
Advances in Mathematics 436 (2024) 109384
Contents lists available at ScienceDirect

Advances in Mathematics

journal homepage: www.elsevier.com/locate/aim

Hecke algebras for p-adic reductive groups and 

Local Langlands Correspondences for Bernstein 

blocks

Anne-Marie Aubert a, Yujie Xu b,∗

a Sorbonne Université and Université Paris Cité, CNRS, IMJ-PRG, F-75005 
Paris, France
b M.I.T., 77 Massachusetts Avenue, Cambridge, MA, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 6 December 2022
Received in revised form 22 
September 2023
Accepted 26 October 2023
Available online 17 November 2023
Communicated by Pramod Achar

Keywords:
Representation of p-adic group
Hecke algebra
Bernstein center
Local Langlands Correspondence

We study the endomorphism algebras attached to Bernstein 
components of reductive p-adic groups and construct a 
local Langlands correspondence with the appropriate set of 
enhanced L-parameters, using certain “desiderata” properties 
for the LLC for supercuspidal representations of proper Levi 
subgroups. We give several applications of our LLC to various 
reductive groups with Bernstein blocks cuspidally supported 
on general linear groups.
In particular, for Levi subgroups of maximal parabolic 
subgroups of the split exceptional group G2, we compute the 
explicit weight functions for the corresponding Hecke algebras, 
and show that they satisfy a conjecture of Lusztig’s. Some 
results from §4 are used by the same authors to construct 
a full local Langlands correspondence in [9]. Moreover, we 
prove a “reduction to depth-zero” result for regular Bernstein 
blocks (i.e., blocks for which the supercuspidal support of each 
irreducible representation is regular).

© 2023 Elsevier Inc. All rights reserved.

* Corresponding author.
E-mail addresses: anne-marie.aubert@imj-prg.fr (A.-M. Aubert), yujiexu@mit.edu (Y. Xu).
https://doi.org/10.1016/j.aim.2023.109384
0001-8708/© 2023 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.aim.2023.109384
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/aim
http://crossmark.crossref.org/dialog/?doi=10.1016/j.aim.2023.109384&domain=pdf
mailto:anne-marie.aubert@imj-prg.fr
mailto:yujiexu@mit.edu
https://doi.org/10.1016/j.aim.2023.109384


2 A.-M. Aubert, Y. Xu / Advances in Mathematics 436 (2024) 109384
Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2. Hecke algebras and Bernstein center . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1. General framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2. Bernstein blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3. Local Langlands correspondence for Bernstein blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1. Axiomatic construction of the correspondence . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2. Matching of simple modules of extended affine Hecke algebras . . . . . . . . . . . . . . . . 26

4. Applications to G2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.1. Explicit Hecke algebra parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2. Intertwining algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5. Applications to other groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

1. Introduction

1.1. Background

Let F be a non-archimedean local field. Let G be a connected reductive group defined 
over F , and G its group of F -points. Let M be a Levi subgroup of a parabolic subgroup 
P of G.

Let s = [M, σ]G be the inertial class attached to the pair (M, σ), where σ is an 
irreducible supercuspidal representation of M . Recall that this means that s is the G-
conjugacy class of (M, Xnr(M) ·σ), where Xnr(M) ·σ is the orbit of σ under Xnr(M)–the 
group of unramified characters of M . Let B(G) be the set of such s. We denote by 
Irrs(G) the Bernstein series of irreducible representations of G whose cuspidal support 
lies in s (see §2.1 for the precise definition).

Let W s
G denote the extended finite Weyl group NG(sM )/M , where sM = [M, σ]M , 

and let W s,x
G be the stabilizer of x ∈ IrrsM (M) in W s

G. By [54], there exists a collection 
(�x)x of 2-cocycles for x ∈ IrrsM (M),

�x : W s,x
G ×W s,x

G −→ C×, (1.1.1)

such that we have a bijection

ξsG : Irrs(G) −→ (IrrsM (M)//W s
G)�, (1.1.2)

where (IrrsM (M)/ /W s
G)� is a twisted extended quotient in the sense of [1, §2.1] (see (1.3.1)

for the precise definition).
A parallel picture to (1.1.2) exists on the Galois side. Let WF be the absolute Weil 

group of F and IF its inertia subgroup. Let M∨ be the Langlands dual group of M , 
i.e. it is a complex reductive group with root datum dual to that of M . It is equipped 
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with an action of WF , and we write LM := M∨
� WF . The group M∨ acts on the set 

of cuspidal M -relevant enhanced L-parameters for M–a terminology based on Lusztig’s 
notion of cuspidal pairs (see Definition 3.1.8 for more details). Let Φc

e(M) denote the set 
of M∨-conjugacy classes of cuspidal enhanced L-parameters for M .

Let ZM∨
�IF be the center of M∨

�IF . The group Xnr(LM) := (ZM∨
�IF )◦WF

, which is 
naturally isomorphic to the group Xnr(M) (see [25, §3.3.1]), acts naturally on the set of 
cuspidal M -relevant enhanced L-parameters for M . We denote by s∨ = [LM, ϕc, �c]G∨

the G∨-conjugacy class of the orbit of (ϕc, �c) ∈ Φc
e(M) under the action of Xnr(LM). 

Let B∨(G) be the set of such s∨.
In [7], the first author, with Moussaoui and Solleveld, constructed a partition–à la 

Bernstein–of the set Φe(G) of G-relevant enhanced Langlands parameters for G:

Φe(G) = �
s∨∈B∨(G)

Φs
∨

e (G), (1.1.3)

where Φs
∨

e (G) consists of the enhanced Langlands parameters for G whose cuspidal 
support lies in s∨. Let s∨M := [LM, ϕc, �c]M∨ ∈ B∨(M). Analogous to the group side 
W s

G, we denote by W s
∨

G∨ the stabilizer of s∨M in NG∨(M∨)/M∨, and by W s
∨,y

G∨ the stabilizer 
of y ∈ Φs

∨
Me (M) in W s

∨

G∨ . By [7, Theorem 9.3], there is a bijection

ξs
∨

G∨ : Φs
∨

e (G) −→ (Φs
∨
Me (M)//W s

∨

G∨)L�, (1.1.4)

where the right-hand side (Φs
∨
Me (M)/ /W s

∨

G∨)L� is a twisted extended quotient with respect 
to a collection (L�y)y of 2-cocycles

L�y : W s
∨,y

G∨ ×W s
∨,y

G∨ → C×. (1.1.5)

1.2. Main results

Axiomatic setup: we suppose the existence of a map

LsM : IrrsM (M) −−→ Φc
e(M)

σ �→ (ϕσ, �σ) (1.2.1)

such that the following properties are satisfied for any σ ∈ IrrsM (M):

(1) For any χ ∈ Xnr(M), we have

(ϕχ⊗σ, �χ⊗σ) = χ∨ · (ϕσ, �σ),

where χ �→ χ∨ is the canonical isomorphism Xnr(M) ∼→ Xnr(LM).
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(2) For any w ∈ W (M), we have

w∨
(ϕσ, �σ) � (ϕwσ, �wσ),

where w �→ w∨ is the canonical isomorphism W (M) ∼→ W (M∨).

We suppose that the collections of 2-cocycles � and L� satisfy the following

L�χ∨·(ϕσ,�σ) = �χ⊗σ for any σ ∈ s and any χ ∈ Xnr(M)/Xnr(M,σ), (1.2.2)

where Xnr(M, σ) := {χ ∈ Xnr(M) : χ ⊗ σ � σ}. We establish the following result.

Theorem 1. (Theorem 3.1.32)

(1) There is a natural isomorphism

e : IrrsM (M)//W s
G

∼−→ Φs
∨
Me (M)//W s

∨

G∨ . (1.2.3)

(2) The map

L := (ξs
∨

G∨)−1 ◦ e ◦ ξsG : Irrs(G) −→ Φs
∨

e (G) (1.2.4)

is a bijection.

We suppose in the rest of this introduction that the group G splits over a tamely 
ramified extension of F and that the residual characteristic p of F does not divide the 
order of the Weyl group of G. Then there exists a compact mod center subgroup K̃M of 
M and an irreducible representation ρdM of it such that σ = indM

K̃M
ρdM .

Let Hs(G) denote the endomorphism algebra of the Bernstein progenerator of s (see 
(2.1.5)) and let H(G, ρD) be the intertwining algebra of an s-type (KD, ρD). We prove 
in Proposition 2.1.58 that the algebras Hs(G) and H(G, ρD) are isomorphic.

From now on, we suppose that σ is regular in the sense of [31], which allows us to 
attach a supercuspidal Langlands parameter ϕσ : WF → LM to σ. Applying Theorem 1
to the map LsM : σ �→ (ϕσ, 1) as in (1.2.1), we obtain the following result:

Proposition 1.2.5. When the L-packet of σ is a singleton, the properties (3.1.23) and
(3.1.23) are always satisfied.

On the other hand, the construction of K̃M involves notably a depth zero supercusp-
idal irreducible representation σ0 of a Levi subgroup M0 of a twisted Levi subgroup G0

of G. We denote by s0 = [M0, σ0]G0 the inertial class of σ0.
Suppose that p is good for G (in the sense of [19]) and does not divide the order of 

the fundamental group of Gder, and that the representation σ is regular.
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Theorem 2. (Theorem 2.2.14) There is a bijection

�ss0 : Irrs(G) −−→ Irrs
0
(G0), (1.2.6)

which induces a bijection

Irr(Hs(G)) −−→ Irr(Hs
0
(G0)) (1.2.7)

between the sets of equivalence classes of simple modules for the algebras Hs(G) and 
Hs

0(G0).

Theorem 2 proves the validity of [5, Conjecture 1.1], under the above assumption on 
p, for all regular supercuspidal representations of M . The bijection �s

s0 is defined as

�ss0 := (ξs
0

G0)−1 ◦ lσ ◦ ξsG, (1.2.8)

where (IrrsM0 (M0)/ /W s
0

G0)�0 is the twisted extended quotient with respect to a certain 
collection �0 of 2-cocycles, the definition of which is recalled in (2.2.13), and

lσ : (IrrsM (M)//W s
G)� −→ (IrrsM0 (M0)//W s

0

G0)�0 (1.2.9)

is the isomorphism constructed in [5].
In Section 4, we study in greater detail the case when G is the exceptional group 

of type G2. Recall that for split p-adic groups, the principal series case, i.e. M = T , 
is done in [46] and [3], therefore it suffices to consider the cases where M � GL2(F )
is a maximal Levi subgroup. The G2(F )-covers of the supercuspidal types in M were 
computed explicitly in [14] when M corresponds to the long simple root of G2, and in 
[20] when M corresponds to the short simple root of G2, but the intertwining algebras of 
these types were still unknown. We compute these intertwining algebras later in §4.2.2, 
and in particular, by computing their parameters explicitly, we show that they satisfy a 
conjecture of Lusztig’s in [40, 1.(a)].

Acknowledgments

The authors would like to thank Maarten Solleveld and the anonymous referee for 
valuable comments on a previous version of the manuscript. Y.X. was supported by the 
National Science Foundation under Award No. 2202677 at MIT.

1.3. Notations and definitions

Let F be a non-archimedean local field. Let oF denote the ring of integers of F , pF
the maximal ideal in oF and kF := oF /pF the residue field of F . We denote by qF the 
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cardinality of kF . Let valF : F → Z ∪ {∞} be a valuation of F and let νF the character 
of F× defined by νF (a) := q

−valF (a)
F for any a ∈ F×.

We fix a separable closure Fsep of F . Denote by WF ⊂ Gal(Fsep/F ) the absolute 
Weil group of F and IF its inertia subgroup. We denote by Fnr the maximal unramified 
extension of F inside Fsep and by FrF the element of Gal(Fnr/F ) that induces the 
automorphism a �→ aq on the residue field kF of Fnr. Then WF = IF � 〈FrF 〉. Let I+

F

denote the wild inertia group of F (i.e. the maximal pro-p open normal subgroup of IF ). 
We have It

F = Gal(Fsep/Ft) � IF /I
+
F , where Ft is the tame closure of F in Fsep. The 

group It
F is pro-cyclic and we denote by ζF a generator of it. Let W ′

F := WF × SL2(C)
be the Weil-Deligne group of F .

Let G be a connected reductive algebraic group defined over F , and G := G(F ) its 
F -rational points. We denote by Gder the derived group of G. Let Gsc (resp. Gad) be 
the simply connected cover (resp. adjoint quotient) of Gder. Let ZG be the center of G, 
and AG the maximal F -split torus contained in ZG.

Fix a maximal torus T of G, and let (X, R, Y, R∨) denote the root datum of G with 
respect to T. Thus X = X∗(T) is the character group of T, and R ⊂ X is the set of 
weights of T on the Lie algebra g of G. Fix Δ ⊂ R a system of simple roots. When R is 
irreducible, the root with maximal height (with respect to Δ) will be denoted α̃. Write 
α̃ =

∑
γ∈Δ cγγ for positive integers cγ . A prime number p is said to be good for G if it 

does not divide any cγ . We may simply list the bad, i.e. not good, primes: p = 2 is bad 
unless R is of type A, p = 3 is bad if R is of type G2, F4, En, and p = 5 is bad if R is of 
type E8. The prime p is good for a general R just in case it is good for each irreducible 
component of R.

Suppose that H is a group, H1 a subgroup of H and h an element of H. We set 
hH1 := hH1h

−1. If π is a representation of H1, we denote by hπ the representation 
h1 �→ π(h−1h1h) of hH1. We denote by Irr(H) the set of equivalence classes of irreducible 
representations of H.

The category of right modules over an algebra A is denoted A −Mod. We write Irr(A)
for the set of equivalence classes of simple modules of A.

1.3.1. Twisted extended quotients
Let Γ be a group acting on a topological space X and let Γx denote the stabilizer in 

Γ of x ∈ X. Let � = (�x)x∈X be a collection of 2-cocycles

�x : Γx × Γx → C×,

such that �γx and γ∗�x define the same class in H2(Γγx, C×), where γ∗ : Γx → Γγx sends 
α to γαγ−1. Let C[Γx, �x] be the group algebra of Γx twisted by �x. We set

X̃� := {(x, τ) : x ∈ X, τ ∈ Irr C[Γx, �x]} ,

and topologize X̃� by decreeing that a subset of X̃� open if its projection to the first 
coordinate is open in X.
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We require, for every (γ, x) ∈ Γ ×X, an algebra isomorphism

φγ,x : C[Γx, �x] → C[Γγx, �γx]

satisfying the conditions

(a) if γx = x, then φγ,x is conjugation by an element of C[Γx, �x]×;
(b) φγ′,γx ◦ φγ,x = φγ′γ,x for all γ′, γ ∈ Γ and x ∈ X.

Define a Γ-action on X̃� by γ · (x, τ) := (γx, τ ◦ φ−1
γ,x). The spectral twisted extended 

quotient of X by Γ with respect to � is defined to be

(X//Γ)� := X̃�/Γ. (1.3.1)

In the case when the 2-cocycles �x are trivial, we write simply X/ /Γ for (X/ /Γ)� and 
refer to it as the spectral extended quotient of X by Γ.

2. Hecke algebras and Bernstein center

2.1. General framework

2.1.1. Let R(G) denote the category of all smooth complex representations of G. It is 
an abelian category admitting arbitrary coproducts. Let M be a Levi subgroup of a 
parabolic subgroup P of G. We denote by M1 the subgroup of M generated by all its 
compact subgroups. Recall that a character of M is said to be unramified if it is trivial on 
M1, and let Xnr(M) be the group of unramified characters of M . Let σ be an irreducible 
supercuspidal smooth representation of M . We write s := [M, σ]G for the G-conjugacy 
class of the pair (M, Xnr(M) ·σ), it is called a Bernstein inertial class. Let B(G) denote 
the set of Bernstein inertial classes s. We set sM := [M, σ]M .

We denote by Rs(G) the full subcategory of R(G) whose objects are the representa-
tions (π, V ) such that every irreducible G-subquotient of π is equivalent to a subquotient 
of a parabolically induced representation iGP (σ′), where iGP is the functor of normalized 
parabolic induction and σ′ ∈ Xnr(M) · σ. We write Irrs(G) for the class of irreducible 
objects in Rs(G), i.e. representations whose supercuspidal support lies in s.

2.1.2. The categories Rs(G) are indecomposable and split the full smooth category R(G)
in a direct product (see [11, Proposition 2.10]):

R(G) =
∏

s∈B(G)

Rs(G).

If Πs is a progenerator of Rs(G), then the functor V �→ HomG(Πs, V ) is an equivalence 
from Rs(G) to the algebra EndG(Πs) (see for instance [47, § 1.1]).
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Let s = [M, σ]G ∈ B(G) and let V be the underlying vector space for the supercuspidal 
representation σ of M and σ1 an irreducible component of the restriction of σ to M1. 
We denote by indM

M1
the functor of compact induction. As noticed in [47, § 1.2], the 

isomorphism class of

ΠsM
M := indM

M1
(σ1) (2.1.3)

is independent of the choice of σ1. It was shown by Bernstein that

Πs
G := iGP (ΠsM

G ) (2.1.4)

is a progenerator of Rs(G) (see [47, §1.6]). We write

Hs(G) := EndG(Πs
G). (2.1.5)

Hence we have an equivalence of categories of right modules

Rs(G) � Hs(G) − Mod . (2.1.6)

Let B := C[M/M1] and VB := V ⊗CB. Then iGP (VB) is also a progenerator of Rs(G), 
and we have an equivalence of categories of right modules given by

E : Rs(G) −→ EndG(iGP (VB))−Mod
V �→ HomG(iGP (VB),V) . (2.1.7)

2.1.8. Consider

Xnr(M,σ) := {χ ∈ Xnr(M) : χ⊗ σ � σ}, (2.1.9)

which is a finite subgroup of Xnr(M).

Remark 2.1.10. In the case where M = GLn(F ) with n a positive integer, there is a simple 
type (J, λ) in the sense of [12, (5.5.10)] such that the restriction of the supercuspidal 
representation σ to J contains λ. The order of Xnr(M, σ) is n/e(L|F ), where e(L|F ) is 
the ramification index of the extension L/F involved in the definition of (J, λ) (see [12, 
(6.0.1) and (6.2.5)].

We denote by O the orbit of σ under the action of Xnr(M). The map χ �→ χ ⊗ σ

defines a bijection

Xnr(M)/Xnr(M,σ) ∼−→ O = {χ⊗ σ : χ ∈ Xnr(M)} = IrrsM (M). (2.1.11)

We set W (M) := NG(M)/M , where NG(M) denotes the normalizer of M in G, and 
define
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W s
G := W (M,O) := {n ∈ NG(M) : nO � O} /M. (2.1.12)

Recall that AM is the maximal split torus contained in the center of M. We denote by 
Σ(AM ) ⊂ X∗(AM ) the set of nonzero weights occurring in the adjoint representation of 
AM on the Lie algebra of G, and by Σred(AM ) be the set of indivisible elements therein. 
(Recall that a root γ in a root system Σ is called indivisible if 1

2γ /∈ Σ.)
For every γ ∈ Σred(AM ), let Mγ ⊃ M denote the centralizer of ker γ in G (it is a 

Levi subgroup of G whose semisimple rank is one larger than that of M). Let μG be the 
Harish-Chandra μ-function for G (see [52, §1] or [55, §V.2]). The restriction of μG to O is 
a rational W (M, O)-invariant function on O [55, Lemma V.2.1]. By [26, Proposition 1.3], 
the set

ΣO,μ :=
{
γ ∈ Σred(AM ) : μMγ has a zero on O

}
(2.1.13)

is a root system. Let WO denote the Weyl group of ΣO,μ.
Let P = MN be a parabolic subgroup of G with Levi factor M . Denote by Σ(P ) the 

subset of Σ(AM ) of roots which act on the Lie algebra of N . Let ΣO,μ(P ) := ΣO,μ∩Σ(P ). 
By [26, 1.12], the group W (M, O) decomposes as

W (M,O) = WO � R(O), (2.1.14)

where

R(O) := {w ∈ W (M,O) : w(ΣO,μ(P )) = ΣO,μ(P )} . (2.1.15)

The action of every element w of W s
G can be lifted to a transformation w̃ of Xnr(M). Let 

W (M, σ, Xnr(M)) be the group of permutations of Xnr(M) generated by Xnr(M, σ) and 
the w̃’s. We have

W (M,σ,Xnr(M))/Xnr(M,σ) � W s
G. (2.1.16)

Let K(B) := C(Xnr(M)) denote the quotient field of B := C[Xnr(M)]. Let

C[W (M,σ,Xnr(M)), κ]

be the twisted group algebra of W (M, σ, Xnr(M)) with basis elements tw that multiply 
as twtw′ = κ(w, w′)tww′ . By [54, Corollary 5.8], there is a 2-cocycle

κ : W (M,σ,Xnr(M)) ×W (M,σ,Xnr(M)) → C×, (2.1.17)

such that we have an algebra isomorphism

K(B) ⊗B EndG(iGP (VB) � K(B) � C[W (M,σ,Xnr(M)), κ]. (2.1.18)
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Here the symbol � denotes the crossed product: as a vector space, it just means the 
tensor product, with multiplication rules determined by the action of W (M, σ, Xnr(M))
on K(B). Note that the cocycle κ is trivial on WO.

Remark 2.1.19. If R(O) has order at most 2, the intertwining operators can be normalized 
such that the cocycle κ is trivial (see [54, Proposition 5.2 & above Lemma 5.7]). This is 
indeed the case for G = G2(F ).

For any χ ∈ Xnr(M), let W s,χ⊗σ
G denote the stabilizer of χ ⊗ σ in W s

G. Let �χ be the 
2-cocycle denoted �σ′ in [54, (9.13)]. Let (IrrsM (M)/ /W s

G)� denote the twisted extended 
quotient (as in § 1.3.1) with respect to the collection � of the 2-cocycles �χ.

Proposition 2.1.20. There is a bijection

ξsG : Irrs(G) −→ (IrrsM (M)//W s
G)�. (2.1.21)

Proof. By [54, Theorem 9.7], there are bijections

Irrs(G) E←→ Irr(EndG(iGP (VB)) ζ←→ Irr(C[Xnr(M)] � C[W (M,σ,Xnr(M)), κ],

where E is induced by the equivalence of categories defined in (2.1.7). On the other hand, 
by [54, Lemma 9.8], Irr(C[Xnr(M)] � C[W (M, σ, Xnr(M)), κ] is canonically isomorphic 
to (IrrsM (M)/ /W s

G)�, where sM := [M, σ]M . �
Corollary 2.1.22. Let s = [M, σ]G ∈ B(G). There is a bijection

Irr(Hs(G)) 1−1−−−→ (IrrsM (M)//W s
G)�. (2.1.23)

Proof. The result follows from the proof of Proposition 2.1.20 by using (2.1.6). �
Remark 2.1.24. As observed in [54, (10.12)], if the restriction of σ to M1 is multiplicity 
free, we have

Πs
G =

(
iGP (VB)

)Xnr(M,σ) and EndG(iGP (VB)) � Hs(G) ⊗C Mat[M :Mσ](C), (2.1.25)

where Mat[M :Mσ](C) is the algebra of square matrices of size [M : Mσ] (the index of Mσ

in M) with entries in C. Note that if σ is generic, then its restriction to M1 is multiplicity 
free (see [48, Remark 1.6.1.3]). In particular, if σ is a supercuspidal irreducible represen-
tation of a proper Levi subgroup M of G2, since M is isomorphic to either F× × F× or 
GL2(F ), the representation σ is generic, and hence its restriction to M1 is multiplicity 
free.
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2.1.1. Theory of types
We fix a Haar measure on G. Let H(G) be the space of locally constant, compactly 

supported functions f : G → C and view H(G) as a C-algebra via convolution relative 
to the Haar measure. The algebra H(G) is called the Hecke algebra of G.

Let (ρ, Vρ) be a smooth representation of a compact open subgroup K of G, and 
let (ρ̃, Vρ̃) denote its contragredient. We define H(G, ρ) to be the space of compactly 
supported functions f : G → EndG(Vρ̃) such that

f(kgk′) = ρ(k)f(g)ρ(k′), where k, k′ ∈ K and g ∈ G. (2.1.26)

The convolution product gives H(G, ρ) the structure of a unitary associative C-algebra. 
The algebra H(G, ρ) is called the ρ̃-spherical Hecke algebra or the intertwining algebra 
of (K, ρ).

Let eρ ∈ H(G) be the function defined by

eρ(g) :=
{

dim ρ
meas(K) tr(ρ(g−1)) if g ∈ K,

0 if g ∈ G, g /∈ K.
(2.1.27)

Then eρ is idempotent, and eρ �H(G) � eρ is a sub-algebra of H(G) with unit eρ. By [13, 
(2.12)], there is a canonical isomorphism

H(G, ρ) ⊗C EndC(Vρ) → eρ �H(G) � eρ. (2.1.28)

The algebras H(G, ρ) and eρ � H(G) � eρ are therefore canonically Morita equivalent. 
Hence, we get an equivalence of categories:

H(G, ρ) − Mod � eρ �H(G) � eρ − Mod . (2.1.29)

Let Rρ(G) be the full subcategory of R(G) whose objects are those V satisfying V =
H(G) � eρ � V , i.e. Rρ(G) is generated over G by the subspace eρ � V .

Definition 2.1.30.

(1) The pair (K, ρ) is called an s-type for G if the following holds: for any π ∈ Irr(G), 
we have π ∈ Rs(G) if and only if π contains ρ.

(2) A supercuspidal type for G is an s-type where s = [G, σ]G.

If (K, ρ) is an s-type for G, then Rρ(G) = Rs(G) by [13, (4.1)–(4.2)], where Rs(G) is 
equivalent to the category of modules for H(G, ρ) by [13, Theorem 3.5]:

Rs(G) � H(G, ρ)− Mod . (2.1.31)

Combining (2.1.31) and (2.1.6), we obtain an equivalence
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Hs(G)−Mod � H(G, ρ) − Mod . (2.1.32)

Let (KM , ρM ) be an sM -type for sM ∈ B(M). If the pair (K, ρ) is a G-cover of (KM , ρM )
as defined in [13, Definition 8.1], then K decomposes with respect to M in the sense of 
[13, Definition 6.1] (in particular, KM = K ∩M and ρM = ρ|KM

) and the equivalence of 
categories (2.1.31) commutes with parabolic induction and parabolic restriction in the 
appropriate sense (see [13, Corollary 8.4]).

Proposition 2.1.33. Let (KM , ρM ) be an sM -type for sM ∈ B(M), such that ΠsM
M �

c-IndM
KM

(ρM , VρM
). Let (K, ρ) be a G-cover of (KM , ρM ). Then

Πs
G � c-IndG

K(ρ, Vρ). (2.1.34)

As a consequence, we have

Hs(G) := EndG(Πs
G) � H(G, ρ). (2.1.35)

Proof. See [17, Lemma B.3]. �
2.1.36. In this section, in order to be able to apply the constructions of [56] and [34], we 
assume that G splits over a tamely ramified extension of F , and that p does not divide 
the order of the Weyl group of G. By a Levi subgroup of G, we mean an F -subgroup of 
G which is a Levi factor of a parabolic F -subgroup of G. Let L/F be a finite extension. 
By a twisted L-Levi subgroup of G, we mean an F -subgroup G′ of G such that G′ ⊗F L

is a Levi subgroup of G ⊗F L. If L/F is tamely ramified, then G′ is called a tamely 
ramified twisted Levi subgroup of G. A tamely ramified twisted Levi sequence in G is 
a finite sequence �G = (G0, G1, · · · , Gd) of twisted E-Levi subgroups of G, with E/F

tamely ramified (see [56, p. 586]).
Let B(G, F ) denote the (enlarged) building of G:

B(G, F ) = B(G/ZG, F ) ×X∗(ZG) ⊗Z R, (2.1.37)

where X∗(ZG) is the set of F -algebraic cocharacters of ZG. Recall that when G′ is a 
tamely ramified twisted Levi subgroup of G, there is a family of natural embeddings of 
B(G′, F ) into B(G, F ).

For x a point in B(G, F ), let Gx,0 denote the associated parahoric subgroup, and let 
Gx,0+ denote the pro-p unipotent radical of Gx,0. In general, for r a positive real number, 
Gx,r is the corresponding Moy-Prasad filtration subgroup of Gx,0.

Definition 2.1.38. [34, § 7.1] A depth-zero G-datum is a triple

((G,M), (y, ι), (KM , ρM )) (2.1.39)

satisfying the following
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• G is a connected reductive group over F , and M is a Levi subgroup of G;
• y is a point in B(M) such that My,0 is a maximal parahoric subgroup of M , and 

ι : B(M) ↪→ B(G) is a 0-generic embedding relative to y (see [34, Definition 3.2]);
• KM is a compact open subgroup of M containing My,0 as a normal subgroup, and 

ρM is an irreducible smooth representation of KM such that ρM |My,0 contains the 
inflation to My,0 of a cuspidal representation of My,0/My,0+ .

Let �G = (G0, G1, · · · , Gd) be a tamely ramified twisted Levi sequence in G. To �G, 
we associate a sequence of Levi subgroups �M = (M0, · · · , Md), where Mi is a Levi 
subgroup of Gi given as the centralizer of AM0 in Gi, with AM0 the maximal F -split 
torus of the center ZM0 of M0.

Definition 2.1.40. A G-datum is a 5-tuple

D = ((�G,M0), (y, {ι}), �r, (KM0 , ρM0), �φ) (2.1.41)

satisfying the following:

D1. �G = (G0, G1, · · · , Gd) is a tamely ramified twisted Levi sequence in G, and M0 a 
Levi subgroup of G0. Let �M be associated to �G as above;

D2. y is a point in B(M0), and {ι} is a commutative diagram of �s-generic embed-
dings of buildings relative to y in the sense of [34, Definition 3.5], where �s =
(0, r0/2, · · · , rd−1/2);

D3. �r = (r0, r1, · · · , rd) is a sequence of real numbers satisfying 0 < r0 < r1 < · · · <
rd−1 ≤ rd if d > 0, and 0 ≤ r0 if d = 0;

D4. (KM0 , ρM0) is such that D0 := ((G0, M0), (y, ι), (KM0 , ρM0)) is a depth zero G0-
datum;

D5. �φ = (φ0, φ1, · · · , φd) is a sequence of quasi-characters, where φi is a quasi-character 
of Gi such that φi is Gi+1-generic of depth ri relative to x for all x ∈ B(Gi) in the 
sense of [56, § 9].

The construction. For a given G-datum D as in (2.1.41), we write

KD0 := KM0G0
ι(y),0. (2.1.42)

We recall that G0
ι(y),0 is the parahoric subgroup of G0 associate to the building point 

ι(y). Let G0
ι(y),0+ be the pro-p unipotent radical of G0

ι(y),0.
By [34, Proposition 4.3(b)], we have

KD0/G0
ι(y),0+ � KM0/M0

y,0+, (2.1.43)

and we define ρD0 to be the representation of KD0 obtained by composing the isomor-
phism (2.1.43) with ρM0 .
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Definition 2.1.44. A Kim-Yu type in the sense of [34, §7.4], which builds on earlier con-
struction in [56], is a pair (KD, ρD) where

• KD is an open compact subgroup given by

KD := KD0G1
ι(y),s0 · · · Gd

ι(y),sd−1
(2.1.45)

• ρD is an irreducible representation of KD.

To �G, we associate a tamely ramified twisted Levi sequence �M = (M0, . . . , Md) of 
M, where Mi is the centralizer of AM in Gi. Consider

DM := ( �M, y, �r, ρM0 , �φ). (2.1.46)

When KM0 = M0
y the datum DM gives a supercuspidal type in M as follows.

Let Kd
M := KD ∩M . Let K̃d

M denote the normalizer in M of Kd
M . This group K̃d

M is 
a compact modulo center subgroup of M . Let ρdM := ρD|Kd

M
and consider

σDM
:= indM

K̃M
ρdM . (2.1.47)

Theorem 2.1.48. [34] Suppose that KM0 = M0
y . Then

(1) (Kd
M , ρdM ) is a supercuspidal type on M (as in Definition 2.1.30), and σDM

is an 
irreducible supercuspidal representation of M ;

(2) (KD, ρD) is a G-cover of (Kd
M , ρdM ), and thus is an s-type for s = [M, σDM

]G.

Proposition 2.1.49. Let D and Ḋ be two G-data

D = ((�G,M0), (y, ι), �r, (KM0 , ρM0), �φ) and Ḋ = (( �̇G, Ṁ0), (ẏ, ι̇), �̇r, (KṀ0 , ρṀ0), �̇φ )

such that KM0 = M0
y and KṀ0 = Ṁ0

ẏ . Let s := [M, σDM
]G, and ṡ = [M, σḊM

]G.
Then we have s = ṡ if and only if there exists g ∈ G such that

gKM0 = KṀ0 and g(ρM0 ⊗ φ) � ρṀ0 ⊗ φ̇, (2.1.50)

where φ :=
∏d

i=0(φi|M0) and φ̇ :=
∏d

i=0(φ̇i|M0).

Proof. It is a reformulation of [34, Theorem 10.3]. Indeed, when KM0 = M0
y and KṀ0 =

Ṁ0
ẏ,0, we have s = ṡ if and only if the types (KD, ρD) and (KḊ, ρḊ) are equivalent in the 

sense of [34, Definition 10.1]. Note that [34, Theorems 10.2 and 10.3] still hold without 
assuming the hypothesis C(�G) of [28, Remark 2.49 & above], since [31, §3.5] shows that 
[28, Theorems 6.6 and 6.7] are valid without assuming C(�G). �
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Remark 2.1.51. If G = M , it follows from [28, Theorems 6.6 and 6.7] that sM = ṡM if 
and only if the data DM = ( �M, y, �r, ρM0 , �φ) and ḊM = ( �M, ẏ, �̇r, ρṀ0 , �̇φ) are equivalent 
in the sense of [28, Definition 5.3].

2.1.52. For any s = [M, σ]G ∈ B(G), consider

Ns
G := {n ∈ NG(M)(F ) : nσ � χ⊗ σ for some χ ∈ Xnr(M)} . (2.1.53)

Corollary 2.1.54. We suppose that p does not divide the order of the Weyl group of G. 
Let s ∈ B(G) be an arbitrary Bernstein inertial class. For every n ∈ Ns

G, there exists an 
m ∈ M such that

mnKM0 = KM0 and mn(ρM0 ⊗ φ) � ρM0 ⊗ φ,

where φ :=
∏d

i=0(φi|M0).

Proof. By [22], we have σ = σDM
, for some M -datum DM = ( �M, y, �r, ρM0 , �φ). Let 

n ∈ Ns
G. Thus nσ � χ ⊗ σ for some χ ∈ Xnr(M). Let ḊM := ( �M, y, �r, ρM0 ⊗ χ|KM0 , �φ). 

By (2.1.47), we have

χ⊗ σ = (indM
K̃M

ρdM ) ⊗ χ � indM
K̃M

(ρdM ⊗ χ|
K̃M

). (2.1.55)

Since χ is unramified, we have indM
K̃M

(ρdM ⊗ χ|
K̃M

) = σḊM
. Therefore χ ⊗ σ � σḊM

. 
Applying Remark 2.1.51 to the M -data nDM and ḊM , one can see that these data are 
equivalent. Hence there exists an m ∈ M such that

mnKM0 = KM0 and mn(ρM0 ⊗ φ) � ρM0 ⊗ χ|KM0 ⊗ φ = ρM0 ⊗ φ,

where the last equality holds because χ is trivial on KM0 . Here φ :=
∏d

i=0(φi|M0). �
2.1.56. As shown in [28], it follows from the original construction in [56] that ρdM is of 
the form ρdM = ρM0 ⊗ κ, where the representation κ = κG depends only on �φ. Suppose 
KM0 = M0

y . Let K̃M0 denote the normalizer of KM0 in M0. Consider

σ0 := indM0

K̃M0
ρM0 . (2.1.57)

The representation σ0 is a depth-zero irreducible supercuspidal representation of M0. 
Let s0 := [M0, σ0]G0 . Let Πs

0

G0 be defined as in (2.1.4), i.e. it is a progenerator for the 
category Rs

0(G0). Set Hs
0(G0) := End(Πs

0

G0).

Proposition 2.1.58.

(1) The algebras Hs
0(G0) and H(G0, ρD0) are isomorphic.
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(2) The algebras Hs(G) and H(G, ρD) are isomorphic.

Proof. We verify the assumptions in Proposition 2.1.33. Firstly, (KD0 , ρD0) is a G0-
cover of (KM0 , ρM0) (see [34, §7.1]) and (KD, ρD) is a G-cover of (Kd

M , ρdM ) (see [34, 
Theorem 7.5]).

Secondly, since σ0 and σ are supercuspidal irreducible representations, an element m0

of M0 intertwines ρM0 if and only if m0 ∈ K̃M0 , and an element m of M intertwines 
ρM if and only if m ∈ K̃M . Then the proof of [17, Lemma B.4] applies, and shows that 
ΠsM

M � c-IndM
KM

(ρM , VρM
). Thus the result follows from Proposition 2.1.33. �

Proposition 2.1.59. If W s
G = {1}, then there is an algebra isomorphism

H(G, ρD) � H(M,ρdM ),

which preserves support of functions, and the algebra H(G, ρD) is commutative.

Proof. Since W s
G = {1}, we have NG(s) ⊂ M . Then the first assertion follows from [13, 

(12.1)]. On the other hand, the algebra H(M, ρdM) is commutative (see for instance [13, 
(5.6)]). �
Remark 2.1.60. Applying Proposition 2.1.59 to the group G0, we see that if W s

0

G0 = {1}, 
then there is an algebra isomorphism

H(G0, ρD0) � H(M0, ρ0
M0) (2.1.61)

that preserves support of functions; thus the algebra H(G0, ρD0) is also commutative.

2.2. Bernstein blocks

We assume that G splits over a tamely ramified extension, and that the residual char-
acteristic p of F is odd, good for G and does not divide the order of the fundamental 
groups of Gder. Let M be an F -rational Levi subgroup of an F -rational parabolic sub-
group of G. Then p satisfies the same assumptions with respect to M, i.e. p is good for 
M and does not divide the order of the fundamental groups of Mder.

Let (S, θ) be a pair consisting of a tamely ramified torus S in M, and a character 
θ : S → C×. For any positive real number r, consider

ΣS,θ
r :=

{
γ ∈ Σ(M,S) : (θ ◦ NE/F )(γ∨(E×

r )) = 1
}
. (2.2.1)

We have ΣS,θ
s ⊂ ΣS,θ

r for s < r. Set ΣS,θ
r+ :=

⋂
s>r ΣS,θ

s . Then r �→ ΣS,θ
r defines a 

Gal(Fsep/F )-invariant filtration. Let rd−1 > rd−2 > · · · > r0 > 0 denote the breaks of 
the filtration, i.e. the r’s such that ΣS,θ

r �= ΣS,θ
r+ . We set r−1 := 0, and let rd be the depth 

of θ. We have rd ≥ rd−1. For each i such that 0 ≤ i ≤ d, we denote by Mi the connected 
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reductive subgroup of M with maximal torus S and root system ΣS,θ
ri−1+. By definition, 

the root system of Md is Σ(M, S), and thus Md = M. The Mi’s are tame twisted Levi 
subgroups of M by [31, Lemma 3.6.1]. Moreover, the root system of M0 is ΣS,θ

0+ ; if the 
latter is empty, we have M0 = S.

Denote M i := Mi(F ). By [31, Proposition 3.6.7], the pair (S, θ) has a Howe factor-
ization with respect to a sequence (φ−1, φ0, . . . , φd) of characters, where φ−1 : S → C×

and φi : M i → C× for 0 ≤ i ≤ d. More precisely, we have

θ =
d∏

i=−1
φi, (2.2.2)

• for any i ∈ {0, . . . , d}, the character φi is trivial on (Mi)sc, has depth ri and is 
Mi+1-generic for any i �= d;

• φd is trivial if rd = rd−1, and has depth rd otherwise.

2.2.3. From now on, we make the following assumptions: S is an elliptic maximal torus 
of M; the splitting extension of S is tamely ramified; S is maximally unramified inside 
M0, i.e. S coincides with its maximal unramified subtorus as in [31, Definition 3.4.2]; θ
is kF -regular with respect to M0, in the sense of [32, Definition 3.1.1].

For any point x in the building of M , let [x] be the projection of x onto the reduced 
building Bred(M). Let Mx (resp. M[x]) be the subgroup of M fixing x (resp. [x]). Recall 
that M[x] = NM (Mx,0) by [56, Lemma 3.3]. As in [31, Lemma 3.4.3], we can then 
associate to S a vertex [y] of Bred(M), which is the unique Gal(F nr/F )-fixed point in 
the apartment Ared(S, F nr) of Bred(M).

Let Sb be the unique maximal bounded subgroup of S (which is also the unique 
maximal compact subgroup of S). Denoting by S◦ the connected Néron model of S, we 
write S0 := S◦(of ) ⊂ Sb (see [31, §3.1] for more details). Let M0

y,0 be the connected 
reductive kF -group such that

M0
y,0 := M0

y,0(kF ) = M0
y,0/M

0
y,0+. (2.2.4)

There exists an elliptic maximal kF -torus S of M0
y,0 such that for every unramified 

extension F ′ of F , the image of S(F ′)0 in M(F ′)y,0/M(F ′)y,0+ is equal to S(kF ′) (see 
[31, Lemma 3.4.4]). By [31, Lemma 3.4.14], the character φ−1|S0 factors through a regular
character φ−1 of S := S(kF ) as defined in [31, Definition 3.4.16]. In particular, φ−1
is in general position in the sense of [21, Definition 5.15]. Then it follows from [21, 
Proposition 7.4, Theorem 8.3] that the Deligne-Lusztig character

(−1)r(M
0
y,0)−r(S)R

M0
y,0

S (φ−1) (2.2.5)

can be represented by a cuspidal, i.e. which cannot be obtained from a proper parabolic 
induction, M0

y,0-module κS,φ−1 , where r(?) denotes the kF -rank of ?. Then κS,φ−1 is 
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irreducible (see [21, Definition 5.15]), and its pull-back to M0
y,0 extends uniquely to a 

representation κS,φ−1 of SM0
y,0. We define

ρS,θ := IndM0
[y]

SM0
y,0

κS,φ−1 and σ0 := c-IndM0

M0
[y]

ρS,θ. (2.2.6)

Then σ0 is a depth-zero irreducible regular supercuspidal representation of M0 (see [31, 
Definition 3.4.19 & Proposition 3.4.20]). Set sM0 := [M0, σ0]M0 .

More generally, we define an irreducible supercuspidal representation σ of M by using 
the twisted Yu construction of [23]. As observed in [32, §3.4], it has the same effect as 
using the original Yu construction from [56] applied to the character θ · ε, where ε : S →
{±1} is the product of the characters εM

i/Mi−1

y of [23, Theorem 3.4]. The representation 
σ is regular, i.e. satisfies [31, Definition 3.7.13]. Then χ ⊗σ is regular for any χ ∈ Xnr(M), 
and we say that the inertial class s = [M, σ]G is regular.

2.2.7. For sM = [M, σ]M and sM0 = [M0, σ0]M0 , the map

f : IrrsM (M) −→ IrrsM0 (M0)
σ ⊗ χ �→ σ0 ⊗ χ|M0

, χ ∈ Xnr(M), (2.2.8)

is an isomorphism of varieties by [41, Theorem 6.1]. Let O0 be the orbit of σ0 under 
the action of Xnr(M0). Let W s

0

G0 = WO0 � R(O0) be the decomposition analogous to 
(2.1.14). Then (2.2.8) and (2.1.11), applied to both sM and sM0 , show that the orbits O
and O0 are isomorphic. The following is a consequence of [5, 7.3, 9.3].

Lemma 2.2.9 (Adler-Mishra). Suppose that p is good for G and does not divide the order 
of the fundamental group of Gder. Let s = [M, σ]G ∈ B(G) be a regular inertial class. 
Then (1) there is a group isomorphism

wσ : W s
G −→ W s

0

G0 , (2.2.10)

where s0 = [M0, σ0]G0 , and f is equivariant with respect to wσ.

(2) there is an isomorphism

lσ : (IrrsM (M)//W s
G)� −→ (IrrsM0 (M0)//W s

0

G0)�0 . (2.2.11)

The collection �0 of 2-cocycles is defined as follows. For x ∈ IrrsM (M), let W s,x
G denote 

the stabilizer of x in W s. Since f is equivariant with respect to wσ, the latter restricts 
to an isomorphism

wσ|Ws,x
G

: W s,x
G −→ W

s
0,f(x)

G0 , (2.2.12)

and every 2-cocycle �x : W s,x
G ×W s,x

G −→ C× defines a 2-cocycle
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�0f(x) : W
s
0,f(x)

G0 ×W
s
0,f(x)

G0 −→ C×. (2.2.13)

Consequentially, we obtain in Theorem 2.2.14(2) new cases of [5, Conjecture 1.1].

Theorem 2.2.14. Suppose that p is good for G and does not divide the order of the fun-
damental group of Gder. Let s = [M, σ]G ∈ B(G) be a regular inertial class.

(1) Then

(ξs
0

G0)−1 ◦ lσ ◦ ξsG : Irrs(G) −→ Irr(G0)s
0

(2.2.15)

is a bijection.
(2) We have a bijection

Irr(Hs(G)) −→ Irr(Hs
0
(G0)). (2.2.16)

Proof. (1) This follows from the fact that the map ξG defined in (2.1.21) and the anal-
ogous map

ξs
0

G0 : Irr(G)s
0 −→ (IrrsM0 (M0)//W s

0

G0)�, (2.2.17)

are isomorphisms.
(2) By [54, Theorem 9.7] applied to both G and G0, we have

Irrs(G) ∼= Irr(End(iGP (VB)) and Irrs
0
(G0) ∼= Irr(End(iG

0

P0
(VB0)).

Thus by (1), we have Irr(End(iGP (VB)) ∼= Irrs(G) ∼= Irrs
0
(G0) ∼= Irr(End(iG0

P 0(VB0)). Then 
the result follows by applying Corollary 2.1.22 to both s and s0. �
Remark 2.2.18. We show in Theorem 4.2.23 that the algebras Hs(G) and Hs

0(G0) are 
isomorphic when G = G2 and M is a maximal Levi subgroup.

2.2.19. We end this section with brief recollections on non-singular supercuspidal rep-
resentations in the sense of [32], as we will consider non-singular Bernstein blocks in 
§3.1.50.

Let θ : S(kF ) → Q
 be a non-singular character. Let NG(S)(kF )θ denote the stabi-
lizer of the pair (S, θ). By [32, Proposition 2.3.3], the character θ extends to the group 
NG(S)(kF )θ. Let U ⊂ G be the unipotent radical of a kF -rational Borel subgroup of G, 
containing S, and let YU be the corresponding Deligne-Lusztig variety. Let κ(S,θ) be the 
isomorphism class of the representation HdU

c (YU, Q
)θ. For simplicity of expositions, we 
only describe the depth-zero situation. The representation π(S,θ) := c-IndG

Gx
infGx

Gx
κ(S,θ)

is supercuspidal but not necessarily irreducible. When it is indeed irreducible, we re-
turn to the case where θ is regular as in [31]. When π(S,θ) is reducible (e.g. when θ is 
non-singular non-regular), it decomposes as [32, 3.3.3]
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π(S,θ) =
∑

�∈Irr(NG(S)(kF )θ,θ)

dim(�)πε
(S,θ,�), (2.2.20)

where the constituents πε
(S,θ,ρ) := c-IndG

Gx
infGx

Gx
κε

(S,θ,�), constructed from κε
(S,θ,�) as in 

[32, Definition 2.7.6], are irreducible non-singular supercuspidal representations. Here 
Irr(NG(S)(kF )θ, θ) denotes the set of irreducible representations of NG(S)(kF )θ whose 
restriction to S(kF ) is θ-isotypic ε is a fixed coherent splitting of the family of 2-cocycles 
{ηΨ,U} as in [32, §2.4]. The positive-depth supercuspidal representations can be described 
similarly, by applying Yu’s construction [56] to the representation π(G0,S,φ−1) of G0

associated to the pair (S, φ−1) [32, (3.2)].

3. Local Langlands correspondence for Bernstein blocks

3.1. Axiomatic construction of the correspondence

Let G∨ denote the Langlands dual group of G, i.e. the complex reductive group with 
root datum dual to that of G. Let ZG∨ be the center of G∨ and G∨

ad the quotient G∨/ZG∨ . 
The L-group of G is defined to be LG := G∨

�WF . Similarly, M∨ denotes the Langlands 
dual group of M . Let ZM∨

�IF be the center of M∨
� IF , and define

Xnr(LM) := (ZM∨
�IF )◦WF

. (3.1.1)

The group Xnr(LM) is naturally isomorphic to the group Xnr(M). We denote the iso-
morphism Xnr(M) ∼−→ Xnr(LM) by χ �→ χ∨.

3.1.2. An L-parameter is a continuous morphism ϕ : W ′
F → LG such that

• ϕ(w) is semisimple for each w ∈ WF ;
• the restriction ϕ|SL2(C) is a morphism of complex algebraic groups.

An L-parameter ϕ is said to be discrete if ϕ(W ′
F ) is not contained in any proper Levi 

subgroup of G∨. The group G∨ acts on the set of L-parameters. We denote by Φ(G) the 
set of G∨-classes of G-relevant L-parameters. Attached to each L-parameter ϕ for G, we 
define several (possibly disconnected) complex reductive groups as follows.

Set ZG∨(ϕ) := ZG∨(ϕ(W ′
F )). Let Z1

G∨
sc

(φ) be the inverse image of ZG∨(φ)/ZG∨(φ) ∩ZG∨

(viewed as a subgroup of G∨
ad) under the quotient map G∨

sc → G∨
ad. Then we set

Gϕ := Z1
G∨(ϕ|WF

). (3.1.3)

We also define the following component group

Sϕ := Z1
G∨(ϕ)/Z1

G∨(ϕ)◦. (3.1.4)



A.-M. Aubert, Y. Xu / Advances in Mathematics 436 (2024) 109384 21
An enhancement of ϕ is an irreducible representation � of Sϕ. Pairs (ϕ, �) are called 
enhanced L-parameters (for G and its inner forms).

3.1.5. Let G∨ act on the set of enhanced L-parameters via

g · (ϕ, �) = (gϕg−1, g · �). (3.1.6)

We denote by Φe(G) the set G∨-conjugacy classes of enhanced L-parameters. We define 
an action of Xnr(LM) on Φe(M) as follows. Given (ϕ, �) ∈ Φe(M) and ξ ∈ Xnr(LM), 
we define (ξϕ, �) ∈ Φe(M) by ξϕ := ϕ on IF × SL2(C) and (ξϕ)(FrF ) := ξ̃ϕ(FrF ). Here 
ξ̃ ∈ Z◦

M∨
�IF

represents z.
For an L-parameter ϕ of G, we denote by uϕ the image of 

(
1,
( 1 1

0 1

))
under ϕ. By [7, 

(92)], we have uϕ ∈ G◦
ϕ and

Sϕ � ZGϕ
(uϕ)/ZGϕ

(uϕ)◦ := AG◦
ϕ
(uϕ). (3.1.7)

Let � be an irreducible representation of AG◦
ϕ
(uϕ). The pair (uϕ, �) is said to be cuspidal

if there is an G◦-equivariant cuspidal (in the sense of Lusztig [35]) local system on the 
G◦
ϕ-conjugacy class of uϕ.

Definition 3.1.8. An enhanced L-parameter (ϕ, �) is said to be cuspidal if ϕ is discrete 
and (uϕ, �) is a cuspidal pair in Gϕ.

3.1.9. From now on, we use the subscript c to denote “cuspidal”. Let (ϕc, �c) be a cuspidal 
enhanced L-parameter for M , we denote by

s∨ := [LM,ϕc, �c]G∨ (3.1.10)

the G∨-conjugacy class of (LM, O∨), where O∨ is the orbit of (ϕc, �c) under the action 
of Xnr(LM). Let B∨(G) be the set of such s∨. Set s∨M := [LM, ϕc, �c]M∨ . Let

Ns
∨

G∨ :=
{
n ∈ NG∨(M∨) : n(ϕc, �c) � (ϕc, �c) ⊗ χ∨ for some χ∨ ∈ Xnr(LM)

}
.

(3.1.11)
Denote

W s
∨

G∨ := W (M∨,O∨) := Ns
∨

G∨ /M∨. (3.1.12)

The group W s
∨

G∨ is a finite extended Weyl group, i.e. it decomposes as

W s
∨

G∨ = WO∨ � R(O∨), (3.1.13)

where WO∨ is a finite Weyl group, and R(O∨) is a finite abelian group (see (3.2.8)).
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3.1.14. Let Φc
e(M) denote the set of M∨-conjugacy classes of cuspidal enhanced L-

parameters for M . By [7, (115)], there is a decomposition of Φe(G) into series of enhanced 
L-parameters indexed by the set B∨(G):

Φe(G) = �
s∨∈B∨(G)

Φs
∨

e (G), (3.1.15)

where Φs
∨

e (G) consists of enhanced L-parameters whose cuspidal support lies in s∨. 
Moreover, for any (ϕc, �c) ∈ Φc

e(M), we have

Φs
∨
Me (M) = Xnr(LM) · (ϕc, �c). (3.1.16)

For s∨ = [LM, ϕc, �c]G∨ ∈ B∨(G), there exists a bijection [7, Theorem 9.3]

ξs
∨

G∨ : Φs
∨

e (G) −→ (Φs
∨
Me (M)//W s

∨

G∨)L�, (3.1.17)

where L� = (L�z)z∈Xnr(LM)/Xnr(LM,(ϕc,ρc)) is a collection of 2-cocycles, and

Xnr(LM, (ϕσ, �σ)) :=
{
z ∈ Xnr(LM) : z · (ϕσ, �σ)) = (ϕσ, �σ)

}
. (3.1.18)

3.1.19. Let η : M → M̃ be an F -morphism of connected reductive F -groups with abelian 
kernel and cokernel. Then by [16, §1.4], η induces a map from the root datum of M̃∨ to 
that of M∨. We denote by η∨ : M̃∨ → M∨ the associated morphism of algebraic groups 
as in [16, §2.1].

Lη : LM̃ → LM

(m̃, w) �→ (η∨(m̃), w) for m̃ ∈ M∨. (3.1.20)

We recall [16, Desideratum 10.3(5)]: Let ϕ̃ : WF ×WF → M̃∨ be an L-parameter for M̃
and set ϕ := Lη ◦ ϕ̃. Then for any π̃ ∈ Πϕ̃, the representation π̃ ◦ η is the direct sum of 
finitely many irreducible representations belonging to Πϕ.

3.1.21. Let Irrsc(M) ⊂ Irr(M) denote the set of equivalence classes of irreducible su-
percuspidal representations of M . Let g ∈ NG(M)(F ). For any σ ∈ Irrsc(M), we have 
gσ ∈ Irrsc(M). We denote by cg the isomorphism

cg : (M,σ) ∼→ (M, gσ). (3.1.22)

Let Lcg : LM → LM be the morphism defined by (3.1.20). Let w �→ w∨ be the canonical 
isomorphism from W (M) := NG(M)(F )/M to W (M∨) := NG∨(M∨)/M∨ defined in [1, 
Proposition 3.1]. Let nw (resp. nw∨) be a representative of w (resp. w∨) in NG(M)(F )
(resp. NG∨(M∨)). With these notations, we have c∨n (m∨) = nw∨m∨.
w
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For σ ∈ Irr(M), since the equivalence class of nwσ does not depend on the choice of 
the representative nw, we will simply denote it by wσ. Similarly, we use the notation w∨, 
instead of nw∨ , to denote the action of NG∨(M∨) on Φe(M).

Property 3.1.23. Let M be a Levi subgroup of G. Let sM := [M, σ]M ∈ B(M). There 
exists a map

LsM : IrrsM (M) −−→ Φc
e(M)

σ �→ (ϕσ, �σ) (3.1.24)

such that the following properties are satisfied for any σ ∈ IrrsM (M):

(1) For any χ ∈ Xnr(M), we have

(ϕχ⊗σ, �χ⊗σ) = χ∨ · (ϕσ, �σ), (3.1.25)

where χ �→ χ∨ is the canonical isomorphism Xnr(M) ∼→ Xnr(LM).
(2) For any w ∈ W (M), we have

w∨
(ϕσ, �σ) � (ϕwσ, �wσ), (3.1.26)

where w �→ w∨ is the canonical isomorphism W (M) ∼→ W (M∨).

Remark 3.1.27.

(1) Property 3.1.23(1) is closely related to [16, Desideratum 10.3.(2)].
(2) Property 3.1.23(2) is a stronger version of [16, Desideratum 10.3.(5)] for η = cg, and 

can be viewed as an analogue of [25, Conjecture 5.2.4] for enhanced L-parameters 
for supercuspidal representations. In the special case where the L-packet of σ is a 
singleton, Property 3.1.23(2) is in fact equivalent to [16, Desideratum 10.3.(5)] for 
η = cg.

Lemma 3.1.28. Let s = [M, σ]M ∈ B(G) satisfy Property 3.1.23. Then there is a group 
isomorphism

r : W s
G

∼→ W s
∨

G∨ , where s∨ := [LM,LsM (σ)]G∨ . (3.1.29)

Moreover, LsM is equivariant with respect to r.

Proof. Let w ∈ W s
G ⊂ W (M). By the definition of W s

G, we have wσ � χ ⊗ σ for some 
χ ∈ Xnr(M). By Property 3.1.23, we have

w∨
(ϕσ, �σ) � (ϕwσ, �wσ) � (ϕχ⊗σ, �χ⊗σ) � χ∨ · (ϕσ, �σ). (3.1.30)
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Thus w∨ ∈ W s
∨

G∨ , and the map w �→ w∨ gives a group morphism from W s
G to W s

∨

G∨ . 
Reversing the argument, we see that it is an isomorphism. �

We suppose that Property 3.1.23 holds, and that the collections of 2-cocycles � and 
L� satisfy the following

L�χ∨ = �χ for any σ ∈ s and any χ ∈ Xnr(M)/Xnr(M,σ), (3.1.31)

Theorem 3.1.32.

(1) We have a canonical isomorphism

e : (IrrsM (M)//W s
G)�

∼−→ (Φs
∨
Me (M)//W s

∨

G∨)L�. (3.1.33)

(2) There is a bijection

L := (ξs
∨

G∨)−1 ◦ e ◦ ξsG : Irrs(G) −→ Φs
∨

e (G). (3.1.34)

Proof. Let s = [M, σ]G. Consider (ϕσ, �σ) := LsM (σ). Then the isomorphism Xnr(M) �
Xnr(LM) combined with (3.1.16) shows that

Φs
∨
Me (M) = {χ∨ ⊗ (ϕσ, �σ) : χ ∈ Xnr(M)} . (3.1.35)

By Property 3.1.23(1) and (2.1.11), we have

Φs
∨
Me (M) = {(ϕχ⊗σ, �χ⊗σ) : χ ∈ Xnr(M)} � IrrsM (M). (3.1.36)

Recall that W s,χ⊗σ
G denotes the stabilizer of χ ⊗σ in W s

G. By construction of the extended 
quotients in (1.3.1), we have

(IrrsM (M)//W s
G)� = �

χ∈Xnr(M)/Xnr(M,σ)
(Irr(C[W s,χ⊗σ

G , �χ])/W s
G. (3.1.37)

For χ ∈ Xnr(M), let W s
∨,χ∨·(ϕσ,�σ)

G∨ denote the stabilizer of χ∨ · (ϕσ, �σ) in W s
∨

G∨ . By 
Property 3.1.23(1), we have

Xnr(M∨, (ϕσ, �σ)) � Xnr(M,σ). (3.1.38)

Again by (1.3.1), we have

(Φs
∨
Me (M)//W s

∨

G∨)L� = �
χ∨∈Xnr(M∨)/Xnr(M∨,(ϕσ,�σ))

Irr(C[W s
∨,χ∨·(ϕσ,�σ)

G∨ , L�χ∨ ])/W s
∨

G∨ .

(3.1.39)
For any w ∈ W s,χ⊗σ

G , by Property 3.1.23, we have
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w∨
(χ∨ · (ϕσ, �σ)) = w∨

(ϕχ⊗σ, �χ⊗σ) = (ϕw(χ⊗σ), �w(χ⊗σ) = (ϕχ⊗σ, �χ⊗σ). (3.1.40)

Thus the morphism r from (3.1.29) restricts to an isomorphism

W s,χ⊗σ
G

∼−→ W
s
∨,χ∨·(ϕσ,�σ)

G∨ . (3.1.41)

Combined with (3.1.37) and (3.1.39), we obtain an isomorphism

e : (IrrsM (M)//W s
G)� −→ (Φs

∨
Me (M)//W s

∨

G∨)L�. (3.1.42)

Then (2) follows from the combination of (1) with Proposition 2.1.20 and (3.2.15). �
Remark 3.1.43. When G is a split classical group, F has characteristic zero and LsM is 
the LLC defined by Arthur in [8], then Lemma 3.1.28 was proved in [42, Theorem 4.1], 
and Theorem 3.1.32 follows from [43, §3.2 & 3.3].

Remark 3.1.44. The 2-cocycles in � and L� are expected to be often trivial: (1) They are 
trivial if the groups R(O) from (2.1.14) and R(O∨) from (3.1.13) have cardinality at 
most 2, and hence when M is a Levi subgroup of a maximal parabolic subgroup of G.

(2) The 2-cocycles are also trivial when G is a symplectic group or a split special 
orthogonal group by [26, Theorem 7.7] on the group side and [43, §4.5] on the Galois side. 
They are trivial for principal series representations of split groups by [46, Corollary 7.9 
and Theorem 8.2] on the group side and [3, Theorem 13.1] on the Galois side.

(3) However, there exist cases when these 2-cocycles are not trivial: e.g. see [2, Exam-
ple 5.5] for an example where � is non-trivial, and [7, Example 9.4] for an example where 
L� is non-trivial.

3.1.45. Let σ be a regular supercuspidal irreducible representation of M . Let ϕσ : WF →
LM be the L-parameter of σ as constructed in [32].

Proposition 3.1.46. Let s = [M, σ]G be such that the L-packet for σ is a singleton. Let 
s∨ = [M∨, (ϕσ, 1)]G∨ . Assume that the collections of 2-cocycles � and L� are both trivial. 
We have the following bijection

L : Irrs(G) −−→ Φs
∨

e (G). (3.1.47)

Proof. Let LsM be the map

LsM : σ �→ (ϕσ, 1). (3.1.48)

By Proposition 3.1.51, Property 3.1.23(1) is satisfied.
The validity of [16, Desideratum 10.3(5)] has been established in [15, Theorem 1.1]

when the L-parameter ϕ̃ is supercuspidal, and G is quasi-split. Since the L-packet for σ
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is a singleton, Property 3.1.23 (2) holds by Remark 3.1.27. The result thus follows from 
Corollary 3.1.32. �
Remark 3.1.49. Proposition 3.1.46 is sufficient for the case of G = G2 (as also exemplified 
in [9]), since M is either GL2 or a torus, both only having singleton L-packets for their 
supercuspidals.

3.1.50. Suppose now σ is a non-singular supercuspidal irreducible representation of M . 
Let ϕσ : WF → LM be the L-parameter of σ defined in [32, §4.1], with enhancement �σ.

More precisely, consider the πε
(S,θ,�) recalled in § 2.2.19. We fix a coherent splitting 

ε. We recall the construction of the non-singular L-parameter ϕ(S,θ) in [32, §4.1] (we 
drop � from the notation as the L-parameter does not depend on �), which is given as 
a composition WF

ϕS−−→ LS
Lj−→ LG. Here ϕS : WF → LS is Langlands parameter for the 

character θ, and Lj : LS → LG is a certain L-embedding arising from the χ-data as part 
of some torally wild L-packet datum (S, ̂j, χ0, θ) as [32].

Proposition 3.1.51. The map LsM : σ �→ (ϕσ, �σ) satisfies Property 3.1.23 (1).

Proof. By [32, Proposition 3.4.6], we have χ ⊗πε
(S,θ,�) = πε

(S,χ·θ,χ⊗ρ). On the other hand, 
by [30, Proposition 4.5.3], we have ϕ(S,χ·θ) = (ϕχ · ϕS) ◦ Lj (since the L-embedding Lj
stays the same after twisting by χ), where ϕχ : WF → ZĜ is the corresponding 1-cocycle 
as defined [30]. �
Remark 3.1.52. Property 3.1.23 (2) of the map LsM : σ �→ (ϕσ, �σ) follows from [33, 
Conjecture 2.12], which is expected to hold for LLC for non-singular supercuspidal rep-
resentations. The authors intend to return to this question in future work.

3.2. Matching of simple modules of extended affine Hecke algebras

In this section, we use Corollary 3.1.32 to obtain a bijection between simple mod-
ules of extended affine Hecke algebras for the p-adic group and Galois sides, assuming 
Property 3.1.23. Note that this is a completely reasonable assumption, as many groups 
satisfy this property. Therefore, our main results give a new approach to constructing 
local Langlands correspondences “inductively”, building from LLC’s on the Levi sub-
groups’.

3.2.1. We now recall the construction of a (possibly twisted) extended affine Hecke alge-
bra Hs

∨(G∨) constructed in [6]. Consider

Mϕc := ZM∨(ϕc(WF )). (3.2.2)

Let Aϕc be the identity component of the center of Mϕc . We set
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Jϕ = JG∨

ϕ := ZG∨(ϕ(IF )). (3.2.3)

Let Σ(J ◦
ϕ , Aϕc) be the set of α ∈ X∗(Aϕc) \ {0} which appear in the adjoint action of 

Aϕc on the Lie algebra of J ◦
ϕ . It is a root system by [6, Proposition 3.9]. Let Σ(J ◦

ϕ , Aϕc)+
be the positive root system defined by an F -rational Borel subgroup of J ◦

ϕ . Let Δ be a 
basis of the reduced root system Σ(J ◦

ϕ , Aϕc)red. Let a ∈ Aϕc be such that α(a−1) is an 
eigenvalue of Ad(ϕ(Fr)) for any α ∈ Δ. We define ϕa ∈ Φ(M) by

ϕa|IF×SL2(C) := ϕc|IF×SL2(C) and ϕa(FrF ) := a · ϕc(FrF ). (3.2.4)

By [6, Proposition 3.9], we have Σ(Gϕa
, Aϕc)red = Σ(J ◦

ϕ , Aϕc)red, where Gϕa
=

ZG∨(ϕa(WF )). Consider

Xnr(M∨, ϕa) := {x ∈ Xnr(M∨) : (zϕa)M∨ = (ϕa)M∨} . (3.2.5)

Set TO∨ := Xnr(M∨)/Xnr(M∨, ϕa). For each α ∈ Σ(J ◦
ϕ , Aϕc)red, let mα ∈ Z>0 be the 

smallest integer such that

ker(mαα) ⊃ {a′ ∈ Aϕc : (a′ϕa)M∨ = (ϕa)M∨} . (3.2.6)

We set

ΣO∨ :=
{
mα : α ∈ Σ(J ◦

ϕ ,Aϕc)red
}
⊂ X∗(TO∨). (3.2.7)

Then WO∨ from (3.1.13) is the finite Weyl group of ΣO∨ , and

R(O∨) :=
{
w ∈ W (M∨,O∨) : w · Σ(J ◦

ϕ ,Aϕc)+ = Σ(J ◦
ϕ ,Aϕc)+

}
. (3.2.8)

Let

λ∨ : ΣO∨ → Z≥0 and λ∗∨ : {mαα ∈ ΣO∨ : (mαα)∨ ∈ 2X∗(Ts∨)} → Z≥0 (3.2.9)

be the two parameter functions defined in the proof of [6, Lemma 3.12]. Recall from [6, 
(28)] that λ∗∨(α) = λ∨(α) unless α is a short root in a type B root subsystem of RO∨ .

The algebra Hs
∨(G∨) is defined to be

Hs
∨
(G∨) := Haff(O∨,ΣO∨ , λ∨, λ∨∗, z) � C[R(O∨), κ∨], (3.2.10)

where z is a positive real number, Haff(G∨, s∨) := Haff(O∨, ΣO∨ , λ∨, λ∗∨, z) is the corre-
sponding affine Hecke algebra with affine Weyl group WO∨�X∗(TO∨), and κ∨ a 2-cocycle 
on R(O∨).
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Theorem 3.2.11. We suppose that the collections of 2-cocycles � and L� are both trivial. 
Let s = [M, σ]G and s∨ = [LM, ϕσ, 1]G∨ . There is a bijection

Irr(Hs(G)) ←→ Irr(Hs
∨
(G∨)). (3.2.12)

Proof. By Corollary 2.1.22, we have a bijection

Irr(Hs(G)) −→ (IrrsM (M)//W s
G)�. (3.2.13)

By Corollary 3.1.32, we have

IrrsM (M)//W s
G � Φs

∨
Me (M)//W s

∨

G∨ . (3.2.14)

On the other hand, by (3.1.17) we have a bijection

Φs
∨
Me (M)//W s

∨

G∨ −→ Φs
∨

e (G). (3.2.15)

Finally, by [6, Theorem 3.18], there is a bijection

Φs
∨

e (G) ∼−−→ Irr(Hs
∨
(G∨)). (3.2.16)

Combining equations (3.2.13), (3.2.14), (3.2.15) and (3.2.16), we obtain the desired bi-
jection. �
Corollary 3.2.17. With the same assumption as in Theorem 3.2.11.

Irr(Hs
∨
(G∨)) −→ Irr(H(s0)∨((G0)∨)).

Proof. This follows from combining Theorems 3.2.11 and 2.2.14. �
4. Applications to G2

In this section, we introduce notations and background specifically for the G2 case.

4.0.1. General background

4.0.1. Let aM be the real Lie algebra of AM, and a∗M its dual. Let a∗M,C be the com-
plexification of a∗M . Let | · |F be the modulus of F . Let HM : M → aM be such that 
q−〈HM (m),α〉 = |α(m)|F for every rational character α of M and every m ∈ M . Note that 
the kernel of HM is equal to M1 (recall from § 2.1.1). Consider

Mσ :=
⋂

kerχ, (4.0.2)

χ∈Xnr(M,σ)
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which has finite index in M1. Recall Xnr(M, σ) from (2.1.9), and we have

Irr(Mσ/M1) � Xnr(M)/Xnr(M,σ) and C[Mσ/M1] � C[Xnr(M)/Xnr(M,σ)].
(4.0.3)

Set (Mσ/M1)∨ := HomZ(Mσ/M1, Z). Composing HM with the R-linear extension of 
HM (Mσ/M1) → Z gives an embedding

H∨
M : (Mσ/M1)∨ → a∗M . (4.0.4)

For m ∈ M , let bm be the element of C[Xnr(M)] defined by bm(χ) := χ(m) for any 
χ ∈ Xnr(M). Let hα be the unique generator of Mσ/M1 such that valF (α(hα)) > 0. We 
define Xα ∈ C(Xnr(M)/Xnr(M, σ) by

Xα(χ) := χ(hα), (4.0.5)

for χ ∈ Xnr(M)/Xnr(M, σ).

4.0.6. For a complex number s, let χs be the character defined by

χs(m) := |det(m)|sF for any m ∈ M . (4.0.7)

In particular, χs ∈ Xnr(M), and we have

Xα(χs) = |det(hα)|sF . (4.0.8)

Let α̃ be the element of a∗M defined by α̃ := 〈ρP , α∨〉−1ρP , where ρP is half the sum of 
the roots of AM in LieN , with P = MN . Then sα̃ ∈ a∗M ⊗R C.

We recall the description of the Plancherel measure from [52] (see also [53] or [26] for 
the notations used here): for α ∈ ΣO,μ, where ΣO,μ is the root system defined in (2.1.13), 
there exist qα, qα∗ ∈ R≥1, c′sα ∈ R>0 for α ∈ ΣO,μ, such that

μMα(σ ⊗ ·) = c′sα
(1 −Xα)(1 −X−1

α )
(1 − q−1

α Xα)(1 − q−1
α X−1

α )
· (1 + Xα)(1 + X−1

α )
(1 + q−1

α∗ Xα)(1 + q−1
α∗ X−1

α )
. (4.0.9)

4.0.10. For α ∈ ΣO,μ, by [54, Proposition 3.1] there is a unique α� ∈ (Mσ/M1)∨ such 
that H∨

M (α�) ∈ Rα and 〈hα, α�〉 = 2. We set

ΣO :=
{
α� : α ∈ ΣO,μ

}
and Σ∨

O :=
{
α� : hα ∈ ΣO,μ

}
.

The quadruple (Σ∨
O, Mσ/M1, ΣO, (Mσ/M1)∨) is a root datum with Weyl group WO. 

It has a natural action of the group W (M, O), and R(O) is the stabilizer of its basis 
determined by P (see [54]). We endow this based root datum with the parameter qF and 
the labels
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λ(α) := log(qαqα∗)/ log(qF ) and λ∗(α) := log(qαq−1
α∗ )/ log(qF ). (4.0.11)

To the above data we associate the affine Hecke algebra

Hs
aff(λ, λ∗, qF ) := Haff(Σ∨

O,Mσ/M1,ΣO, (Mσ/M1)∨, λ, λ∗, qF ). (4.0.12)

It is defined as the vector space C[WO] ⊗C C[Mσ/M1] with the following multiplication 
rules:

• C[WO] = span{Tw : w ∈ WO} is embedded as H(WO, qλF ), the Iwahori-Hecke algebra 
of WO, i.e.

TwTv = Twv if �(w) + �(v) = �(ww),
(Tsα + 1)(Tsα − q

λ(α)
F ) = 0 if α ∈ ΔO,μ, (4.0.13)

where �(w) is the word length of w1;
• C[Mσ/M1] � C[O] is embedded as a subalgebra;
• for α ∈ ΔO,μ and x ∈ Mσ/M1 (corresponding to θx ∈ C[Mσ/M1]):

θxTsα − Tsαθsα(x) =
(
q
λ(α)
F − 1 + X−1

α (q
λ(α)+λ∗(α)

2 − q
λ(α)−λ∗(α)

2 )
) θx − θsα(x)

1 −X−2
α

.

4.0.14. We set

W s
aff := WO � ZΣ∨

O. (4.0.15)

From now on we assume that the parabolic subgroup P is maximal. Then we have 
Mα = G, and W (M) is either trivial or of order 2.

Remark 4.0.16.

(1) The groups W (M, O), WO, and R(O) are either trivial or of order 2. In particular, 
ΣO,μ is either empty or {α, −α}.

(2) For G = G2, if σ �� σ∨, then W (M, O) = 1. It suffices to only check the case where 
σ � σ∨.
In general, if W (M, O) = 1, then the parabolically induced representation is irre-
ducible, so we do not need to work with the case. In the case of G2, the condition 
W (M, O) �= 1 happens to be characterized by the condition that σ is self-dual. See 
[50] for more details.

1 i.e., 
(w) is the smallest integer 
 ≥ 0 such that w is a product of 
 generators sα.
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4.0.17. If ΣO,μ �= ∅, then W (M) �= {1} and the group WO is generated by the unique 
non-trivial element of W (M), say sM . Then we have WO = W (M, O) = W (M). In 
particular, if ΣO,μ �= ∅, we have R(O) = {1}.

The condition ΣO,μ = ∅ is equivalent to the following

μG(χ⊗ σ) �= 0 for any χ ∈ Xnr(M). (4.0.18)

We recall the following theorem of Harish-Chandra.

Theorem 4.0.19. (Harish-Chandra) [52, 5.4.2.2 and 5.4.2.3] Let M be a Levi subgroup 
of a maximal parabolic subgroup of G and let σ be a unitary irreducible supercuspidal 
representation of M .

(a) If μG(σ) = 0, then W (M) = {1, sM} �= {1}, and sMσ � σ.
(b) Suppose W (M) �= {1}. Then μG(σ) �= 0 if and only if the representation iGP (σ)

is reducible. In this case, the representation iGP (σ) is the direct sum of two non-
isomorphic irreducible representations.

4.0.2. Some background on G2
In the case where G is the split G2, we obtain more precise results than in previous 

sections. Let T be a maximal split torus in G. Let R be the set of roots of G with respect 
to T . Let (ε1, ε2, ε3) be the canonical basis of R3, equipped with the scalar product ( | )
for which this basis is orthonormal. Then {α := ε1 − ε2, β := −2ε1 + ε2 + ε3} defines a 
basis of R, and

R+ = {α, β, α + β, 2α + β, 3α + β, 3α + 2β} (4.0.20)

is a subset of positive roots in R. We have

(α|α) = 2, (β|β) = 6 and (α|β) = −3. (4.0.21)

Hence α is a short root, while β is a long root.

4.0.22. As in [44], we fix an isomorphism:

ηα : T ∼−−→ F× × F× (4.0.23)

t �−→ ((2α + β)(t), (α + β)(t)). (4.0.24)

Under this identification we have

α∨(a) = η−1
α (a, a−1) and β∨(a) = η−1

α (1, a) for any a ∈ F×. (4.0.25)

Let G∨ be the dual group of G over C, obtained via an identification of the roots of G∨

with the coroots of G2 and vice versa. Then G∨ is a complex reductive group of type 
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G2, with simple roots α∨ and β∨. Note that α∨ (resp. β∨) is the long (resp. short) root 
of G∨. Consider the torus T∨ dual to T . Then T∨ is a maximal torus of G∨. We fix an 
isomorphism:

ηβ∨ : T ∼−−→ C× ×C× (4.0.26)

t �−→ ((α∨ + 2β∨)(t), (α∨ + β∨)(t)). (4.0.27)

We have

α∨(a) = η−1
β∨ (1, a) and β∨(a) = η−1

β∨ (a, a−1) for any a ∈ F×. (4.0.28)

4.0.29. For each root γ ∈ R(G), we fix root group homomorphisms xγ : F → G and 
Z-homomorphisms ζγ : SL2(F ) → G as in [18, (6.1.3) (b)]. We have

xγ(u) = ζγ

(
1 u
0 1

)
, x−γ(u) = ζ−γ

(
1 0
u 1

)
and γ∨(t) = ζγ

(
t 0
0 t−1

)
. (4.0.30)

For γ ∈ {α, β}, let Pγ be the maximal standard parabolic subgroup of G generated by 
γ. Let Mγ be the centralizer of the image of (γ′)∨ in G, where γ′ is the unique positive 
root orthogonal to γ, i.e.

γ′ :=
{

3α + β if γ = α,
3α + 2β if γ = β.

(4.0.31)

Then Mγ is a Levi factor for Pγ . Moreover, Mα and Mβ are representatives of the two 
conjugacy classes of maximal Levi subgroups of G.

We extend ζγ : SL2(F ) → Mγ to an isomorphism ζγ : GL2(F ) → Mγ by

ζγ

((
t 0
0 1

))
:= ζγ′

((
t 0
0 t−1

))
, for t ∈ F×. (4.0.32)

Then the restriction of ζ−1
γ to T coincides with the isomorphism

ηγ : T → F× × F×, (4.0.33)

where ηα has been defined in (4.0.23), and

ηβ : t �→ ((α + β)(t), α(t)). (4.0.34)

4.1. Explicit Hecke algebra parameters

4.1.1. The long root case
Let ψ be a fixed nontrivial additive character of F , and ψ be the dual of ψ. Assume 

for now the Levi factor M of P = MN is generated by the long root of G. Let σ be an 
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irreducible unitary supercuspidal representation of M . We denote by ω := ωσ the central 
character of σ. Let L/F be a quadratic extension. Let χ be a character of L×. Let χ′

be the conjugate of χ, i.e. χ′(a) = χ(a). Let Π(σ) denote the Gelbart-Jacquet lift of σ
as defined in [24]. Our notations follow [50]. The Plancherel measure μ(sα̃, σ) has the 
following four possibilities ([4]).

4.1.1. Case I. If ω is unramified, and if σ = σ(τ) with τ = IndWF

WL
χ, with χ2χ′ unramified, 

then

μ(sα̃, σ)=γ(G/P )2qn(ω)+n(σ×Π(σ))−n(σ)
F

(1 − ω(�)q−2s
F )(1 − ω−1(�)q2s

F )
(1 − ω−1(�)q−1+2s

F )(1 − ω(�)q−1−2s
F )

(4.1.2)

· (1 − χ2χ′ −1(�L)q−s
L )(1 − χ−2χ′(�L)qsL)

(1 − χ2χ′ −1(�L)q−1−s
L )(1 − χ−2χ′(�L)q−1+s

L )
(4.1.3)

Comparing (4.1.2) with the Plancherel formula in (4.0.9), we have{
Xα(s) = ω(�F )q−2s

F

Xα(s) = −χ2χ′ −1(�L)q−s
L ,

(4.1.4)

which implies that

ω(�F )q−2s
F + χ2χ′ −1(�L)q−s

L = 0. (4.1.5)

Since qL = qf(L/F ), (4.1.5) only has a solution when f(L/F ) = 2 and

ω(�F ) + χ2χ′ −1(�L) = 0, (4.1.6)

which is satisfied in our case. In particular, we have

qα = qF , qα∗ = qL = q
f(L/F )
F . (4.1.7)

Therefore we have

λ(α) = log(qαqα∗)/ log(qF ) = 1 + f(L/F ),
λ∗(α) = | log(qαq−1

α∗ )/ log(qF )| = |1 − f(L/F )|. (4.1.8)

Hence the parameters for the extended affine Hecke algebra in this case are q1+f(L/F )
F

and q|1−f(L/F )|
F .

4.1.9. Case II. If ωσ is ramified and σ = σ(τ) with τ = IndWF

WL
χ, and χ2χ′ unramified,

μ(sα̃, σ) = γ(G/P )2qn(σ×Π(σ))−n(σ)
F

(1 − χ2χ′ −1(�L)q−s
L )(1 − χ−2χ′(�L)qsL)

(1 − χ2χ′ −1(�L)q−1−s
L )(1 − χ−2χ′(�L)q−1+s

L )
(4.1.10)
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We compare (4.1.10) to the Plancherel formula (4.0.9) and obtain

qα∗ = 1, qα = qL = q
f(L/F )
F (4.1.11)

Recall the definition of Xα as

Xα(χ) := χ(h∨
α) (4.1.12)

where χ ∈ Xnr(M)/Xnr(M, σ). Since the map ψs : m �→ | det(m)|sF is an unramified 
character of M , we have

Xα(ψs) = (χ2χ′ −1)(�L)q−s
L (4.1.13)

Recall from (4.0.11) that

q
λ(α)
F = qαqα∗ ∈ R>1. (4.1.14)

Thus by (4.1.11), we have qλ(α)
F = qL = q

f(L/F )
F , where f(L/F ) is the residue degree and 

is thus 1 if L/F is ramified, and 2 if L/F is unramified. In particular

λ(α) = f(L/F ), λ∗(α) = f(L/F ). (4.1.15)

Note that for w ∈ W (M, O), one may check that

w(Xα) = Xw(α) (4.1.16)

Since w(α) = α for w ∈ W (M, O) when G = G2, (4.1.16) is simply w(Xα) = Xα. On 
the other hand, by [53, Prop 1.1] we have

wXα(χ) = w(Xα(χ)) = w(χ(h∨
α)) = χ(w(h∨

α)) = χ(h∨
w(α)) = χ(h∨

α) = Xα(χ)

Thus wXα = Xα = Xw(α). This reduces to check, in the long root case, that

s2α+β(χ2χ′ −1(�L)q−s
L ) = χ2χ′ −1(�L)q−s

L (4.1.17)

Since Σ∨
O = {1, 2α + β} in the long root M = Mβ case, we have

W (Σ∨
O) = {1, s2α+β}. (4.1.18)

Thus the Iwahori-Hecke algebra of W (Σ∨
O), as defined in (4.0.13), is given by

H(W (Σ∨
O), qλF ) =

{
H({1, s2α+β}, qF ), L/F is ramified
H({1, s }, q2 ), L/F is unramified

(4.1.19)

2α+β F
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Therefore, the affine Hecke algebra in this case is given by

Haff(Mβ) = H({1, s2α+β}, qf(L/F )
F ) � C[O] (4.1.20)

4.1.21. Case III. If ω is unramified and σ �= σ(τ) or χ2χ′ is ramified,

μ(sα̃, σ) = γ(G/P )2qn(ω)+n(σ×Π(σ))−n(σ)
F

(1 − ω(�)q−2s
F )(1 − ω−1(�)q2s

F )
(1 − ω−1(�)q−1+2s

F )(1 − ω(�)q−1−2s
F )

(4.1.22)
In this case, we have

Xα(s) = ω(�)q−2s
F

qα∗ = 1, qα = qF
(4.1.23)

Thus λ(α) = 1 and λ∗(α) = 1. The parameters in this case are simply qF .

4.1.24. Case IV. If ω ramified and σ �= σ(τ) or χ2χ′ is ramified,

μ(sα̃, σ) = γ(G/P )2qn(σ×Π(σ)))−n(σ)
F (4.1.25)

In this case, we have

qα = 1, qα∗ = 1 (4.1.26)

Thus λ(α) = 0 and λ∗(α) = 0. Thus the parameters in this case are trivial.

4.1.2. The short root case
Now we give the explicit computation in the short root case. Assume the Levi factor 

M of P = MN is generated by the short root of split G2. Let σ be an irreducible unitary 
supercuspidal representation of M . Let ω = ωσ be its central character. Then by [51, 
Proposition 6.2] the Plancherel measure μ(sα̃, σ) is given by the formula

μ(sα̃, σ) =

⎧⎨⎩γ(G/P )2qn(σ)+n(σ⊗ω)
F

(1−ω(�)q−2s
F )(1−ω(�)−1q2s

F )
(1−ω(�)q−1−2s)(1−ω(�)−1q−1+2s

F ) if ω is unramified

γ(G/P )2qn(σ)+n(ω)+n(σ⊗ω)
F otherwise

(4.1.27)
Here n(σ), n(ω) and n(σ ⊗ ω) are the corresponding conductors.

4.1.28. Case I. If ω is unramified,

μ(sα̃, σ) = γ(G/P )2qn(σ)+n(σ⊗ω)
F

(1 − ω(�)q−2s
F )(1 − ω(�)−1q2s

F )
(1 − ω(�)q−1−2s

F )(1 − ω(�)−1q−1+2s
F )

(4.1.29)

Comparing (4.1.29) with (4.0.9) implies that
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qα = qF , qα∗ = 1 (4.1.30)

Since χs is an unramified character of M , we have

Xα(χs) = ω(�)q−2s
F . (4.1.31)

Recall from (4.0.11) that qλ(α)
F = qαqα∗ ∈ R>1. Thus by (4.1.30), we have qλ(α)

F = qF
and thus λ(α) = 1 and λ∗(α) = 1. Note that for w ∈ W (M, O), one may check that

w(Xα) = Xw(α). (4.1.32)

Since w(α) = α for w ∈ W (M, O) for G = G2, (4.1.32) is simply w(Xα) = Xα. On the 
other hand, by [53, Prop 1.1] we have

wXα(χ) = w(Xα(χ)) = w(χ(hα)) = χ(w(hα)) = χ(hw(α)) = χ(hα) = Xα(χ). (4.1.33)

Thus wXα = Xα = Xw(α). Since Σ∨
O = {3α + 2β} in the short root M = Mα case (see 

[51, p. 389]), we have

W (Σ∨
O) = {1, s3α+2β} (4.1.34)

Therefore we have the affine Hecke algebra

Haff(Mα) = H({1, s3α+2β}, qF ) � C[O]. (4.1.35)

4.1.36. Case II. In the other case,

μ(sα̃, σ) = γ(G/P )2qn(σ)+n(ω)+n(σ⊗ω) (4.1.37)

Comparing (4.1.37) and (4.0.9) gives us

qα = 1, qα∗ = 1. (4.1.38)

Therefore we have qλF = 1 and thus λ(α) = 0 and λ∗(α) = 0. Therefore the affine Hecke 
algebra in this case is given by

Haff(Mα) = H({1, s3α+2β}, 1) � C[O]. (4.1.39)

Remark 4.1.40. The computations of Hecke algebras with explicit parameters in this 
section will be collected into tables in § 4.2.2.
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4.2. Intertwining algebras

4.2.1. For b ∈ F×/F×2, let Ub(1, 1) be the quasi-split unitary group, and Ub(2) the 
compact unitary group in two variables in F (

√
b). We write F×/F×2 = {1, ε, �, ε�}, 

and the possible unitary groups in 2 variables are:

Uε(1, 1), Uε(2), U�(1, 1), U�(2), Uε�(1, 1), Uε�(2).

The group Uε(1, 1) is an unramified group. The group U�′(1, 1) is ramified, where �′ ∈
{�, ε�}.

4.2.2. We now classify the twisted Levi sequences in G2 (up to conjugacy) for M = Mγ

with γ ∈ {α, β}:

(1) Essentially depth zero case: If ρΣM
is an essentially depth-zero supercuspidal type 

on M , then ΣM is of the form (M, y, φ, r, ρM ) (hence in particular M0 = M), 
where KΣM

= My,0 � GL2(oF ) is a maximal compact subgroup of GL2(F ) and 
r = depth(ρΣM

) is an integer. If r = 0, we may assume that φ = 1 without loss of 
generality.
(a) �G = (G) (here G0 = G, it is a depth zero case: r = 0),
(b) �G = (M0, G) (here G0 = M = M0 and r �= 0).

(2) Positive depth cases [4]:
(a) �G = (Uε(1, 1), G),
(b) �G = (U�′(1, 1), G), with �′ ∈ {�, ε�},
(c) �G = (M0, G),
(d) �G = (M0, M, G),
where M0 is a torus in G0.

When M = Mγ , we have three possibilities for M0, denoted Tγ,ε, Tγ,� and Tγ,�. If φ0
has trivial restriction to Z◦

M , then it can be extended to a character of Ub and we use 
the same notation φ0 to denote the extended character.

Let G0
y denote the reductive quotient of G0

y. Let �′ ∈ {�, ε�}. We have

G0
y =

{
U(1, 1) if G0 = Uε(1, 1),
SO2 if G0 = U�′(1, 1).

(4.2.3)

Remark 4.2.4. The central character ωσ of σ can be either ramified or unramified. It is 
unramified if and only if ωσ0 is trivial. When ωσ is ramified, ωσ0 is quadratic.

Lemma 4.2.5. We have

W s
G � W s

0

G0 . (4.2.6)
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Proof. The representation σ is regular and p is good for G, i.e. p �= 2, 3 and does not 
divide the order (= 1) of the fundamental group of Gder. Hence Lemma 2.2.9 applies 
and gives the desired isomorphism. �
4.2.1. The intertwining algebras of types attached to G0

4.2.7. The case G0 = M0. It occurs in both the essentially depth-zero case with r �= 0
and in the positive depth cases. We have two possibilities for M0: either M0 � GL2(F )
or M0 is a torus. In both cases, the algebra H(G0, ρD0) = H(M0, ρD0) is commutative 
by [13, 5.5,5.6].

4.2.8. The case G0 = Uε(1, 1). If W s
0

G0 = {1}, then H(G0, ρD0) is commutative, as seen in 
Remark 2.1.60. From now on we suppose that W s

0

G0 �= {1}. Let a �→ a be the non-trivial 
element of Gal(L/F ). Set

w0 :=
(

0 1
1 0

)
, w1 :=

(
0 �−1

L
�L 0

)
, and P :=

(
o
×
L oL
pL o

×
L

)
∩G0. (4.2.9)

Recall that ρ̃D0 denotes the contragredient representation of ρ0. By [10, §3.1], the 
Iwahori-Matsumoto presentation of H(Uε(1, 1), ρD0) is given by: H(Uε(1, 1), ρD0) is the 
space spanned by functions

Twi
: G0 → EndG(Vρ̃D0 ), for i ∈ {0, 1}, (4.2.10)

satisfying

Twi
(pgp′) = ρ̃D0(p)Twi

(g)ρ̃D0(p′), where p, p′ ∈ P and g ∈ G0. (4.2.11)

Here Twi
is supported on PwiP, and satisfies the quadratic relation

(Twi
− qF )(Twi

+ 1) = 0. (4.2.12)

One can then deduce the Bernstein presentation of H(Uε(1, 1), ρD0) using [36, §3]. In 
particular, we have qλ(α)

F = qF .

4.2.13. The case G0 = U�′(1, 1). Let �′ ∈ {�, ε�}. Since U�′(1, 1) is ramified, by 
[10, §5.1.1], the algebra H(U�′(1, 1), ρD0) has trivial parameters with R(O0) �= 1 and 
WO0 = 1 if ωσ|o×

F
�= 1; and the Hecke algebra has parameter qF otherwise, in which case 

WO0 �= 1 and R(O0) = 1.

4.2.2. The intertwining algebras of types attached to G

4.2.14. Long root essentially depth zero case.
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(a) r = 0, χ3 = 1 case and σ = σ(τ) for τ = IndWF

WL
χ:

We have ρM self-dual, σ and τ correspond via LLC for GL2(F ). Since σ has depth 
zero, L/F is unramified (so e(L/F ) = 1 and f(L/F ) = 2). We have the following 
four cases:
• The central character ωσ = 1 and χ2χ′ −1 unramified. This corresponds to 

Case 4.1.1, in which case the Plancherel formula has a zero, and the Hecke alge-
bra is affine non-commutative, with parameters q3

F and qF . We have WO �= 1 and 
R(O) = 1. Since G = G0 in this case, WO = WO0 and R(O) = R(O0).

• The central character ωσ �= 1 is ramified, and χ2χ′ −1 is unramified. This corre-
sponds to Case 4.1.9, in which case the Plancherel formula has a zero, and the 
Hecke algebra is affine non-commutative, with parameters q2

F . We have WO �= 1
and R(O) = 1. Since G = G0 in this case, WO = WO0 and R(O) = R(O0).

• The central character ωσ = 1 and χ2χ′ −1 ramified. This corresponds to 
Case 4.1.21, in which case the Plancherel formula has a zero, and the Hecke 
algebra is affine non-commutative, with parameter qF . We have WO �= 1 and 
R(O) = 1. Since G = G0 in this case, WO = WO0 and R(O) = R(O0).

• The central character ωσ �= 1 is ramified, and χ2χ′ −1 is ramified. This corresponds 
to Case 4.1.24, in which case the Plancherel formula has no zero, and the Hecke 
algebra is affine commutative of the form C[R(O)] plus the translation part C[O]. 
We have WO = 1 (and we don’t know what R(O) is in this case). Since G = G0

in this case, WO = WO0 and R(O) = R(O0).
(b) r = 0 and σ �= σ(τ): We have σ = σ(τ ′) where τ ′ = IndWF

WL
ζ for ζ such that ζ−1 = ζ

(the Galois conjugate). Since σ is still depth zero, we still have L/F unramified.
• The central character ωσ = 1. This corresponds to Case 4.1.21, in which case the 

Plancherel formula has a zero, and the Hecke algebra is affine non-commutative, 
with parameters qF . We have WO �= {1} and R(O) = {1}. Since G = G0 in this 
case, WO = WO0 and R(O) = R(O0).

• The central character ωσ �= 1 ramified. This corresponds to Case 4.1.24, in which 
case the Plancherel formula has no zero, and the Hecke algebra is affine commuta-
tive of the form C[R(O)] plus the translation part C[O], we have WO = {1} (and 
we don’t know what R(O) is in this case). Since G = G0 in this case, WO = WO0

and R(O) = R(O0).
(c) r �= 0 essentially depth zero case: Recall from §4.2.7 that G0 = M = M0. Thus we 

have

W s
0

G0 ⊂ NG0(M0)/M0 = NM (M)/M = {1}.

By Lemma 4.2.5, we get W s
G = {1}. In this case, W (M, O) = W (M0, O0) = 1. 

Thus the algebras H(G, ρ) and H(G0, ρ0) are both of the form C[O], and they are 
isomorphic.

4.2.15. Table for long root essentially depth zero cases.
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Table 4.2.15
Long root essentially depth zero cases.

r D ωσ χ2χ′ −1 R(O) R(O0) L/F #Xnr(M,σ) WO WO0 H(G, ρ) H(G0, ρ0)

r=0 ((G, M), (y, ι), 
(My,0, ρM ))

=1 unramified 
χ cubic

=1 =1 unramified 2 �=1 �=1 non-comm, q3
F
, qF non-comm, q3

F
, qF

�=1 unramified 
χ cubic

=1 =1 unramified 2 �=1 �=1 non-comm, q2
F
, q2

F
non-comm, q2

F
, q2

F

=1 ramified 
χ cubic

=1 =1 unramified 2 �=1 �=1 non-comm, qF , qF non-comm, qF , qF

�=1 ramified 
χ cubic

∗ ∗ unramified 2 =1 =1 C[R(O)]�C[O] C[R(O)]�C[O]

=1 χ not cubic 
N/A

=1 =1 unramified 2 �=1 �=1 non-comm, qF , qF non-comm, qF , qF

�=1 ∗ ∗ unramified 2 =1 =1 C[R(O)]�C[O] C[R(O)]�C[O]

r �=0 (((M, G), M),
(y, ι), (r, 0),
(φ, 1),
(My,0, ρM ))

�=1 N/A =1 =1 unramified 2 =1 =1 C[O] C[O]

4.2.16. Long root positive depth case

(a) U�′(1, 1) case: σ = σ(τ ′) �= σ(τ), where τ ′ is induction of some quadratic character. 
(Note that the cubic character only occurs in depth zero, because we are assuming 
p �= 2, 3. There are two possibilities, φ0|Z0

M
could be either trivial or non-trivial:

• When φ0|Z0
M

= 1 unramified, since σ = σ(τ ′) �= σ(τ), this corresponds to 
Case 4.1.21, in which case the Plancherel formula has a zero, and the Hecke 
algebra is affine non-commutative, with parameters qF . We have WO �= {1} and 
R(O) = 1. By 4.2.13, the Hecke algebra for G0 also has qF parameter. Thus we 
have WO0 �= {1} and R(O0) = 1.

• When φ0|Z0
M

= sign character ramified, since σ = σ(τ ′) �= σ(τ), this corresponds 
to Case 4.1.24, in which case the Plancherel formula has no zero, and the Hecke 
algebra is of the form C[R(O)] � C[O]. We have WO = {1}. By 4.2.13, we have 
WO0 = {1} and R(O0) �= 1. Thus R(O) ∼= R(O0) �= 1 by Lemma 2.2.9.

(b) Uε(1, 1) case: σ = σ(τ ′) �= σ(τ), where τ ′ is the induction of some quadratic charac-
ter.
• When φ0|Z0

M
= 1 unramified, since σ = σ(τ ′) �= σ(τ), this corresponds to 4.1.21, 

in which case the Plancherel formula has a zero, and the Hecke algebra for G is 
affine non-commutative, with parameters q. We have WO �= {1} and R(O) = {1}. 
From 4.2.8, we have WO0 �= {1} and R(O0) = {1}. Note that the cardinality of 
Xnr(M, σ(τ ′)) is 2 (see Remark 2.1.10).

4.2.17. Table for long root positive depth cases. We summarize the above in the following 
table:
Table 4.2.17
Long root positive depth cases.

M0 φ0|Z0
M

φ1 
G R(O) R(O0) L/F #Xnr(M,D) WO WO0 H(G, ρ) H(G0, ρ0)

Tβ,�′

= sign character �=1 (U�′ (1, 1), G) �=1 �=1 ramified 1 =1 =1 C[R(O)]�C[O] C[R(O)]�C[O]
�=1 �=sign character =1 (M0, G) =1 =1 ramified 1 =1 =1 C[O] C[O0]
both �=1 (M0,M,G) =1 =1 ramified 1 =1 =1 C[O] C[O0]

Tβ,ε

=1 =1 (Uε(1, 1), G) =1 =1 unramified 2 �=1 �=1 non-comm. qF , qF non-comm. qF , qF

�=1 =1 (M0, G) =1 =1 unramified 2 =1 =1 C[O] C[O0]
both �=1 (M0,M,G) =1 =1 unramified 2 =1 =1 C[O] C[O0]
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4.2.18. Short root essentially depth zero case.

(a) r = 0, there are only two cases:
• When ρM |Z◦

M
= 1, this corresponds to the central character being unramified 

case, and in this case the Plancherel formula in 4.1.28 has a zero. Thus WO �= 1
and thus R(O) = 1. In this case the Hecke algebra is non-commutative, and the 

q-parameter is just q = qF . The case for G0 again follows from 4.2.13.
• When ρM |Z◦

M
�= 1, this corresponds to the central character being ramified case, 

and in this case the Plancherel formula in 4.1.36 has no zero, and thus WO = {1}. 
In this case the Hecke algebra is commutative, and the q-parameter is trivial.

(b) r �= 0 essentially depth zero case. The same argument as in §4.2.14(c) applies.

4.2.19. Table for short root essentially depth zero cases.
Table 4.2.19
Short root essentially depth zero cases.

r D ωσ R(O) R(O0) L/F #Xnr(M,σ) WO WO0 H(G, ρ) H(G0, ρ0)

r=0 ((G,M), (y, ι), (My,0, ρM ))
=1 =1 =1 unramified 2 �=1 �=1 non-comm, qF , qF non-comm, qF , qF

�=1 ∗ ∗ unramified 2 =1 =1 C[R(O)] � C[O] C[R(O)] � C[O]

r �=0 (((M, G), M), (y, ι), (r, 0),
(φ, 1), (My,0, ρM ))

=1
=1 =1 unramified 2 =1 =1 C[O] C[O0]

�=1

4.2.20. Short root positive depth case.

(a) G0 = U�′(1, 1) case:
• When φ0|Z0

M
= 1, the Plancherel formula on the G2 side in 4.1.28 has a zero, and 

thus WO �= {1} and thus R(O) = {1}. In this case the Hecke algebra H(G, ρ) is 
non-commutative, and the q-parameter is just q = qF . By Lemma 2.2.9, we have 

W (M0, O0) �= 1, and since WO0 �= 1 by 4.2.13, we have R(O0) = 1. Moreover, 
the Hecke algebra H(G0, ρ0) has parameter qF by 4.2.13.

• When the central character (of GLshort
2 ) φ0|Z0

M
= sign character �= 1 is ram-

ified, the Plancherel formula on the G2 side in 4.1.36 has no zero, and thus 
WO = {1}. In this case the Hecke algebra H(G, ρ) = C[R(O)] � C[O] has trivial 
q-parameter. On the other hand, since I(σ) is reducible by [51, Proposition 6.2], 
we have Rσ �= 1. Since Wσ � Rσ = W (M, σ) ⊆ W (M, O) = WO � R(O) and 

WO = 1, we have Rσ ⊆ R(O) and thus R(O) �= 1. By Lemma 2.2.9, we also have 

R(O0) �= 1 since WO0 = 1 by 4.2.13.
(b) G0 = Uε(1, 1) case: When φ0|Z0

M
= 1 the Plancherel formula on the G2 side in 4.1.28

has a zero, and thus WO �= {1} and thus R(O) = {1}. In this case the Hecke algebra 

H(G, ρ) is non-commutative, and the q-parameter is just q = qF . From 4.2.8, we 

have WO0 �= {1} and R(O0) = {1}.
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4.2.21. Table for short root positive depth cases. We summarize the above in the following 
table:
Table 4.2.21
Short root positive depth cases.

M0 φ0|Z0
M

φ1 
G R(O) R(O0) L/F Xnr(M,σ) WO WO0 H(G, ρ) H(G0, ρ0)

Tα,�′

=1 =1
(U�′ (1, 1), G)

=1 =1 ramified 1 �=1 �=1 non-comm, qF non-comm, qF

= sign character �=1 �=1 �=1 ramified 1 =1 =1 C[R(O)] � C[O] C[R(O)] � C[O0]
�=1�=sign character =1 (M0, G) =1 =1 ramified 1 =1 =1 C[O] C[O0]
both �=1 (M0,M,G) =1 =1 ramified 1 =1 =1 C[O] C[O0]

Tα,ε

=1 =1 (Uε(1, 1), G) =1 =1 unramified 2 �=1 �=1 non-comm. qF non-comm. qF

�= 1 =1 (M0, G) =1 =1 unramified 2 =1 =1 C[O] C[O0]
both �=1 (M0,M,G) =1 =1 unramified 2 =1 =1 C[O] C[O0]

4.2.22. We keep the notations of §2.1. The following theorem establishes the validity, 
for G2, of a generalization of a conjecture of Yu’s [56, Conjecture 0.2] for supercuspidal 
types, which was proved by Ohara in [45]. The following result shows that a stronger 
version of Theorem 2.2.14(2) holds for the group G2.

Theorem 4.2.23. Let p �= 2, 3. The algebras Hs(G) := EndG(Πs
G) and Hs

0(G0) :=
EndG0(Πs

0

G0) are isomorphic.

Proof. By Proposition 2.1.58, it is equivalent to show that the algebras H(G, ρD) and 
H(G0, ρD0) are isomorphic. The latter can be read directly from the Tables 4.2.15, 4.2.17, 
4.2.19 and 4.2.21. �

The following corollary is a stronger version of Lemma 4.2.5 for G = G2.

Corollary 4.2.24. The groups R(O) � R(O0) and WO � WO0 .

Proof. This can be read directly from our Tables 4.2.15, 4.2.17, 4.2.19 and 4.2.21, with 
explanations given in the sections immediately preceding the tables. �
4.2.25. On Lusztig’s conjecture. Let Ls : W s

aff → N be the weight function2 on W s
aff

defined by

Ls(sα) := λ(α) and Ls(s′α) := λ∗(α). (4.2.26)

In [40, §1.a], Lusztig made the following conjecture.

Conjecture 4.2.27. (Lusztig) The function Ls on the affine Weyl group W s
aff is in the 

collection of weight functions described in [37–39].

Many cases of Conjecture 4.2.27 have been proved in [53], e.g. for principal series 
representations of G.

2 i.e., Ls(w) > 0 for all w ∈ W s
aff − {1}, and Ls(ww′) = Ls(w) + Ls(w′) for any w, w′ ∈ W s

aff such that 

(ww′) = 
(w) + 
(w′).
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Theorem 4.2.28. Conjecture 4.2.27 holds for the group G2.

Proof. It follows from Tables 4.2.15, 4.2.17, 4.2.19 and 4.2.21. �
5. Applications to other groups

Let N be a positive integer. Let J ′
N denote the N × N -matrix 

⎛⎜⎝
1

1
.

.
.

1

⎞⎟⎠. When 

N = 2n, let JN :=
(

0 In
− In 0

)
.

5.1. Symplectic group

The F -rational points of the symplectic group Sp2n are given by

Sp2n(F ) =
{
g ∈ GL2n(F ) : tgJ2ng = J2n

}
. (5.1.1)

Let P be the Siegel parabolic subgroup of Sp2n(F ), i.e. the maximal parabolic subgroup 
consisting of matrices whose lower left n × n-block is zero. The standard Levi factor of 
P is isomorphic to GLn(F ).

5.2. General symplectic group

The F -rational points of the algebraic group GSp2n are given by

GSp2n(F ) =
{
g ∈ GL2n(F ) : tgJ2ng = μn(g)J2n, μn(g) ∈ F×} . (5.2.1)

Let P be the Siegel parabolic subgroup of GSp2n(F ). The standard Levi factor of P is 
isomorphic to GLn(F ) × GL1(F ).

5.3. Special orthogonal group

The F -rational points of the algebraic group SON are given by

SON (F ) =
{
g ∈ GLN (F ) : tgJ ′

Ng = J ′
N , det(g) = 1

}
. (5.3.1)

Let P be the Siegel parabolic subgroup of SON (F ). The standard Levi factor of P is 
isomorphic to GLn(F ), where N = 2n + 1 or N = 2n.

The LLC for GLn(F ), established in [29,27,49], shows that the L-packets are always 
singletons in this case. Thus, by Proposition 1.2.5, the properties (1) and (2) are satisfied 
in the three cases above.
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