

Γ−→ Ab.

Applying this to µn gives the spectral sequence

Hp(U,Extq(F , µn))⇒ Hp+q(U, µn).

Since F is locally free, Extq(F , µn) = 0 for q > 0 and we get the desired result.

Actually, we will prove the corollary properly and use it to deduce the theorem. We will not
give the details of why the cup product is the pairings we are using.

Proof. We are assuming that F is locally free. First, let us rephrase the statement to say that

ϕr : Hr(U,F)→ H2−r
c (U,F∨(1))∨

is an isomorphism for all r. For r ̸= 0, 1, 2, we can use the general result on cohomological
dimension.
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1. If π : U ′ → U is finite, then if the statement is true for F on U ′ then it is true for π∗F on
U . This is true because π∗ is exact.

2. r = 0. Since F is locally constant, there is some finite étale π : U ′ → U over which F is
constant, and thus can be embedded into some G = (Z/nZ)s. So the injection π∗F ↪→ G
gives an injectionF ↪→ π∗G. Thenwe have an exact sequence of sheaves 0→ F → π∗G →
H, andH is also locally constant. We then have the following commutative diagram.

0 H0(X,F) H0(X,π∗G) H0(X,H)

0 H0
c (X,F∨(1))∨ H0

c (X,π∗G∨(1))∨ H0
c (X,H∨(1))∨

∼=

Diagram chasing gives the desired result.

3. Reduction to the case F = Z/n and injectivity of ϕ1. We induct using the same method
as above.

H0(X,H) H1(X,F) H1(X,π∗G) H1(X,H)

H0
c (X,H∨(1))∨ H1

c (X,F∨(1))∨ H1
c (X,π∗G∨(1))∨ H1

c (X,H∨(1))∨

∼= ∼=

The right arrow is assumed to be injective, so by the four lemma ϕ1 is also surjective. The
case r = 2 is another four lemma argument on the following diagram.

H1(X,π∗G) H1(X,H) H2(X,F) H2(X,π∗G) H2(X,H)

H1(X,π∗G) H1
c (X,H∨(1))∨ H2

c (X,F∨(1))∨ H2
c (X,π∗G∨(1))∨ H1

c (X,H∨(1))∨

∼= ∼=∼=

4. Injectivity of ϕ1. InterpretH1(U,Z/n) = Homc(π1(U),Z/n). An element s is determined
by its kernel, which corresponds to a Galois covering π : U ′ → U . Then s maps to 0 in
H1(U ′,Z/nZ) ∼= H1(U, π∗Z/nZ). Then use the long exact sequence associated to

0→ Z/n→ π∗Z/n→ H→ 0.

This shows that if s is in the kernel of ϕ1, then s = 0.

5. Final step: isomorphisms for F = Z/n. For projective X, we know they have the same
size for r = 1, which seals the deal by injectivity. It is easy to check the result for r = 2.
Now we need to be able to remove points. We do this by the exact sequence of the pair
(U,U\x) and the localization exact sequence.

8.5 Poincaré duality for varieties

Theorem 8.3. Let X/k be a smooth variety of dimension d over a separably closed field and let
(n, char k) = 1. If F is a constructible sheaf of Λ = Z/n-modules, then the cup product gives a
perfect pairing

H i
c(X,F)×H2d−i(X,F∨(d))→ H2d

c (X,Λ(d))
∼=−→ Λ.
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8.5.1 Derived categories and the 6 functors

The six operations naturally arise in the setting of derived categories, but let us begin by re-
viewing the constructions on the ordinary sheaf level.

Let f : X → Y be a morphisms of schemes. Then we will define

• direct image f∗ : Sh(X)→ Sh(Y )

• inverse images: f∗ : Sh(Y )→ Sh(X)

• proper direct image: f! : Sh(X)→ Sh(Y )

8.6 Relative Poincaré duality

9 The Lefschetz trace formula

9.1 Recollection of Weil cohomology axioms

Let us list the main properties of étale cohomology that make it aWeil cohomology theory. Let
X be a variety of dimension d over a separably closed field k.

1. (Cycle class) Let Z ⊂ X be a smooth closed subscheme of codimension r; then there is
an associated fundamental class sZ/X ∈ H2r

Z (X,Λ(r)). In general, there is a cycle class
map

clX(C∗(X)→ H∗(X))

that agrees with the fundamental class.

2. (Trace map) There is an isomorphism

H2d
c (X,Λ(d))

∼=−→ Λ

sending clX(P ) to 1 for all closed points P .

3. (Poincaré duality) There is a perfect pairing for locally constant constructible sheaves F
of Λ-modules onX:

H i
c(X,F)×H2d−i(X, F̃ (d))→ H2d

c (X,Λ(d))
∼=−→ Λ

4. (Künneth formula) Let X,Y be proper and assume that F and Hr(X,F) are flat. Then
the cup product gives isomorphisms

H∗(X,F)⊗Hs(Y,G)
∼=−→ H∗(X × Y, p∗F ⊗ q∗G).

5. (Weak Lefschetz theorem) LetX be projective and let i : Z → X be a hyperplane section.
Then the map

H i
Z(X,F)→ H i(X,F)

is an isomorphism for i ≥ d+ 2 and a surjection for i = d+ 1. ...

6. (Hard Lefschetz theorem) The Lefschetz operator L : H i(X,F) → H i+2(X,F) is given
by taking the cup product of the cycle class of some hyperplane. Then

Li : Hd−i(X,F)→ Hd+i(X,F)

is an isomorphism.
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9.2 Generalizing the Gysin map

Recall that the Gysin map
Hr(Z,F)→ Hr+2c(X,F(c))

applied to 1 ∈ H0
Z(X,Λ) gives the cycle class cl(Z). Using Poincaré duality we can generalize

this to arbitrary proper morphisms π : Y → X of smooth varieties where dimX = dimY +
c. The associated map on cohomology π∗ : H2d−r

c (X,Λ(d)) → H2d−r
c (Y,Λ(d)) is dual to the

corresponding map
π∗ : H

r−2c(Y,Λ(−c))→ Hr(X,Λ).

When π is a closed embedding, then π∗ is the Gysin map. This map π∗ acts well functorially,
and one obtains a projection formula:

π∗(y ⌣ π∗(x)) = π∗(y) ⌣ x.

9.3 The Lefschetz trace formula

Using these wonderful properties, we will prove the Lefschetz trace formula for étale cohomol-
ogy.

Theorem 9.1 (Lefschetz trace formula). Let X be a smooth projective variety over an alge-
braically closed field of dimension d and let ϕ : X → X be an endomorphism. We have

∆ · Γϕ =

2d∑
i=0

(−1)iTr(ϕ,H i
c(X,Ql)).

The Künneth formula allows us to identifyH∗(X×X)withH∗(X)⊗H∗(X). Here, p∗(a) ⌣
q∗(b) is identified with a⊗ b. If we let {eri } be a basis forHr(X) = Hr

c (X), then wemay set {f r
i }

to be the dual basis as a basis ofH2d−r(X). One can ask: what is the class of Γϕ in these terms?

Proposition 9.2. We have clX×X(Γϕ) =
∑

r,i ϕ
∗(eri )⊗ f2d−r

i .

Proof. Let clX×X(Γϕ) =
∑

r,i ai ⊗ f2d−r
i ; we must show that ϕ∗(ei) = ai. Well,

ϕ∗(ei) = p∗(1, ϕ)∗(1 ⌣ (1, ϕ)∗q∗(ei))

= p∗((1, ϕ)∗(1) ⌣ q∗(ei)) (projection formula)
= p∗(clX×X(Γϕ) ⌣ q∗(ei))

= ai,

as desired.

Proof of the Lefschetz trace formula. Since∆ andΓ intersect transversely, we can compute their
intersection product by computing the cup product of their cycle classes. From the lemma
above, we have

clX×X(Γϕ) =
∑
r,i

eri ⊗ f2d−r
i , clX×X(Γϕ) =

∑
r,i

ϕ∗(eri )⊗ f2d−r
i =

∑
r,i

(−1)r(2d−r)f2d−r
i ⊗ϕ∗(eri ).

Thus we have

clX×X(∆ · Γ) = clX×X(∆) ⌣ clX×X(Γ)

=
(∑

r,i

eri ⊗ f2d−r
i

)
⌣

(∑
r,i

(−1)r(2d−r)f2d−r
i ⊗ ϕ∗(eri )

)
=

∑
r,i

(−1)r
(
eri ⌣ f2d−r

i

)
⊗
(
ϕ∗(eri ) ⌣ f2d−r

i

)
Taking the trace of both sides yields the desired result.
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9.4 The many Frobenii

9.5 Application to the Weil conjectures

Recall the Weil conjectures.
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10 The Grothendieck trace formula

10.1 Statement

The Grothendieck trace formula is an important generalization of the Lefschetz trace formula
to constructibleQl sheaves. For instance, it is a key component of Deligne’s completion of the
proof of the Weil conjectures.

Theorem 10.1 (Grothendieck trace formula). LetX0/k = Fq be a variety of dimension d and F0

be a constructibleQl-sheaf onX0. SetX = X0×Fq Fq and let F be the pullback of F0 toX. Let πx
be the geometric Frobenius. Then we have

∑
x∈X(k)

Tr(π|Fx) =
2d∑
i=0

Tr(π|H i
c(X,F)).

When F = Ql, we recover the Lefschetz trace formula (which is stated for an arbitrary
endomorphism ϕ ofX), which we recall here.

Theorem 10.2 (Lefschetz trace formula). Under the same conditions, we have

|∆ · Γϕ| =
2d∑
i=0

Tr(ϕ|H i
c(X,Ql).

Let usmake some comments on the statement of the Grothendieck trace formula. We recall
that the action of the geometric Frobenius on the stalks is given by

SpecFq
(x 7→xq)−1

−−−−−−→ SpecFq
x−→ X.

This changes the étale neighborhoods in the definition of the stalk, and thus acts on Fx. The
geometric Frobenius acts on X = X0 ×Fq SpecFq by id×Fr−1

Fq
, which gives the same action as

the relative Frobenius: FrX0 × id.

As a sanity check, let’s see what this formula says for P1(Fq). On one hand, the left hand
side is just q + 1. We have H0

c (P1,Ql) = Ql which gives a trace of 1 and H2
c (P1,Ql) = Ql(−1)

which gives a trace of q.

Next, let us discuss what it means to take the trace on the RHS. While H i
c(X,F) is a Ql

vector space, to prove this we are really proving the statement for each Fn which make up F .
Indeed, recall that a Ql-sheaf is obtained from tensoring by Ql the system of Z/ln-sheaves Fn

which satisfy Fn+1 ⊗Z/ln+1Z Z/lnZ
∼=−→ Fn.

IfM is a projective module over some ring Λ, then we can take a trace of an endomorphism
ϕ : M → M . Indeed, we can write ΛN = M ⊕M ′ and extend by 0 to extend ϕ to an endo-
morphism of Λn. Then the trace of ϕ on Λn is well-defined, and we take this to be our trace.
More generally, if Λ is non-abelian, e.g. Z/lnZ[G], then we can still embedM inside Λn with
a section, and can take the trace to be the trace of the appropriate composition. The main is-
sue we now have is that even if the sheaf F in our scenario is flat and thus the stalks are free,
its cohomology groups may not be projective. For this we will need the formalism of perfect
complexes and filtered derived categories.
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10.2 Perfect complexes and filtered derived categories

10.3 Dévissage to curves

10.4 Reduction to the Lefschetz trace formula

10.5 In terms of L-functions

10.6 Application: exponential sums

Part II

Weights and Weil II

11 Weil sheaves and weights

11.1 Weil sheaves

Recall that if E/Ql is a finite extension, then we define étale E-sheaves in the same way as Ql

sheaves. The category ofQl-sheaves is obtained from taking the direct limit of the category of
E-sheaves.

Let X0/Fq be a scheme and let X = X0 ×Fq Fq. Let G0 be a Ql sheaf on X0; it extends to
a Ql-sheaf G on X. Recall there is the relative Frobenius FrX defined by the absolute Frobe-
nius on X0 and the identity on scalars, and the geometric Frobenius FX (also known as the
Frobenius automorphism) acting by the inverse of the arithmetic Frobenius on scalars. We
have isomorphisms

Fr∗X(G) ∼= GandF ∗
X(G) ∼= G

that allow us to define equivalent maps on cohomology by the Frobenius. The latter one is
used to generalize to Weil sheaves.

Definition 11.1. A Weil sheaf G0 on X0 consists of a Ql-sheaf G on X with an isomorphism
F ∗
X(G) ∼= G.

The Weil groupW (Fq/Fq) ∼= Z is the subgroup of Gal(Fq/Fq) generated by the geometric
Frobenius. The preimage of it in the homotopy exact sequence gives rise to an exact sequence

1→ π1(X,x)→W (X0, x)→W (Fq/Fq)→ 1.

Recall that by taking the stalk at x, lisseQl-sheaves correspond to finite-dimensional con-
tinuous representations of π1(X,x) on Ql-vector spaces (without lisse, they don’t need to be
finite-dimensional). If we use lisseWeil sheaves instead, we get finite-dimensional continuous
representations ofW (X,x) on Ql-vector spaces.

For example, lisse rank 1 Weil sheaves on SpecFq correspond to characters Z → Q∗
l . Thus

for each b ∈ Q∗
l , we obtain aWeil sheafLb on SpecFq. We will also useLb to denote its pullback

toX0.

Given an irreducible lisse Weil sheaf G0 on a normal and geometrically connected X0/Fq,
there is an étale sheaf F0 and an element b ∈ Q∗

l such that G0 ∼= F0 ⊗ Lb. In general, one
can always give a filtration of G0 with each factor of this form. Using this, we can extend the
Grothendieck trace formula to Weil sheaves. We give the L-function version.
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Theorem 11.2. Let G0 be a lisse Weil sheaf onX0. Then we have

L(X0,G0, t) :=
∏

x∈|X0|

det
(
1− td(x)Fx,Gx

)−1
=

2 dimX∏
i=0

det(1− tF,H i
c(X,G))(−1)i+1

.

Recall Ql-sheaves. The two isos you get fromX0 sheaves. Def. Weil sheaves. Equiv. of cat.
reps, Weil group action on stalks. Grothendieck trace formula.

11.2 Semicontinuity of weights

LetX0/Fq be a scheme and let G0 be a Weil sheaf onX0. Fix an isomorphism (by the axiom of
choice)

τ : Ql → C.

Take a geometric point x : SpecFq → X0 to lie over each closed point x ∈ |X0|. Recall that
the Weil groupW (Fq/k(x)) ∋ Fx acts on the stalk (G0)x.

Definition 11.3. • The sheaf G0 is τ-pure of weight β if for all x ∈ |X0|, each eigenvalue
α ∈ Ql of Fx acting on (G0)x satisfies

τ(α) = N(X)β/2.

• The sheaf G0 is τ-mixed if there is a finite filtration of subsheaves so that each factor Gj0/G
j−1
0

is τ-pure.
Furthermore, we say a sheaf is pure or mixed if these properties hold for any choice of τ .

Weights satisfy some nice functorial properties. For example, if f : X0 → Y0 is a morphism
over Fq, then if G0 on Y0 is τ-pure of weight β, so is f∗

0 (G0). The other direction holds if f is
surjective or finite.

We can define the weight of a sheaf to be the maximum of its weights over all closed points
and eigenvalues. Precisely,

w(G0) = sup
x,α

log(|τ(α)|2)
log(N(x))

.

If G0 is the zero sheaf, then we set w(G0) = −∞.

Itmakes sense that the convergence of the L-function of a sheaf is dependent on itsweights.
Indeed, if w(G0) ≤ β, then the L-function

τL(X0,G0, t) =
∏

x∈|X0|

τ det(1− td(x)Fx,G0x)−1

converges for |t| < q−β/2−dim(X0) and has no zeroes or poles in this region. The proof is simple:
the Grothendieck trace formula shows it is meromorphic, and use the logarithmic derivative
and the given bounds to analyze the zeroes and poles.

Next, we have a result essentially saying that under some conditions, if theweight of a sheaf
is bounded when pulled back to some dense open subset, then it satisfies the same bound on
the whole space.

Proposition 11.4. LetX0 be a smooth irreducible curve overF−q, with j0 : U0 ↪→ X0 a nonempty
open subset with complement S0. If G0 is a Weil sheaf on X0 with j∗0G0 lisse and H0

S(X,G) = 0,
then w(j∗0)G0)) ≤ β implies w(G0) ≤ β.
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This allows us to prove the following semicontinuity result.

Theorem11.5. LetG0 be a lisseWeil sheaf onX0 and let j0 : U0 ↪→ X0 be a dense open subscheme.

1. w(G0) = w(j∗0(G0)) and if the latter is pure, so is the former.

2. IfX0 is irreducible and normal and G0 is normal, then if j∗0(G0) is τ-mixed, then G0 is τ-pure.

3. If X0 is connected and j∗0(G0) is τ-mixed, G0 is τ-pure of weight β at x ∈ |X0|, then G0 is
τ-pure of weight β.

In general, ifG0 is aWeil sheaf onX/Fq, then there is a dense open subscheme j0 : U0 ↪→ X0

such that j∗0(G0) is lisse. We define

wgen(G0) = w(j∗0(G0)).

We say that G0 is τ-real if its characteristic polynomial τ det(1 − Fxt,G0x) ∈ R[t] for all
x ∈ |X0|. A lisse τ-pure sheaf of weight β is a direct summand of a τ-real and τ-pure sheaf of
weight β, e.g.

F0 = (G∨0 ⊗ Lτ−1(qβ )⊕ G0.

11.3 Sheaf-function correspondence and radius of convergence

Let us recall the sheaf-function correspondence. Again, given a Weil sheaf G0 on X0, we have
the action of the geometric Frobenius Fx on G0x. We obtain a function fG0

n : X0(Fqn) → C
defined by

fG0
n (x) = τ Tr(Fn/d(x)

x ,G0x).
We can now do some analysis. Put a scalar product on functionsX0(Fqn)→ C by setting

(f, g)n =
∑

y∈X0(Fqn

f(y)g(y).

Let us rewrite the logarithmic derivative of the L-function in these terms. We have

τL′(X0,G0, t)
τL(X0,G0, t

=
∞∑
n=1

(fG0 , 1)nt
n−1.

We now introduce a variant of this.

Definition 11.6. Given a Weil sheaf G0, define

ϕG0(t) :=

∞∑
t=1

||fG0 ||2ntn−1.

This is given by

ϕG0(t) =
∞∑
n=1

 ∑
x∈X0(Fqn )

|τ Tr(Fn/d(x)
x )|2

 tn−1.

Like for the L-function, wewant to bound these coefficients of this function and understand
its radius of convergence.

Proposition 11.7. There is a constant C independent from n such that

||fG0 ||2n ≤ Cqn(w(G0)+dim(X0)).

Thus, ϕG0(t) converges for |t| < q−w(G0)+dim(X0).

Themain result is that this often is exactly the radius of convergence. More precisely, ifX0

is a smooth curve withH0
E(X,G) = 0 for all closed subsets E ofX, then it is.

L2 norm of a sheaf, radius of convergence.
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11.4 Determinant weights

It turns out that rank 1 lisse Weil-sheaves are all τ-pure. Let G0 be such a sheaf onX0 and let

χ : W (X0, x)→ Q∗
l

be the corresponding character.

Theorem 11.8. The image of π1(X,x) is χ in Q∗
l is finite.

The idea of the proof is the following. By dévissage, we reduce to the case where X0 is a
smooth projective, geometrically connected curve. Since the target is abelian, we know every-
thing factors through its abelianization. Now recall we have an exact sequence

1→ π1(X,x)→W (X0, x)→W (Fq/Fq)→ 1.

The image of π1(X,x) is therefore contained in the image of the kernel IK of the map

W (X0, x)ab →W (Fq/Fq).

One can identify IK with Pic0(X0)(Fq), which is clearly finite.

If you try to do this with say the nodal cubic, you probably can’t get the Pic0 thing to work,
and the image in any case may be infinite.

Looking back at the short exact sequence, we see that we can write χ = χ1 · χ2, where χ1 is
torsion (as we have just seen) and χ2 factors throughW (Fq/Fq) ∼= Z. Thus we may factor

G0 ∼= F0 ⊗ Lb,

where F0 is torsion and is thus pure of weight 0. Since Lb is τ-pure of weight log(|τ(b)|)2
log(q) , we get

that G0 is τ-pure of the same weight.

Now let us define determinant weights. Given a smooth Weil sheaf G0 (of higher rank), we
can filter it so that the quotientsF i

0 := Gi0/G
i−1
0 are irreducible with rank ri. Then we know that

∧riF i
0 is τ-pure. We define the determinant weights of G0 to be

w(∧riF i
0)

ri
.
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