JOSEPH FELS RITT LECTURES
         Karen Uhlenbeck
         
         
         University of Texas, Austin
         &
         
         Texas Institute for Computational and Applied Mathematics 
         
 
         
         From 
         Solitary Waves to Ubiquitous
         Symmetry
 
Abstract:
One of the surprises of modern mathematics is the appearance of the Korteweg-de Vries Equation in the organization of new invariants of symplectic manifolds X (usually called quantum cohomology). Certain special differential equations (a subset of those known as integrable) have appeared in the physics literature on topological conformal field theory for over a decade. Kontsevich's Fields Medal is at least partly based on his verification of the formulas for X a point which are based on algebraic structures used for solving Korteweg-de Vries equation. The appearance of these equations in quantum cohomology is further reflected in the well known "Virasoro Conjecture". This asserts that the quantum cohomological invariants are fixed points of symmetries consisting of half a Virasoro algebra. These algebras are known to act on many mathematical structures, in particular on the solution sets of most integrable equations. There is little speculation or conjecture as to the reason for this truly amazing and unlikely mating of two entirely different subjects of integrable systems and topological invariants.
On the other hand, the Korteweg-de Vries equations themselves, which appeared in the 19th century to describe solitary water waves, have already played several roles in mathematics. The first lecture will be devoted to an elementary description of some of these earlier appearances. The second lecture will be devoted to the Virasoro symmetries and one explanation of their appearance in integrable systems. One goal of the talk is to interest the audience in deeper questions about connections between these two subjects and topology.
The lectures are intended for a broad mathematical audience rather than for specialists. A good part of the first lecture should be comprehensible to anyone who understands some differential equations. There is a nice web site at Herriot Watt University in Edinburgh which has some fun information about solitons. In particular, one of their history pages gives some information about John Scott Russell ,who appears to have been a fascinating man. I also like the particular photo from their collection of a water wave soliton best, although the pictures of the corresponding to a Sine Gordon solution from Richard Palais' home page is also fun.
An introductory article The Symmetries 
           of Solutions  by Richard Palais  contains more 
           interesting history, 
           some of which I will repeat in the talk.  An 
           article written by  Chuu-Lian  Terng and myself  which appeared two 
           years ago in the Notices of the American Mathematical Society gives
           an 
           introduction to  one method of viewing inverse scattering.  I 
           will define and explain the Virasoro actions,  which can be 
           understood as acting  through the inverse scattering transform.   
           This article might be good preparation for my explanation of the 
           Virasoro actions. 
         The address of the
      
         International Affairs Building:
         420 West 118th Street
Go to the 6th floor- Plaza Entrance
Dag Hammarskjold Lounge
 
Thursday, April 18 & Friday, April 19
4:30 p.m.
Tea will be served at 3:30 
         p.m. - 
         
         508 Mathematics Building
 
Directions to Columbia University
Math
Department Home
Email your comments by filling
out our
feedback form. This page was last modified on Tuesday,
09-April-2002.