
Lecture 14: optimization
Calculus I, section 10
November 1, 2022

Last time, we saw how to find maxima and minima (both local and global) of func-
tions using derivatives. Today, we’ll apply this tool to some real-life optimization problems.
We don’t really have a new mathematical concept today; instead, we’ll focus on building
mathematical models from a given problem so that we can apply our mathematical tools.

Here’s a motivating example, which might even be useful in real life: if you want to throw
something (or someone) as far as possible, what angle should you throw at?

Let’s make some simplifying assumptions, to make the situation easier to model. We’ll
assume that we’re starting at ground level, height y = 0; that the initial speed we can
throw at is constant, independent of the angle θ we’re throwing at; and that there is no air
resistance, just gravity. How should we go about maximizing the distance we can throw?

Let’s start by drawing a picture:

x

y

D

θ

What we want to maximize is this quantity D; the only variable we can control is θ, so we
want to think of D as depending on θ. How should we do this?

Well, D is the point at which whatever we’re throwing hits the ground, so it actually
depends on this extra quantity y, specifically on the point at which y = 0. I don’t want to
get too much into the physics and vectors and such, so let’s just take the following as a black
box: if we can throw with speed v, then the position of the object after time t will be given
by

x(t) = v cos(θ)t, y(t) = −16t2 + v sin(θ)t.

Thus y = 0 at t = 1
16v sin(θ). (For example, if θ = 0 then the object hits the ground

immediately; if θ = π
2 then it takes the maximal amount of time, so D = x( 1

16v sin(θ)) =
1
16v

2 sin(θ) cos(θ).
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We’re now ready to do our optimization: the global maximum for D will be either were
dD
dθ

= 0, where the derivative does not exist, or at the endpoints. Let’s take these in reverse
order: first of all, what are our endpoints? If we throw at θ = 0, the object hits the ground
immediately, so D = 0; this is the worst we can possibly do, and θ < 0 we’re throwing down
so the same thing will happen. Therefore let’s put one endpoint at θ = 0. On the other
hand, if we throw straight up, at θ = π

2 , although the object will be in the air for a relatively
long time, it will also come down exactly where we threw it from, i.e. D = 0 again, so again
this is a poor choice, and for θ > π

2 we’re actually throwing backwards, which we again
discard. We expect the answer to be somewhere between 0 and π

2 , so we’ll take these as our
endpoints; both give D = 0 as we saw, so if we get anything better from local maxima or
non-differentiable points that will have to be the right answer.

In fact, we can compute

dD

dθ
= d

dθ

1
16
v2 sin(θ) cos(θ) = 1

16
v2
(
cos(θ)2 − sin(θ)2

)
by the product rule. This always exists, so there are no non-differentiable points. It is equal
to zero if and only if cos(θ)2 = sin(θ)2, or equivalently if tan(θ)2 = 1. For 0 ≤ θ ≤ π

2 , we
always have tan(θ) ≥ 0, so this is the same thing as tan θ = 1, so θ = tan−1(1) = π

4 .
So all told, our guess is that the right answer is π

4 , or 45◦, so long as this gives an answer
of more than zero: and indeed plugging it in to our formula for D gives

D = 1
16
v2 ·
√

2
2
·
√

2
2

= v2

32
.

This is not a terribly surprising result: 45◦ seems like the obvious compromise between θ = 0
and θ = π

2 = 90◦.
What’s interesting is we can now go back and use this same calculation to make our

model a little more realistic. (Warning: this will get long and a bit messy, but some of the
calculations can be skipped.) For example, in real life, you’re rarely throwing something
from height 0; more likely you’re throwing from around the level of your shoulder, or maybe
higher if you’re elevated. We can fix our model to take this into account: now say you’re
starting from a height h. Then

x(t) = v cos(θ)t, y(t) = −16t2 + v sin(θ)t+ h.
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Now to find y = 0 we need the quadratic formula. You can imagine this formula is going to
get messy once we start plugging things in; instead, let’s just write T for the time at which
y(T ) = 0, and figure out how to make it explicit later. (Keep in mind that T also depends
on θ.) Then we have

D = x(T ) = v cos(θ)T,

so
dD

dθ
= v

(
cos(θ)dT

dθ
− sin(θ)T

)
.

Again we can take θ = 0 and θ = π
2 as endpoints, since throwing down or backwards is never

going to be better; in this case D at θ = 0 will be nonzero, since it takes some time for y to
drop to 0, but we still expect that the true maximum will be somewhere in the middle.

What we know about T is that for any θ, we have

y(T (θ)) = −16T (θ)2 + v sin(θ)T (θ) + h = 0.

We can differentiate this relationship with respect to θ:

−32T · dT
dθ

+ v cos(θ)T + v sin(θ) · dT
dθ

= 0.

(Note: we can’t just use the chain rule, because y depends both on T (θ) and directly on
θ—this tripped me up for a minute while writing these notes!) Solving for dT

dθ
, we get

dT

dθ
= v cos(θ)T

32T − v sin(θ)
.

Therefore all together we have dD
dθ

= 0 when

v cos(θ)2T
32T − v sin(θ)

= sin(θ)T,
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which we can simplify to

32T sin(θ) = v(cos(θ)2 + sin(θ)2) = v

and so
sin(θ) = v

32T
.

(Recall that when h = 0, we had T = 1
16v sin(θ), so in this case this formula would give

sin(θ) = v
32
16v sin(θ)

= 1
2 sin θ and so sin(θ)2 = 1

2 , which gives θ = π
4 as before.)

Now we can solve for T and only have to use this big expression once: since y(T ) =
−16T 2 + v sin(θ)T + h = 0, by the quadratic formula (and since T > 0) we have

T =
v sin(θ) +

√
v2 sin(θ)2 + 64h
32

.

All in all we get

sin(θ) = v

v sin(θ) +
√
v2 sin(θ)2 + 64h

= 1
sin(θ) +

√
sin(θ)2 + 64h/v2

.

Solving for sin(θ) gives
sin(θ) = 1√

2 + 64h/v2

and so

θ = sin−1
(

1√
2 + 64h/v2

)
.

In particular this makes clear that at h = 0 we recover sin−1( 1√
2).

We can also get some nice concrete numbers out of this formula. For example, suppose
you’re throwing from a height of 5 feet at 40 feet per second. Then the optimal angle would
be

θ = sin−1
(

1√
2 + 64 · 5/402

)
= sin−1

(
1√
2.2

)
≈ 0.73988 = 42.392◦.

Generally this also tells you that the higher you are, the closer to a flat angle you should
throw at: as h → ∞, we see that θ → sin−1(0) = 0. Nevertheless no matter how high you
are you should always be aiming a little bit up, and the lower you are the closer to 45◦. (Of
course, we could keep adding complicating factors, such as variable throwing power or air
resistance.)

Let’s do another practical example, though less so in New York: driving. Let’s say we’re
driving from point A to point B, which are some distance D miles apart by the most direct
route, along which we can drive at 30 miles per hour. Alternatively, there’s also a highway
which goes to point B, along which we could drive at 60 miles per hour for a distance `, but
it doesn’t pass through point A; instead it’s r miles away, which we’d again have to drive at
30 miles per hour.
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At what point x should we get onto the highway, if at all?
Here, what we want to minimize is time traveled. If we travel along the dashed path to

get on the highway at distance x from the intersection I, this means traveling the distance
of the dashed path,

√
r2 + x2, at 30 miles per hour, and the remaining distance `− x at 60

miles per hour. Thus the total time is

t = 1
30
√
r2 + x2 + 1

60
(`− x).

First, let’s think about endpoints. It doesn’t make sense to travel away from B, since
this makes both the distance to the highway and on the highway longer, so x ≥ 0; and it
doesn’t make sense to overshoot B, so x ≤ `. Let’s first compute the total times at these
endpoints: at x = 0, we drive straight to the highway and then straight along the highway
to point B for total time

t = r

30
+ `

60
= 2r + `

60
.

At x = `, we never get on the highway, we just drive straight to B at 30 miles per hour, and
so

t = D

30
=
√
r2 + `2

30
(since r2 + `2 = D2 by the Pythagorean theorem). Which of these is faster depends on
the particular values of r and ` (and so D). For example, if r = ` = 10 miles (so D =√

102 + 102 = 10
√

2 ≈ 14.14 miles), then the x = 0 route gives t = 2·10+10
60 = 1

2 hours,
i.e. 30 minutes, while the x = ` route gives t = 10

√
2

30 =
√
2
3 ≈ 0.47 hours, or about 28

minutes, so in this case driving directly there is faster. If r = 5 miles and ` = 12 miles (so
D =

√
52 + 122 = 13 miles), then the x = 0 route gives t = 2·5+12

60 = 11
30 hours, or 22 minutes,

while the x = ` route gives t = 13
30 hours, or 26 minutes, so here the x = 0 route is faster.

What about in between? We have
dt

dx
= 2x

60
√
r2 + x2

− 1
60
,
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which always exists assuming r > 0. It is equal to 0 when 2x =
√
r2 + x2, i.e. when

4x2 = r2 + x2, so 3x2 = r2. This gives x = r√
3 (we discard the negative solution since

we assume x ≥ 0, and in any case it wouldn’t actually give a true solution to the original
equation but instead is introduced by squaring).

There is something surprising here: this solution does not depend on the distance ` at
all! This is a warning sign that for some values of `, we should guess that the minimum is
not at this local minimum r/

√
3 at all, but at one of the endpoints.

Let’s find the value at this point to compare: first we travel a distance of
√
r2 + r2/3 = 2r√

3
at 30 miles per hour, and then a distance of `− r√

3 at 60 miles per hour for a total of

2r
30
√

3
+
`− r√

3

60
= 3r + `

60
√

3
.

For given values of r and `, we can try and figure out which out of this point or the endpoints
is fastest. For example, in the case above with r = 5 and ` = 12, we found that driving
straight to the highway was faster than driving directly to point B, at 22 minutes instead of
26; for this middle point, we in this case get 3·5+12

60
√
3 ≈ 0.26 hours, or about 15.6 minutes, so

it’s faster than either of the extreme strategies.
On the other hand, what if we switch those parameters and take r = 12 miles and ` = 5

miles? Then x = 12√
3 ≈ 6.928 is greater than `, and so isn’t in the domain! Therefore the

minimum distance must be at one of the endpoints: we can work out that the direct route
will be faster, at t =

√
122+52
30 = 13

30 hours, or 26 minutes, as opposed to t = 2·12+5
60 hours, i.e.

29 minutes.
We could try to determine in general which of these three points will be better for which

values of r and `: x = 0 gives 2r+`
60 , x = ` gives D

30 =
√
r2+`2
30 , and the local minimum x = r√

3
gives 3r+`

60
√
3 . I claim that we always have 3r+`

60
√
3 < 2r+`

60 , i.e. we can throw out the x = 0
possibility. Indeed, we could write each side as a linear function of the positive numbers r
and `: 3

60
√
3r+ 1

60
√
3` and 2

60r+ 1
60`. Since the coefficients on the left are smaller than on the

right, the left-hand side must always be smaller.
This leaves two possibilities, and we’ve already seen that either can be the right minimum.

If ` < r/
√

3, then we must take the direct route x = `, since x = r/
√

3 is not within the
allowed domain and will have to be slower. (We can also check that in this case, the x = `
case is still faster than than x = 0; this is left as an exercise if you feel like it.) If ` ≥ r/

√
3,

then we might guess that the local minimum x = r/
√

3 is always fastest; with some algebra
you can work out that this is in fact true.

Let’s give one more quick example, our first business/economics application. Suppose
we’re a company making some kind of product; it costs us C(x) to produce x products. In
a very simple situation, this might just look like C(x) = cx for some constant c, but usually
there are some complicating factors; e.g. maybe there’s some initial cost A to get off the
ground, plus a per-product cost c, so C(x) = A+cx, or maybe there’s some bulk savings which
decreases C(x) for x large, and so on. On the other hand we have income I(x) from producing
x products: again this might be linear in simple situations, I(x) = px for p the price of each
product, but there might also be complicating factors such as diminishing returns, advertising
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and sales relationships, etc. Overall what we care about is profit P (x) = I(x)− C(x): how
many products should we make to maximize profit?

Well, there are two obvious endpoints, x = 0 (do nothing, i.e. shut down; hopefully this
isn’t the best we can do) or x = +∞ (make as many products as we can; this would be nice,
but usually doesn’t happen either since the market isn’t infinite). Other than that, we look
at the critical points where dP

dx
= dI

dx
− dC

dx
= 0, i.e. dI

dx
= dC

dx
: where the marginal cost is equal

to the marginal income.
For example, say we’re making books, which has a startup cost of $1000, a per-book cost

of $2, and a bulk discount such that our total cost function is C(x) = 1000 + 2x− 1
10000x

2 in
dollars for up to 5000 books (our publisher won’t let us print them for free, after all). We
can sell each book at $10, but again we have diminishing returns so that I(x) = 10x− 1

1000x
2.

How many books should we produce?
Well, at x = 0 we’ve lost money: I(0) − C(0) = −1000, so this isn’t a good choice; our

limit is bounded at x = 5000, where we have I(5000)− C(5000) = 16500 in profit. Next we
look for when the marginal cost and income are equal:

dI

dx
= 10− 1

500
x = dC

dx
= 2− 1

5000
x,

which occurs at x = 40000
9 ≈ 4444. Here the profit is P = 16777.78, so it’s best to stop at

4444 rather than print as many books as possible, in this case 5000.
For more complicated cost and income functions, you could imagine there could be mul-

tiple local maxima or minima, and we’d have to start worrying about which is which. Next
time we’ll see a few such more complicated examples before moving on to talk about some
more applications of differentiation, this time to limits.
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