Advances in Mathematics 436 (2024) 109384

journal homepage: www.elsevier.com/locate/aim

Contents lists available at ScienceDirect

Advances in Mathematics

MATHEMATICS

Hecke algebras for p-adic reductive groups and
Local Langlands Correspondences for Bernstein

blocks

L))

Check for
Updates

Anne-Marie Aubert *, Yujie Xu "*

& Sorbonne Université and Université Paris Cité, CNRS, IMJ-PRG, F-75005

Paris, France

b M.I.T., 77 Massachusetts Avenue, Cambridge, MA, USA

ARTICLE INFO

ABSTRACT

Article history:

Received 6 December 2022
Received in revised form 22
September 2023

Accepted 26 October 2023
Available online 17 November 2023
Communicated by Pramod Achar

Keywords:

Representation of p-adic group
Hecke algebra

Bernstein center

Local Langlands Correspondence

We study the endomorphism algebras attached to Bernstein
components of reductive p-adic groups and construct a
local Langlands correspondence with the appropriate set of
enhanced L-parameters, using certain “desiderata” properties
for the LLC for supercuspidal representations of proper Levi
subgroups. We give several applications of our LLC to various
reductive groups with Bernstein blocks cuspidally supported
on general linear groups.
In particular, for Levi subgroups of maximal parabolic
subgroups of the split exceptional group G2, we compute the
explicit weight functions for the corresponding Hecke algebras,
and show that they satisfy a conjecture of Lusztig’s. Some
results from §4 are used by the same authors to construct
a full local Langlands correspondence in [9]. Moreover, we
prove a “reduction to depth-zero” result for regular Bernstein
blocks (i.e., blocks for which the supercuspidal support of each
irreducible representation is regular).

© 2023 Elsevier Inc. All rights reserved.

* Corresponding author.

E-mail addresses: anne-marie.aubert@imj-prg.fr (A.-M. Aubert), yujiexu@mit.edu (Y. Xu).

https://doi.org/10.1016/j.aim.2023.109384

0001-8708/© 2023 Elsevier Inc. All rights reserved.


https://doi.org/10.1016/j.aim.2023.109384
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/aim
http://crossmark.crossref.org/dialog/?doi=10.1016/j.aim.2023.109384&domain=pdf
mailto:anne-marie.aubert@imj-prg.fr
mailto:yujiexu@mit.edu
https://doi.org/10.1016/j.aim.2023.109384

2 A.-M. Aubert, Y. Xu / Advances in Mathematics 436 (2024) 10938/

Contents
1. Introduction . . . . ... . 2
2. Hecke algebras and Bernstein center . . . .. ... ... ... L o 7
2.1.  General framework . . . .. ... 7
2.2, Bernstein blocks . . . . . .. 16
3. Local Langlands correspondence for Bernstein blocks . .. ....... ... ... . ...... ... 20
3.1. Axiomatic construction of the correspondence . .......................... 20
3.2. Matching of simple modules of extended affine Hecke algebras . . .............. 26
4. Applications to Ga . . . . .. 28
4.1.  Explicit Hecke algebra parameters . ... ............... . ... .. ........ 32
4.2.  Intertwining algebras .. ... ... ... ... .. 37
5. Applications to other groups . . . .. ... ... 43
References . . . . .. e 44

1. Introduction
1.1. Background

Let F' be a non-archimedean local field. Let G be a connected reductive group defined
over F', and G its group of F-points. Let M be a Levi subgroup of a parabolic subgroup
PofG.

Let s = [M,o]c be the inertial class attached to the pair (M, o), where o is an
irreducible supercuspidal representation of M. Recall that this means that s is the G-
conjugacy class of (M, X,,(M) - o), where X,,;,(M) - o is the orbit of o under X,,,(M)-the
group of unramified characters of M. Let B(G) be the set of such s. We denote by
Irr®(G) the Bernstein series of irreducible representations of G whose cuspidal support
lies in s (see §2.1 for the precise definition).

Let W¢& denote the extended finite Weyl group Ng(sar)/M, where sy = [M, o],
and let WZ" be the stabilizer of z € Irr®™ (M) in W&. By [54], there exists a collection
(1) of 2-cocycles for x € Trr®™ (M),

ho: WE* x W' — C*, (1.1.1)
such that we have a bijection
&5 Irr*(G) — (Ir®™ (M) [/ W)y, (1.1.2)
where (Irr®™ (M) //W§)y is a twisted extended quotient in the sense of [1, §2.1] (see (1.3.1)
for the precise definition).
A parallel picture to (1.1.2) exists on the Galois side. Let Wr be the absolute Weil

group of F' and Ir its inertia subgroup. Let MY be the Langlands dual group of M,
i.e. it is a complex reductive group with root datum dual to that of M. It is equipped
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with an action of W, and we write “M := MY x Wg. The group MV acts on the set
of cuspidal M-relevant enhanced L-parameters for M—a terminology based on Lusztig’s
notion of cuspidal pairs (see Definition 3.1.8 for more details). Let ®¢(M) denote the set
of MV-conjugacy classes of cuspidal enhanced L-parameters for M.

Let Zasv w1, be the center of MY x Ir. The group X, (¥ M) := (Zarvsirg )Yy, > Which is
naturally isomorphic to the group X, (M) (see [25, §3.3.1]), acts naturally on the set of
cuspidal M-relevant enhanced L-parameters for M. We denote by sV = [LM, o, oc]av
the GV-conjugacy class of the orbit of (¢, 0.) € ®S(M) under the action of X, (FM).

Let BY(G) be the set of such sV.
In [7], the first author, with Moussaoui and Solleveld, constructed a partition—a la
Bernstein—of the set ®.(G) of G-relevant enhanced Langlands parameters for G:

e (G)= || (), (1.1.3)
sVEBY(G)

where @ZV(G) consists of the enhanced Langlands parameters for G' whose cuspidal
support lies in sV. Let sY, := [FM, ¢, 0c]arv € BY(M). Analogous to the group side
W¢, we denote by ngv the stabilizer of s, in Ngv (M) /MY, and by Wévvy the stabilizer
of y € ®I (M) in W2 By [7, Theorem 9.3], there is a bijection

€51 03 (G) — (R (M) /W s, (1.1.4)

where the right-hand side (®e™ (M) // Wf;vv )Ly is a twisted extended quotient with respect
to a collection (Zh,), of 2-cocycles

Ly s WaY x WaLY — C*. (1.1.5)
1.2. Main results

Axiomatic setup: we suppose the existence of a map

gy Im™ (M) —  ®S(M)

o = (P 00) (1.2.1)

such that the following properties are satisfied for any o € Irr*> (M):

(1) For any x € X, (M), we have

(<px®aa Qx®a) = Xv : (9007 QG’);

~

where x — xV is the canonical isomorphism X, (M) — %nr(LM).
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(2) For any w € W(M), we have

Vv

Y (#0:00) = (pvg; 0uo),
where w +— w" is the canonical isomorphism W (M) = W (MV).
We suppose that the collections of 2-cocycles § and ©f satisfy the following
LV (0u.00) = ixwo  for any o € s and any x € Xn (M) /X0 (M, 0), (1.2.2)
where X, (M, 0) := {x € Xpr (M) : x ® 0 ~ o}. We establish the following result.

Theorem 1. (Theorem 3.1.32)

(1) There is a natural isomorphism

er Tr®™ (M) /W& =5 & (M) /) WE . (1.2.3)
(2) The map
L= () Toeoy: I (G) — 32 (G) (1.2.4)

is a bijection.

We suppose in the rest of this introduction that the group G splits over a tamely
ramified extension of F' and that the residual characteristic p of F' does not divide the
order of the Weyl group of G. Then there exists a compact mod center subgroup K of
M and an irreducible representation p%, of it such that o = indAKéM 0.

Let H*(G) denote the endomorphism algebra of the Bernstein progenerator of s (see
(2.1.5)) and let H(G, pp) be the intertwining algebra of an s-type (Kp, pp). We prove
in Proposition 2.1.58 that the algebras H*(G) and H(G, pp) are isomorphic.

From now on, we suppose that o is regular in the sense of [31], which allows us to
attach a supercuspidal Langlands parameter ¢, : Wr — “M to o. Applying Theorem 1
to the map £°¥: 0 — (4, 1) as in (1.2.1), we obtain the following result:

Proposition 1.2.5. When the L-packet of o is a singleton, the properties (3.1.23) and
(3.1.23) are always satisfied.

On the other hand, the construction of K M involves notably a depth zero supercusp-
idal irreducible representation ¢ of a Levi subgroup M of a twisted Levi subgroup G°
of G. We denote by s = [M° 6% o the inertial class of o°.

Suppose that p is good for G (in the sense of [19]) and does not divide the order of
the fundamental group of Gger, and that the representation o is regular.
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Theorem 2. (Theorem 2.2.14) There is a bijection

0% Irr*(G) — Iir®’ (GY), (1.2.6)
which induces a bijection

Trr(HS(G)) — Trr(HS (G)) (1.2.7)

between the sets of equivalence classes of simple modules for the algebras H*(G) and

75’ (GY).

Theorem 2 proves the validity of [5, Conjecture 1.1], under the above assumption on
p, for all regular supercuspidal representations of M. The bijection ¢, is defined as

0% = (E&0) oLy 0 &8, (1.2.8)

where (Irr®»° (M©)// Wé?))uo is the twisted extended quotient with respect to a certain
collection £° of 2-cocycles, the definition of which is recalled in (2.2.13), and

oo (Ter*™ (M) [/ WE)y — (Irr*2 (M) /W ) o (1.2.9)

is the isomorphism constructed in [5].

In Section 4, we study in greater detail the case when G is the exceptional group
of type Ga. Recall that for split p-adic groups, the principal series case, i.e. M = T,
is done in [46] and [3], therefore it suffices to consider the cases where M ~ GLo(F)
is a maximal Levi subgroup. The Gz(F)-covers of the supercuspidal types in M were
computed explicitly in [14] when M corresponds to the long simple root of Gg, and in
[20] when M corresponds to the short simple root of Ga, but the intertwining algebras of
these types were still unknown. We compute these intertwining algebras later in §4.2.2,
and in particular, by computing their parameters explicitly, we show that they satisfy a
conjecture of Lusztig’s in [40, 1.(a)].
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National Science Foundation under Award No. 2202677 at MIT.

1.8. Notations and definitions

Let F' be a non-archimedean local field. Let o denote the ring of integers of F, pp
the maximal ideal in o and kr := op/pr the residue field of F. We denote by gp the
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cardinality of kp. Let valp: F — Z U {oco} be a valuation of F' and let vg the character
of F* defined by vr(a) := qgvalF(a) for any a € F*.

We fix a separable closure Fge, of F. Denote by Wr C Gal(Fyep/F) the absolute
Weil group of F' and [ its inertia subgroup. We denote by F},, the maximal unramified
extension of F' inside Fyp and by Frp the element of Gal(F,./F) that induces the
automorphism a + a9 on the residue field kr of F,,. Then Wr = Ir x (Frg). Let I;
denote the wild inertia group of F' (i.e. the maximal pro-p open normal subgroup of Ir).
We have It = Gal(Fyep/Fy) =~ IF/I}', where F} is the tame closure of F' in Fgep,. The
group I is pro-cyclic and we denote by (r a generator of it. Let W}, := Wpg x SLa(C)
be the Weil-Deligne group of F.

Let G be a connected reductive algebraic group defined over F, and G := G(F) its
F-rational points. We denote by Gge, the derived group of G. Let Gg. (resp. Gaq) be
the simply connected cover (resp. adjoint quotient) of Gge,. Let Zg be the center of G,
and Ag the maximal F-split torus contained in Zg.

Fix a maximal torus T of G, and let (X, R,Y, RY) denote the root datum of G with
respect to T. Thus X = X*(T) is the character group of T, and R C X is the set of
weights of T on the Lie algebra g of G. Fix A C R a system of simple roots. When R is
irreducible, the root with maximal height (with respect to A) will be denoted &. Write
a = ZweA cyy for positive integers c,. A prime number p is said to be good for G if it
does not divide any c,. We may simply list the bad, i.e. not good, primes: p = 2 is bad
unless R is of type A, p = 3 is bad if R is of type Go, Fy, E,,, and p = 5 is bad if R is of
type Eg. The prime p is good for a general R just in case it is good for each irreducible
component of R.

Suppose that H is a group, H; a subgroup of H and h an element of H. We set
hH, := hH;h~'. If 7 is a representation of H;, we denote by "m the representation
hy + w(h~thyh) of " Hy. We denote by Irr(H) the set of equivalence classes of irreducible
representations of H.

The category of right modules over an algebra A is denoted A—Mod. We write Irr(.A)
for the set of equivalence classes of simple modules of A.

1.3.1. Twisted extended quotients
Let T" be a group acting on a topological space X and let I';, denote the stabilizer in
Iof z e X. Let § = (f1)zex be a collection of 2-cocycles

bp: Dy x Ty — C*,

such that ., and 7., define the same class in H? (T'yz,C*), where v,: I'y — I', sends
a to yay~!. Let C[I'y, k] be the group algebra of I',, twisted by f,. We set

Xh ={(z,7) : x e X, 7 elir C[T,, ]},

and topologize )N(h by decreeing that a subset of Xh open if its projection to the first
coordinate is open in X.
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We require, for every (v,z) € T x X, an algebra isomorphism

d)'y,x : (C[F:ca hx] - C[F'yxy u’yx]
satisfying the conditions

(a) if vy = x, then ¢, , is conjugation by an element of C[I'y, 1,]*;
(b) ¢y vz © Py = Py forall 9,y €T and z € X.

Define a I'-action on )}h by v - (z,7) == (yz,7 0 ¢7L). The spectral twisted extended
quotient of X by I' with respect to [ is defined to be

(X//T), := X, /T. (1.3.1)

In the case when the 2-cocycles i, are trivial, we write simply X//T" for (X//T'), and
refer to it as the spectral extended quotient of X by I

2. Hecke algebras and Bernstein center
2.1. General framework

2.1.1. Let RR(G) denote the category of all smooth complex representations of G. It is
an abelian category admitting arbitrary coproducts. Let M be a Levi subgroup of a
parabolic subgroup P of G. We denote by M; the subgroup of M generated by all its
compact subgroups. Recall that a character of M is said to be unramified if it is trivial on
My, and let X,,;(M) be the group of unramified characters of M. Let o be an irreducible
supercuspidal smooth representation of M. We write s := [M, o] for the G-conjugacy
class of the pair (M, X, (M) - o), it is called a Bernstein inertial class. Let B(G) denote
the set of Bernstein inertial classes s. We set s)s := [M, 0] .

We denote by 93°(G) the full subcategory of R(G) whose objects are the representa-
tions (7, V') such that every irreducible G-subquotient of 7 is equivalent to a subquotient
of a parabolically induced representation i%(o’), where i is the functor of normalized
parabolic induction and ¢’ € X,,(M) - . We write Irr*(G) for the class of irreducible
objects in 57 (G), i.e. representations whose supercuspidal support lies in s.

2.1.2. The categories R°(G) are indecomposable and split the full smooth category R(G)
in a direct product (see [11, Proposition 2.10]):

RG) = [ ®(©@).
)

seB(G

If TI° is a progenerator of :°(G), then the functor V' +— Homg (II°, V) is an equivalence
from 9R°(G) to the algebra Endg(I1%) (see for instance [47, § 1.1]).



8 A.-M. Aubert, Y. Xu / Advances in Mathematics 436 (2024) 10938/

Let s = [M, 0]¢ € B(G) and let V be the underlying vector space for the supercuspidal
representation o of M and o; an irreducible component of the restriction of o to Mj.
We denote by ind%1 the functor of compact induction. As noticed in [47, § 1.2], the
isomorphism class of

I3} = indyy, (01) (2.1.3)
is independent of the choice of o;. It was shown by Bernstein that
I, = G (I (2.1.4)
is a progenerator of R*(G) (see [47, §1.6]). We write
H*(G) := Endg (I1). (2.1.5)
Hence we have an equivalence of categories of right modules
R°(G) ~ H*(G) — Mod. (2.1.6)

Let B := C[M/M;] and Vg := V ®c B. Then i%(V3) is also a progenerator of R*(G),
and we have an equivalence of categories of right modules given by

E: R(G) — Endg(i%(Ve))—Mod

V — Homg (i%(Vg), V) (2.1.7)

2.1.8. Consider
XM, 0) ={x€Xn(M) : x®0 >0}, (2.1.9)
which is a finite subgroup of X,,(M).

Remark 2.1.10. In the case where M = GL,,(F) with n a positive integer, there is a simple
type (J,A) in the sense of [12, (5.5.10)] such that the restriction of the supercuspidal
representation o to J contains A. The order of Xy,,(M, o) is n/e(L|F), where e(L|F) is
the ramification index of the extension L/F involved in the definition of (J, A) (see [12,
(6.0.1) and (6.2.5)].

We denote by O the orbit of ¢ under the action of X,,(M). The map x — x ® ¢
defines a bijection

Xor(M)/Xn(M,0) = O ={x®0 : x € Xnr(M)} = Irr®™ (M). (2.1.11)

We set W(M) := Ng(M)/M, where N (M) denotes the normalizer of M in G, and
define
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Wg :=W(M,0) :={neNg(M) : "O~0} /M. (2.1.12)

Recall that A j; is the maximal split torus contained in the center of M. We denote by
Y(Apn) € X*(Apr) the set of nonzero weights occurring in the adjoint representation of
Aps on the Lie algebra of G, and by X,.q(Aar) be the set of indivisible elements therein.
(Recall that a root «y in a root system ¥ is called indivisible if %7 ¢3.)

For every v € Xeca(An), let My, D M denote the centralizer of kery in G (it is a
Levi subgroup of G whose semisimple rank is one larger than that of M). Let u be the
Harish-Chandra pi-function for G (see [52, §1] or [55, §V.2]). The restriction of u to O is
a rational W (M, O)-invariant function on O [55, Lemma V.2.1]. By [26, Proposition 1.3],
the set

You = {fy € Yred(Anr) - ™ has a zero on (’)} (2.1.13)
is a root system. Let W denote the Weyl group of Yo .

Let P = M N be a parabolic subgroup of G with Levi factor M. Denote by X(P) the
subset of ¥(As) of roots which act on the Lie algebra of N. Let ¥ ,(P) := Y0, ,N3(P).
By [26, 1.12], the group W (M, ©) decomposes as

W(M,0) = Wo x R(O), (2.1.14)
where
R(O) :={w e W(M,0O) : w(Xp ,(P)) =20,.(P)}. (2.1.15)
The action of every element w of W can be lifted to a transformation w of X,.(M). Let
W (M, o, X,:(M)) be the group of permutations of X, (M) generated by ¥,,(M, o) and
the w’s. We have
W (M, o, X0 (M))/ X0 (M,0) ~ WE. (2.1.16)
Let K(B) := C(X,:(M)) denote the quotient field of B := C[X,,;(M)]. Let

C[W(M, a, xnr(M»r’i]

be the twisted group algebra of W (M, o, X,,.(M)) with basis elements t,, that multiply
as tyty = K(w,w )ty . By [54, Corollary 5.8], there is a 2-cocycle

k: W(M,0, %0 (M)) x W(M,0,X,,(M)) - C*, (2.1.17)
such that we have an algebra isomorphism

K(B) ®p Endg(i%(Vp) ~ K(B) x C[W (M, 0, X (M)), &]. (2.1.18)
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Here the symbol x denotes the crossed product: as a vector space, it just means the
tensor product, with multiplication rules determined by the action of W (M, o, X, (M))
on K(B). Note that the cocycle & is trivial on We.

Remark 2.1.19. If R(O) has order at most 2, the intertwining operators can be normalized
such that the cocycle & is trivial (see [54, Proposition 5.2 & above Lemma 5.7]). This is
indeed the case for G = Ga(F).

For any x € X, (M), let Wé’x®g denote the stabilizer of y ® o in W&. Let f,, be the
2-cocycle denoted f,+ in [54, (9.13)]. Let (Irr®™ (M) //WE)y denote the twisted extended
quotient (as in § 1.3.1) with respect to the collection f of the 2-cocycles f, .

Proposition 2.1.20. There is a bijection
&&: It (G) — (er™ (M) /)W)y (2.1.21)

Proof. By [54, Theorem 9.7], there are bijections

Irr*(G) PN Irr(Endg(ig(VB)) & Irr(C[Xn(M)] x C[W (M, 0, %0:(M)), K],

where & is induced by the equivalence of categories defined in (2.1.7). On the other hand,
by [54, Lemma 9.8], Irr(C[X,(M)] x C[W (M, 0, X,:(M)), k] is canonically isomorphic
to (Irr*™ (M) //Wg)y, where sy = [M,o|p. O

Corollary 2.1.22. Let s = [M,0]g € B(G). There is a bijection

1-1

Irr(H?*(G)) —= (Ier®™™ (M) // W)y (2.1.23)
Proof. The result follows from the proof of Proposition 2.1.20 by using (2.1.6). O

Remark 2.1.24. As observed in [54, (10.12)], if the restriction of o to M; is multiplicity
free, we have

T and  Endg(i€(Va)) ~ HE(G) ©c Mat(yrar, (C), (2.1.25)

g = (if(Vs))
where Matys.p7,1(C) is the algebra of square matrices of size [M : M,] (the index of M,
in M) with entries in C. Note that if o is generic, then its restriction to M; is multiplicity
free (see [48, Remark 1.6.1.3]). In particular, if o is a supercuspidal irreducible represen-
tation of a proper Levi subgroup M of Gs, since M is isomorphic to either F* x F* or
GLy(F), the representation o is generic, and hence its restriction to M; is multiplicity
free.
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2.1.1. Theory of types

We fix a Haar measure on G. Let H(G) be the space of locally constant, compactly
supported functions f: G — C and view H(G) as a C-algebra via convolution relative
to the Haar measure. The algebra H(G) is called the Hecke algebra of G.

Let (p,V,) be a smooth representation of a compact open subgroup K of G, and
let (p,V5) denote its contragredient. We define H (G, p) to be the space of compactly
supported functions f: G — Endg(V;) such that

f(kgk') = p(k)f(g)p(k'), where k, k' € K and g € G. (2.1.26)

The convolution product gives H(G, p) the structure of a unitary associative C-algebra.
The algebra H(G, p) is called the p-spherical Hecke algebra or the intertwining algebra
of (K, p).

Let e, € H(G) be the function defined by

(2.1.27)

o () = | Fontiy ilelg™) g€ K,
’ 0 ifgeG, g¢ K.

Then e, is idempotent, and e, x H(G) x e, is a sub-algebra of #(G) with unit e,. By [13,
(2.12)], there is a canonical isomorphism

H(G, p) ®c Endc(V,) — €, * H(G) * e,. (2.1.28)

The algebras H(G, p) and e, x H(G) * e, are therefore canonically Morita equivalent.
Hence, we get an equivalence of categories:

H(G, p) —Mod =~ e, x H(G) * e, — Mod. (2.1.29)

Let R,(G) be the full subcategory of S)3(G) whose objects are those V' satisfying V' =
H(G) xe, xV, ie. R,(G) is generated over G by the subspace e, x V.

Definition 2.1.30.

(1) The pair (K, p) is called an s-type for G if the following holds: for any 7 € Irr(G),
we have m € R*(G) if and only if 7 contains p.
(2) A supercuspidal type for G is an s-type where s = [G, 0l¢.

If (K, p) is an s-type for G, then R,(G) = R*(G) by [13, (4.1)-(4.2)], where R*(G) is
equivalent to the category of modules for H(G, p) by [13, Theorem 3.5]:

R*(G) ~ H(G,p)— Mod. (2.1.31)

Combining (2.1.31) and (2.1.6), we obtain an equivalence
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H*(G)—Mod ~ H(G,p) — Mod. (2.1.32)

Let (K, par) be an sp-type for spr € B(M). If the pair (K, p) is a G-cover of (Kas, par)
as defined in [13, Definition 8.1], then K decomposes with respect to M in the sense of
[13, Definition 6.1] (in particular, Ky = KN M and py = p|k,,) and the equivalence of
categories (2.1.31) commutes with parabolic induction and parabolic restriction in the
appropriate sense (see [13, Corollary 8.4]).

Proposition 2.1.33. Let (Kar, pa) be an sy-type for sy € B(M), such that I3} =~
c—IndAK/IM (pris Voo ). Let (K, p) be a G-cover of (K, par). Then

Pt
I, ~ c-Ind% (p, V). (2.1.34)
As a consequence, we have
H*(G) := Endg(II;) ~ H(G, p). (2.1.35)
Proof. See [17, Lemma B.3]. O

2.1.36. In this section, in order to be able to apply the constructions of [56] and [34], we
assume that G splits over a tamely ramified extension of F', and that p does not divide
the order of the Weyl group of G. By a Levi subgroup of G, we mean an F-subgroup of
G which is a Levi factor of a parabolic F-subgroup of G. Let L/F be a finite extension.
By a twisted L-Levi subgroup of G, we mean an F-subgroup G’ of G such that G’ ®p L
is a Levi subgroup of G ®p L. If L/F is tamely ramified, then G’ is called a tamely
ramified twisted Levi subgroup of G. A tamely ramified twisted Levi sequence in G is
a finite sequence G = (GO, G, ... G of twisted E-Levi subgroups of G, with E/F
tamely ramified (see [56, p. 586]).
Let B(G, F) denote the (enlarged) building of G:

B(G,F) = B(G/Zg, F) x X.(Zc) 9z R, (2.1.37)

where X, (Z¢) is the set of F-algebraic cocharacters of Zg. Recall that when G’ is a
tamely ramified twisted Levi subgroup of G, there is a family of natural embeddings of
B(G', F) into B(G, F).

For x a point in B(G, F), let G, ¢ denote the associated parahoric subgroup, and let
G0+ denote the pro-p unipotent radical of G . In general, for r a positive real number,
Gg,r is the corresponding Moy-Prasad filtration subgroup of G ¢.

Definition 2.1.38. [34, § 7.1] A depth-zero G-datum is a triple

((G’M)7(yvb)’(KMapM)) (2-1-39)

satisfying the following
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e G is a connected reductive group over F, and M is a Levi subgroup of G;

e y is a point in B(M) such that M, is a maximal parahoric subgroup of M, and
t: B(M) — B(G) is a 0-generic embedding relative to y (see [34, Definition 3.2]);

o K is a compact open subgroup of M containing M, ¢ as a normal subgroup, and
pu is an irreducible smooth representation of Kjs such that par|My o contains the
inflation to M, o of a cuspidal representation of M, o/M,

Let G = (G°, G, ---,G% be a tamely ramified twisted Levi sequence in G. To G,
we associate a sequence of Levi subgroups M = (MO, ... /M%), where M’ is a Levi
subgroup of G* given as the centralizer of Appo in G¥, with Appo the maximal F-split
torus of the center Zpgo of MY.

Definition 2.1.40. A G-datum is a 5-tuple

-

= (G, M), (y, {}). 7" (g0, paro) . ) (2.1.41)
satisfying the following:

D1. G = (G G .- |G is a tamely ramified twisted Levi sequence in G, and M? a
Levi subgroup of G?. Let M be associated to G as above;

D2. y is a point in B(M?), and {} is a commutative diagram of 5-generic embed-
dings of buildings relative to y in the sense of [34, Definition 3.5], where § =
(O,T0/2, ce ,T‘d_1/2);

D3. ¥ = (ro,71, - ,7rq) is a sequence of real numbers satisfying 0 < rqg < r; < -+ <
rg—1 <rgif d>0,and 0 < rg if d = 0;

D4. (Ko, ppo) is such that DO := ((G°,MY), (y,¢), (Karo, paro)) is a depth zero G°-
datum;

D5. 5 = (¢o, ¢1,- - ,¢a) is a sequence of quasi-characters, where ¢; is a quasi-character
of G such that ¢; is GiT'-generic of depth 7; relative to z for all x € B(G?) in the
sense of [56, § 9].

The construction. For a given G-datum D as in (2.1.41), we write
Kpo := KMOGL(’L] (2.1.42)

We recall that GO .0 is the parahoric subgroup of G° associate to the building point
t(y). Let GL ()04 be the pro-p unipotent radical of GL(y),O
By [34, Proposition 4.3(b)], we have

KDO/GL(y) 0+ = ~ Ko /M, y 0+ (2.1.43)

and we define ppo to be the representation of Kpo obtained by composing the isomor-
phism (2.1.43) with ppyo.
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Definition 2.1.44. A Kim-Yu type in the sense of [34, §7.4], which builds on earlier con-
struction in [56], is a pair (Kp, pp) where

e Kop is an open compact subgroup given by

o 1 d
Kp = KpoGiy) 5 Gig)sas (2.1.45)
e pp is an irreducible representation of Kp.
To (:‘;7 we associate a tamely ramified twisted Levi sequence M = (MO, ... 7Md) of

M, where M’ is the centralizer of Apg in G*. Consider
Dys := (M, y, 7, paso, &) (2.1.46)

When Ko = Mg the datum D), gives a supercuspidal type in M as follows.
Let K¢, := KpN M. Let I?]‘\i/[ denote the normalizer in M of K¢,. This group I?j‘\l/l is
a compact modulo center subgroup of M. Let pd, := pp| k¢, and consider

oDy = indg Pl (2.1.47)
Theorem 2.1.48. [34] Suppose that Ko = M. Then

(1) (K4, pd,) is a supercuspidal type on M (as in Definition 2.1.30), and op,, is an
irreducible supercuspidal representation of M ;
(2) (Kp,pp) is a G-cover of (K, p,), and thus is an s-type for s = [M,op,,]c-

Proposition 2.1.49. Let D and D be two G-data

-

D= ((éa M0)7 (y7 L)aF7 (KMOHOMO); QS) and D = ((éa MO)’ (y7 L)a 7_’; (KM07PM0), d_;)

such that Kyo = M) and Ko = Mg Let 5 := [M,op,]c, and § = [M,0p .
Then we have s = § if and only if there exists g € G such that

IKpo = Kypo and  9(pao @ ¢) =~ prpo @ b, (2.1.50)
where ¢ == [Ty (¢ilar0) and ¢ == [Ty (il aro)-

Proof. Tt is a reformulation of [34, Theorem 10.3]. Indeed, when K0 = Mg and Ko =
ngo, we have s = § if and only if the types (Kp, pp) and (Kp, pp) are equivalent in the

sense of [34, Definition 10.1]. Note that [34, Theorems 10.2 and 10.3] still hold without

—

assuming the hypothesis C(G) of [28, Remark 2.49 & above], since [31, §3.5] shows that
[28, Theorems 6.6 and 6.7] are valid without assuming C(G). O
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Remark 2.1.51. If G = M, it follows from [28, Theorems 6.6 and 6.7] that sy, = §; if
and only if the data Dy, = (1\7[,y,F, PMO, 5) and Dy = (M,y,ﬁpMo, $) are equivalent
in the sense of [28, Definition 5.3].

2.1.52. For any s = [M,0]g € B(G), consider
G ={neNgM)(F) : "o ~x®oc for some x € X, (M)}. (2.1.53)

Corollary 2.1.54. We suppose that p does not divide the order of the Weyl group of G.
Let s € B(G) be an arbitrary Bernstein inertial class. For every n € N¢,, there exists an
m € M such that

TR o = Kpyo and " (pago @ @) ~ ppo @ &,
where ¢ 1= H?:0(¢i|Mo).

Proof. By [22], we have ¢ = op,,, for some M-datum Dy = (M,y,ﬁ pMo,q;). Let
n € Ng. Thus "o =~ x ® o for some x € Xy (M). Let Doy := (M, y, 7, paro @ XK, ¢)-
By (2.1.47), we have

X®o = (ind%M Pl @ x =~ ind%M (pi ® xlz,,) (2.1.55)

Since x is unramified, we have ind%M (p}; ® X‘KM)' = o0p,,- Therefore x ® 0 ~ op .
Applying Remark 2.1.51 to the M-data "Dj; and Dy, one can see that these data are
equivalent. Hence there exists an m € M such that

mnKMO :KMO and mn(pM0®¢)2pMO ®X|K1v10 ®¢:pM0®¢7
where the last equality holds because x is trivial on Kj;0. Here ¢ := H?:0(¢i| Mmo). O

2.1.56. As shown in [28], it follows from the original construction in [56] that p%, is of
the form pﬁ\l/l = pao ® K, where the representation Kk = kg depends only on ¢. Suppose
Ko = Mg. Let K0 denote the normalizer of Ko in M°. Consider

. 0
ol = 1nd]\K~/[1\40 PO (2.1.57)

The representation ¢ is a depth-zero irreducible supercuspidal representation of M?.

Let s° := [M?, 0% 0. Let HEGOO be defined as in (2.1.4), i.e. it is a progenerator for the
category i)‘iso(GO). Set H*" (G°) := End( go)
Proposition 2.1.58.

(1) The algebras #5"(G°) and H(GP, ppo) are isomorphic.
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(2) The algebras H*(G) and H(G, pp) are isomorphic.

Proof. We verify the assumptions in Proposition 2.1.33. Firstly, (Kpo,ppo) is a G°-
cover of (Kppo,ppro) (see [34, §7.1]) and (Kp,pp) is a G-cover of (K¢, p%,) (see [34,
Theorem 7.5]).

Secondly, since ¢® and o are supercuspidal irreducible representations, an element m®
of MY intertwines pyo if and only if m® € K Mo, and an element m of M intertwines
pum if and only if m € Kyr. Then the proof of [17, Lemma B.4] applies, and shows that
I3y ~ c—Ind%M (par, Vpy, ). Thus the result follows from Proposition 2.1.33. O

Proposition 2.1.59. If W& = {1}, then there is an algebra isomorphism
H(G> PD) = H<M7 pﬁl\/l)7
which preserves support of functions, and the algebra H(G, pp) is commutative.

Proof. Since Wg = {1}, we have Ng(s) C M. Then the first assertion follows from [13,
(12.1)]. On the other hand, the algebra H (M, pg,) is commutative (see for instance [13,
(5.6)]). O

Remark 2.1.60. Applying Proposition 2.1.59 to the group G°, we see that if Wé(:) = {1},
then there is an algebra isomorphism

H(G, ppo) ~ H(M°, p%0) (2.1.61)
that preserves support of functions; thus the algebra H(G°, ppo) is also commutative.

2.2. Bernstein blocks

We assume that G splits over a tamely ramified extension, and that the residual char-
acteristic p of F' is odd, good for G and does not divide the order of the fundamental
groups of Gger. Let M be an F-rational Levi subgroup of an F-rational parabolic sub-
group of G. Then p satisfies the same assumptions with respect to M, i.e. p is good for
M and does not divide the order of the fundamental groups of M.

Let (S,0) be a pair consisting of a tamely ramified torus S in M, and a character
f: S — C*. For any positive real number r, consider

230 .= {ye S(M,8S) : (0oNg/r)(vV(E))) =1}. (2.2.1)

We have ¥5:¢ ¢ ©5¢ for s < r. Set Eff = Nyor 257 Then 7 — X3¢ defines a
Gal(Fiep/ F)-invariant filtration. Let rq—1 > rg—a > --- > 1o > 0 denote the breaks of
the filtration, i.e. the s such that %8¢ £ %%, We set r_; := 0, and let 4 be the depth
of . We have rq > rq_;. For each i such that 0 < i < d, we denote by M’ the connected
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reductive subgroup of M with maximal torus S and root system Zi’f .+~ By definition,
the root system of M? is (M, S), and thus M?% = M. The M?’s are tame twisted Levi
subgroups of M by [31, Lemma 3.6.1]. Moreover, the root system of MO is Zﬁf; if the
latter is empty, we have M° = S.

Denote M* := M(F). By [31, Proposition 3.6.7], the pair (S, ) has a Howe factor-
ization with respect to a sequence (¢_1, o, ..., dq) of characters, where ¢_;: S — C*
and ¢;: M* — C* for 0 < i < d. More precisely, we have

d
0= 1] ¢ (2.2.2)

i=—1

o for any i € {0,...,d}, the character ¢; is trivial on (M%), has depth r; and is
M+l generic for any i # d;
o ¢g is trivial if r4 = rq_1, and has depth r4 otherwise.

2.2.3. From now on, we make the following assumptions: S is an elliptic maximal torus
of M; the splitting extension of S is tamely ramified; S is maximally unramified inside
MY, i.e. S coincides with its maximal unramified subtorus as in [31, Definition 3.4.2]; 6
is kr-regular with respect to M, in the sense of [32, Definition 3.1.1].

For any point « in the building of M, let [z] be the projection of z onto the reduced
building Brea(M). Let M, (resp. M(,;)) be the subgroup of M fixing x (resp. [z]). Recall
that M, = Na(M,p) by [56, Lemma 3.3]. As in [31, Lemma 3.4.3], we can then
associate to S a vertex [y] of Brea(M), which is the unique Gal(F™ /F)-fixed point in
the apartment A;eq(S, F™) of Byea(M).

Let Sy, be the unique maximal bounded subgroup of S (which is also the unique
maximal compact subgroup of S). Denoting by &° the connected Néron model of S, we
write Sp := &°(05) C Sy, (see [31, §3.1] for more details). Let My ; be the connected
reductive kp-group such that

My o := M o(kp) = M, o /M, . (2.2.4)
There exists an elliptic maximal kp-torus S of Mg,o such that for every unramified
extension F’ of F, the image of S(F")y in M(F"), o/M(F")y 04 is equal to S(kps) (see
[31, Lemma 3.4.4]). By [31, Lemma 3.4.14], the character ¢_1|g, factors through a regular
character ¢_; of S := S(kp) as defined in [31, Definition 3.4.16]. In particular, ¢_;
is in general position in the sense of [21, Definition 5.15]. Then it follows from [21,
Proposition 7.4, Theorem 8.3] that the Deligne-Lusztig character

r —r MB o
(—1)*(M3.0)=r(S) REtvo (5 _7) (2.2.5)

can be represented by a cuspidal, i.e. which cannot be obtained from a proper parabolic
induction, Mg)o—module Ks,¢_,, where r(?) denotes the kp-rank of ?. Then kg4 , is
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irreducible (see [21, Definition 5.15]), and its pull-back to M}, extends uniquely to a
representation rgs,4_, of SMY . We define

0
My, 0.

0
ps,0 = IndSMg0 ks, and o = C—Ind%[oy] £S.0- (2.2.6)

Then ¢V is a depth-zero irreducible regular supercuspidal representation of M (see [31,
Definition 3.4.19 & Proposition 3.4.20]). Set 5550 := [M°, 0] /0.

More generally, we define an irreducible supercuspidal representation ¢ of M by using
the twisted Yu construction of [23]. As observed in [32, §3.4], it has the same effect as
using the original Yu construction from [5()] applied to the character 6 - €, where €: 5 —
{£1} is the product of the characters 6@1/\4 UM o [23, Theorem 3.4]. The representation
o is regular, i.e. satisfies [31, Definition 3.7.13]. Then x ®o is regular for any x € X, (M),
and we say that the inertial class s = [M, o] is regular.

2.2.7. For spy = [M, 0]y and sp0 = [M°, 0% 70, the map

fro Ir®™ (M) — Trr®m°(MO)

TR X = o @ x| X € Xur(M), (2.2.8)

is an isomorphism of varieties by [41, Theorem 6.1]. Let O° be the orbit of ¢ under
the action of X, (M?). Let Wf;:) = Weoo x R(O°) be the decomposition analogous to
(2.1.14). Then (2.2.8) and (2.1.11), applied to both s3; and sz, show that the orbits O
and O are isomorphic. The following is a consequence of [5, 7.3, 9.3].

Lemma 2.2.9 (Adler-Mishra). Suppose that p is good for G and does not divide the order
of the fundamental group of Ggaer. Let s = [M,o)g € B(G) be a regular inertial class.
Then (1) there is a group isomorphism

Wy W& — W, (2.2.10)
where s° = [M°, 0% qo, and § is equivariant with respect to vo,.
(2) there is an isomorphism
Ly o (Ter®™ (M) [/ W) — (Trr®e© (MP) //Welo)zo. (2.2.11)

The collection §° of 2-cocycles is defined as follows. For = € Irr** (M), let W5 " denote
the stabilizer of x in W*. Since f is equivariant with respect to tv,, the latter restricts
to an isomorphism

W, e W™ — Waa'™), (2.2.12)

and every 2-cocycle f,: W&* x Wg* — C* defines a 2-cocycle
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50 f(z 59 f(z
Py Weo'™ x W' — €. (2.2.13)
Consequentially, we obtain in Theorem 2.2.14(2) new cases of [5, Conjecture 1.1].

Theorem 2.2.14. Suppose that p is good for G and does not divide the order of the fun-
damental group of Gaer. Let 5 = [M,c0]a € B(G) be a regular inertial class.

(1) Then
(€50) L oly 088 Tt (G) — Trr(G0)® (2.2.15)
is a bijection.
(2) We have a bijection
e (H3(G)) — Trr(H2 (G2)). (2.2.16)

Proof. (1) This follows from the fact that the map &g defined in (2.1.21) and the anal-
ogous map

€t Iir(G)*" — (Tera© (MO) /)W )., (2.2.17)

are isomorphisms.
(2) By [54, Theorem 9.7] applied to both G and G, we have

Ir*(G) = Trr(End(i§(Vg)) and  Irr® (G°) 2 Irr(End (i, (Vio)).

Thus by (1), we have Irr(End(i%(Vz)) = Irr®(G) = Irr®’ (GY) = Irr(End(igg (Vpo)). Then
the result follows by applying Corollary 2.1.22 to both s and s°. O

Remark 2.2.18. We show in Theorem 4.2.23 that the algebras #°(G) and H*' (G°) are
isomorphic when G = G, and M is a maximal Levi subgroup.

2.2.19. We end this section with brief recollections on non-singular supercuspidal rep-
resentations in the sense of [32], as we will consider non-singular Bernstein blocks in
§3.1.50.

Let 0: S(kr) — Q, be a non-singular character. Let Ng(S)(kr)s denote the stabi-
lizer of the pair (S, 0). By [32, Proposition 2.3.3|, the character 6 extends to the group
NG (S)(kr)g. Let U C G be the unipotent radical of a kp-rational Borel subgroup of G,
containing S, and let Yy be the corresponding Deligne-Lusztig variety. Let k(s g) be the
isomorphism class of the representation H4V (Yys, Q,)g. For simplicity of expositions, we
only describe the depth-zero situation. The representation (g gy := C—Indgw infg: K(S,0)
is supercuspidal but not necessarily irreducible. When it is indeed irreducible, we re-
turn to the case where 6 is regular as in [31]. When m(g gy is reducible (e.g. when 6 is
non-singular non-regular), it decomposes as [32, 3.3.3]
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T(s.0) = > dim(0)7{s g.4), (2.2.20)
¢t (NG (8) (br )0 6)

where the constituents Ts,0.p) = & IndG 1nf K(8,0,0)" constructed from k(s 0,0) 85 In
[32, Definition 2.7.6], are irreducible non- smgular supercuspldal representations. Here
Irr(Ng(S)(kr)g,0) denotes the set of irreducible representations of Ng(S)(kr)s whose
restriction to S(kp) is f-isotypic € is a fixed coherent splitting of the family of 2-cocycles
{nw,u} asin [32, §2.4]. The positive-depth supercuspidal representations can be described
similarly, by applying Yu’s construction [56] to the representation mgog 4 ,) of G°
associated to the pair (S, ¢_1) [32, (3.2)].

3. Local Langlands correspondence for Bernstein blocks
3.1. Aziomatic construction of the correspondence

Let GV denote the Langlands dual group of G, i.e. the complex reductive group with
root datum dual to that of G. Let Zgv be the center of G¥ and G, the quotient G¥ /Z¢v .
The L-group of G is defined to be “G := GV x Wx. Similarly, MV denotes the Langlands
dual group of M. Let Zsv . be the center of MY x I, and define

Xne("M) = (Zarvsarp) - (3.1.1)

The group X, (M) is naturally 1som0rph1c to the group X,,(M). We denote the iso-
morphism X, (M) = X, (VM) by x — xV.

3.1.2. An L-parameter is a continuous morphism ¢: Wi — LG such that

e p(w) is semisimple for each w € Wpg;
o the restriction o|gy,(c) is a morphism of complex algebraic groups.

An L-parameter ¢ is said to be discrete if (W) is not contained in any proper Levi
subgroup of GV. The group GV acts on the set of L-parameters. We denote by ®(G) the
set of GV-classes of G-relevant L-parameters. Attached to each L-parameter ¢ for G, we
define several (possibly disconnected) complex reductive groups as follows.

Set Zav (p) := Zav (p(W})). Let Zy , (¢) be the inverse image of Zgv (¢)/Zav (¢)NZgv
(viewed as a subgroup of GY;) under the quotient map GY, — GY,. Then we set

Gy = L (el ) (3.1.3)

We also define the following component group

S, = T ()25 (9)°. (3.1.4)
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An enhancement of ¢ is an irreducible representation g of S,. Pairs (g, 0) are called
enhanced L-parameters (for G and its inner forms).

3.1.5. Let GV act on the set of enhanced L-parameters via

9-(p.0) = (999~ "9 0) (3.1.6)

We denote by ®.(G) the set GY-conjugacy classes of enhanced L-parameters. We define
an action of X,.(*M) on ®.(M) as follows. Given (¢, ) € ®(M) and ¢ € X, (F M),
we define (£p, 0) € ®e(M) by ¢ := ¢ on Ip x SLy(C) and (£¢)(Frp) := Eo(Frp). Here
£e Z3yv w1, Tepresents z.

For an L-parameter ¢ of G, we denote by u,, the image of (1, (1)) under ¢. By [7,
(92)], we have u, € G and

Sy 2 Zg, (up)/Lg, (up)® = Ags (uy). (3.1.7)
Let o be an irreducible representation of Ag;(ug,). The pair (uy, 0) is said to be cuspidal
if there is an G°-equivariant cuspidal (in the sense of Lusztig [35]) local system on the

Gg-conjugacy class of .

Definition 3.1.8. An enhanced L-parameter (¢, o) is said to be cuspidal if ¢ is discrete
and (u, 0) is a cuspidal pair in G,,.

3.1.9. From now on, we use the subscript ¢ to denote “cuspidal”. Let (., o.) be a cuspidal
enhanced L-parameter for M, we denote by

sV = [EM, oc, 0dgv (3.1.10)

the GV-conjugacy class of ("M, 0V), where OV is the orbit of (¢, o.) under the action
of X, (FM). Let BY(G) be the set of such 5. Set sY, := [EM, ¢, 0c]arv . Let

E&;/\/ i={n € Ngv(M") : "(pc, 0c) = (¢c, 0c) @ x" for some x" € f{nr(LM)}.

(3.1.11)
Denote
Weo =W (MY,0V) :=N&. /M. (3.1.12)
The group Wévv is a finite extended Weyl group, i.e. it decomposes as
W& = Wov x R(OY), (3.1.13)

where Wev is a finite Weyl group, and R(OV) is a finite abelian group (see (3.2.8)).
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3.1.14. Let ®$(M) denote the set of MV-conjugacy classes of cuspidal enhanced L-
parameters for M. By [7, (115)], there is a decomposition of ®.(G) into series of enhanced
L-parameters indexed by the set BY(G):

o) = || e, (3.1.15)
sVeBY(Q)

where <I>§V(G) consists of enhanced L-parameters whose cuspidal support lies in sV.
Moreover, for any (¢¢, 0c) € ®(M), we have

D (M) = Xur(“M) - (0, 00). (3.1.16)

For 5V = [ M, ¢, 0c]gv € BY(G), there exists a bijection [7, Theorem 9.3]
§ev s B2 (G) — (BN (M)//WE sz, (3.1.17)

where L0 = (P0.) e (2 0) /%0 (5 M, (e ,pe)) 18 @ collection of 2-cocycles, and

%nr(LMa (¢5500)) = {z € xnr(LM) 2 2 (905 00)) = (Pos Qa)}~ (3.1.18)

3.1.19. Let n: M — M be an F-morphism of connected reductive F-groups with abelian
kernel and cokernel. Then by [16, §1.4],  induces a map from the root datum of MY to
that of M. We denote by nV: MY — MV the associated morphism of algebraic groups
as in [16, §2.1].

Ly: LM — M
(m,w) = (nY(m),w) forme M. (3.1.20)

We recall [16, Desideratum 10.3(5)]: Let ¢: Wp x Wr — MY be an L-parameter for M
and set ¢ := “no @. Then for any 7 € Il;, the representation 7 o7 is the direct sum of
finitely many irreducible representations belonging to IL.

3.1.21. Let Irr®* (M) C Irr(M) denote the set of equivalence classes of irreducible su-
percuspidal representations of M. Let g € Ng(M)(F). For any o € Irt* (M), we have
90 € Irr*(M). We denote by ¢, the isomorphism

cg: (M,0) = (M,90). (3.1.22)

Let cy: “M — LM be the morphism defined by (3.1.20). Let w +— w" be the canonical
isomorphism from W (M) := Ng(M)(F)/M to W(M") := Ngv(MY)/M" defined in [1,
Proposition 3.1]. Let n,, (resp. n,v) be a representative of w (resp. w") in Ng(M)(F)
(resp. Ngv(MY)). With these notations, we have ¢y (mY) ="="m".
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For o € Irr(M), since the equivalence class of "¢ does not depend on the choice of
the representative n.,, we will simply denote it by “o. Similarly, we use the notation w",
instead of n,v, to denote the action of Ngv (MY) on @.(M).

Property 3.1.23. Let M be a Levi subgroup of G. Let spyr := [M, o]y € B(M). There
exists a map

gsM ™ (M) —  ®S(M)

3.1.24
o = (¢, 00) ( )
such that the following properties are satisfied for any o € Irr®™ (M):
(1) For any x € Xu (M), we have
(‘px®aa Qx®a) = Xv (Yo 00)s (3.1.25)
where x + x is the canonical isomorphism X (M) = Xn (Y M).
(2) For any w € W(M), we have
Y (o, 00) = (Puo, 0wo)s (3.1.26)

where w + w" is the canonical isomorphism W (M) = W (MV).
Remark 3.1.27.

(1) Property 3.1.23(1) is closely related to [16, Desideratum 10.3.(2)].

(2) Property 3.1.23(2) is a stronger version of [16, Desideratum 10.3.(5)] for n = ¢4, and
can be viewed as an analogue of [25, Conjecture 5.2.4] for enhanced L-parameters
for supercuspidal representations. In the special case where the L-packet of o is a
singleton, Property 3.1.23(2) is in fact equivalent to [16, Desideratum 10.3.(5)] for

n=cq4.

Lemma 3.1.28. Let s = [M, o]y € B(G) satisfy Property 3.1.23. Then there is a group
isomorphism

v WE S WL, wheres” = [FM, £V (5)]qv. (3.1.29)
Moreover, £5M s equivariant with respect to t.

Proof. Let w € W& C W(M). By the definition of W§, we have Yo >~ x ® o for some
X € X (M). By Property 3.1.23, we have

w\/

(3007 Qo) = (@’“aa Q“’U) =~ (‘px@oa Qx®a) = XV ' (9007 Qa)- (3130)
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Thus w" € Wévv, and the map w — w" gives a group morphism from W to Wévv
Reversing the argument, we see that it is an isomorphism. O

We suppose that Property 3.1.23 holds, and that the collections of 2-cocycles fj and
Ly satisfy the following

Lhov =18, forany o € s and any x € X (M) /X0 (M, 0), (3.1.31)

Theorem 3.1.32.

(1) We have a canonical isomorphism

e (e (M) )/ WE), = (M (M) [/ W ). (3.1.33)
(2) There is a bijection

L= (¢50) Toeoy: I’ (G) — 3% (G). (3.1.34)

Proof. Let s = [M, o]q. Counsider (p,, 0,) := £5 (o). Then the isomorphism X, (M) ~
Xnr (P M) combined with (3.1.16) shows that

O (M) = {x" ® (0, 00) : X € Xne(M)}. (3.1.35)
By Property 3.1.23(1) and (2.1.11), we have
(M) = {(¢xz0, 0xo0) X € Xne(M)} = Irr™ (M). (3.1.36)

Recall that Wé’x®” denotes the stabilizer of x®o in WE. By construction of the extended
quotients in (1.3.1), we have

(Ire™ (M) [/ WE); = Ll @(CWE e, 5)/We. (3.1.37)
XEXnr (M) /Xne (M,0)

For x € Xpn (M), let Wévv’xv‘(%’g") denote the stabilizer of XV - (¢,,05) in W&.. By
Property 3.1.23(1), we have

xnr(ny(‘PaaQa)) anr(MvU)- (3~1~38)
Again by (1.3.1), we have
(@M (M) /| W)y = L] Irr(C[We, X oee) Ly 0]/ WE.

XV EX e (MY) [ Zne (MY (905,05)
(3.1.39)

For any w € W&X®7 by Property 3.1.23, we have
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\4

\4
w

(Xv ' (9007 QO’)) =" ((Px®07 Qx®a) = (Sow(x®o)a Qv (x®0) = (90X®l77 Qx®a)~ (3140)

Thus the morphism t from (3.1.29) restricts to an isomorphism
WEXET 2y s X (eanea), (3.1.41)

Combined with (3.1.37) and (3.1.39), we obtain an isomorphism
e: (I (M) [/ WE)y —> (B (M) [/ WE ). (3.1.42)
Then (2) follows from the combination of (1) with Proposition 2.1.20 and (3.2.15). O

Remark 3.1.43. When G is a split classical group, F' has characteristic zero and £°™ is
the LLC defined by Arthur in [8], then Lemma 3.1.28 was proved in [42, Theorem 4.1],
and Theorem 3.1.32 follows from [43, §3.2 & 3.3].

Remark 3.1.44. The 2-cocycles in § and Lt are expected to be often trivial: (1) They are
trivial if the groups R(O) from (2.1.14) and R(OY) from (3.1.13) have cardinality at
most 2, and hence when M is a Levi subgroup of a maximal parabolic subgroup of G.

(2) The 2-cocycles are also trivial when G is a symplectic group or a split special
orthogonal group by [26, Theorem 7.7] on the group side and [43, §4.5] on the Galois side.
They are trivial for principal series representations of split groups by [46, Corollary 7.9
and Theorem 8.2] on the group side and [3, Theorem 13.1] on the Galois side.

(3) However, there exist cases when these 2-cocycles are not trivial: e.g. see [2, Exam-
ple 5.5] for an example where f is non-trivial, and [7, Example 9.4] for an example where
Ly is non-trivial.

3.1.45. Let o be a regular supercuspidal irreducible representation of M. Let ¢,: Wrp —
LM be the L-parameter of o as constructed in [32].

Proposition 3.1.46. Let s = [M, o]g be such that the L-packet for o is a singleton. Let
sV = [MVY,(ps,1)]gv. Assume that the collections of 2-cocycles i and Ly are both trivial.
We have the following bijection

£ ¥ (G) — @2 (G). (3.1.47)
Proof. Let £°™ be the map
L5 g (g, 1). (3.1.48)
By Proposition 3.1.51, Property 3.1.23(1) is satisfied.

The validity of [16, Desideratum 10.3(5)] has been established in [15, Theorem 1.1]
when the L-parameter ¢ is supercuspidal, and G is quasi-split. Since the L-packet for o
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is a singleton, Property 3.1.23 (2) holds by Remark 3.1.27. The result thus follows from
Corollary 3.1.32. 0O

Remark 3.1.49. Proposition 3.1.46 is sufficient for the case of G = G2 (as also exemplified
in [9]), since M is either GLy or a torus, both only having singleton L-packets for their
supercuspidals.

3.1.50. Suppose now o is a non-singular supercuspidal irreducible representation of M.
Let @5 : Wr — £ M be the L-parameter of o defined in [32, §4.1], with enhancement g, .

More precisely, consider the ’/TES,& o) recalled in § 2.2.19. We fix a coherent splitting
€. We recall the construction of the non-singular L-parameter (g ) in [32, §4.1] (we
drop p from the notation ab the L-parameter does not depend on p), which is given as

a composition WF 5, Lg —> L@. Here pg: Wr — 'S is Langlands parameter for the
character 6, and ©j: 'S — G is a certain L-embedding arising from the y-data as part
of some torally wild L-packet datum (S, j, xo0,0) as [32].

Proposition 3.1.51. The map £°M: 0 — (s, 0,) satisfies Property 3.1.23 (1).

Proof. By [32, Proposition 3.4.6], we have X®OT(g00 = T(s x 0,x@p)- On the other hand,
by [30, Proposition 4.5.3], we have ¢(s y.0) = (¢y - ¢s) o ¥j (since the L-embedding *
stays the same after twisting by x), where ¢, : Wr — Z 5 is the corresponding 1-cocycle

as defined [30]. O

Remark 3.1.52. Property 3.1.23 (2) of the map £°¥: ¢ — (¢s,0,) follows from [33,
Conjecture 2.12], which is expected to hold for LLC for non-singular supercuspidal rep-
resentations. The authors intend to return to this question in future work.

3.2. Matching of simple modules of extended affine Hecke algebras

In this section, we use Corollary 3.1.32 to obtain a bijection between simple mod-
ules of extended affine Hecke algebras for the p-adic group and Galois sides, assuming
Property 3.1.23. Note that this is a completely reasonable assumption, as many groups
satisfy this property. Therefore, our main results give a new approach to constructing
local Langlands correspondences “inductively”, building from LLC’s on the Levi sub-
groups’.

3.2.1. We now recall the construction of a (possibly twisted) extended affine Hecke alge-
bra H®' (GV) constructed in [6]. Consider

ch = ZMV(SDc<WF)) (322)

Let A, be the identity component of the center of M, . We set
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Tp =TS = Zav (p(Ir)). (3.2.3)
Let %(J;, Ay, ) be the set of @ € X*(A,,) \ {0} which appear in the adjoint action of
A, on the Lie algebra of 72. It is a root system by [6, Proposition 3.9]. Let (72, Ay, )t
be the positive root system defined by an F-rational Borel subgroup of 77. Let A be a

basis of the reduced root system %(J2, Ay, )rea- Let a € Ay, be such that a(a™") is an
eigenvalue of Ad(p(Fr)) for any o € A. We define ¢, € ®(M) by

PalrpxSLa(C) = Celipxsio©) and  @q(Frp) := a- o (Frp). (3.2.4)

By [6, Proposition 3.9], we have X(Gy,, Ap.)red = X(J2, Ap)red, Where G, =
Zav (pa(Wg)). Consider

Xue(MY,00) = {z € Xne(MY) = (200)mv = (Pa)rrv} - (3.2.5)

Set Tov 1= Xn (M) /X0 (MY, p,). For each o € %(Tg, Ay, Jred, let mo € Zso be the
smallest integer such that

ker(maa) D {a’ € Ay, : (o) v = (o) v }- (3.2.6)
We set
Sov = {ma o€ Z(];,A%)red} C X*(Tov). (3.2.7)
Then Wev from (3.1.13) is the finite Weyl group of Xpv, and
R(OY) :=={weWM",0Y) : w-(J,Ap.)" = B(T3, Ap.) "} (3.2.8)
Let
AiYov = Zso and A*V: {maa € Sov i (maa)Y € 22X, (Tev)} — Z>o  (3.2.9)
be the two parameter functions defined in the proof of [6, Lemma 3.12]. Recall from [6,
(28)] that A*V(a) = AY(a) unless « is a short root in a type B root subsystem of Rov .
The algebra H® (GY) is defined to be
H(GY) 1= Hagg (O, Zov, AV, AV, 2) x C[R(OY), k"], (3.2.10)
where z is a positive real number, H,5(GY,5Y) := Hag(OV,Zov, AV, A*V, 2) is the corre-

sponding affine Hecke algebra with affine Weyl group Wov x X*(Tov), and k" a 2-cocycle
on R(OY).
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Theorem 3.2.11. We suppose that the collections of 2-cocycles i and “f are both trivial.
Let s = [M,o]¢ and sV = [V M, ¢,,1]gv. There is a bijection

Irr(H°(G)) «— Irr(H* (GY)). (3.2.12)
Proof. By Corollary 2.1.22, we have a bijection
It (H*(G)) — (Ier™™ (M) //WE)y. (3.2.13)
By Corollary 3.1.32, we have
™ (M) J/WE, ~ O (M) /W (3.2.14)
On the other hand, by (3.1.17) we have a bijection
O (M) )| W — 2 (G). (3.2.15)
Finally, by [6, Theorem 3.18], there is a bijection
(@) =5 Irr(H® (GV)). (3.2.16)

Combining equations (3.2.13), (3.2.14), (3.2.15) and (3.2.16), we obtain the desired bi-
jection. O

Corollary 3.2.17. With the same assumption as in Theorem 3.2.11.
Ter(He (GV)) — Trr(HED (GO)V)).
Proof. This follows from combining Theorems 3.2.11 and 2.2.14. O
4. Applications to Go
In this section, we introduce notations and background specifically for the Gy case.

4.0.1. General background

4.0.1. Let aps be the real Lie algebra of Ay, and aj, its dual. Let aj‘w,c be the com-
plexification of a},. Let | - |p be the modulus of F. Let Hps : M — aps be such that
g~ (Ham(m).a) — |o(m)|p for every rational character a of M and every m € M. Note that
the kernel of Hy is equal to My (recall from § 2.1.1). Consider

My:= (] kerx, (4.0.2)
XEXnr (M,0)
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which has finite index in Mj. Recall X,,,(M, o) from (2.1.9), and we have

TIrr (M, /My) ~ Xpe (M) /X0 (M,0) and C[M,/M] ~ C[Xn(M)/Xn: (M, 0)].
(4.0.3)
Set (M,/My)Y := Homg (M, /Mi,Z). Composing Hy, with the R-linear extension of
Hy (M, /M) — Z gives an embedding
Hy: (My/Mp)Y — a3}, (4.0.4)

For m € M, let b, be the element of C[X,,(M)] defined by b.,(x) := x(m) for any
X € Xn:(M). Let h, be the unique generator of M, /M; such that valp(a(h,)) > 0. We
define X, € C(X,:(M)/Xn(M,0) by

Xa(x) == x(ha), (4.0.5)
for x € X (M) /%0 (M, 0).
4.0.6. For a complex number s, let y; be the character defined by
Xs(m) :=|det(m)| for any m € M. (4.0.7)
In particular, xs € Xp (M), and we have
Xa(xs) = | det(ha)|- (4.0.8)

Let & be the element of a3}, defined by & := (pp, aV)~1pp, where pp is half the sum of
the roots of Aps in Lie N, with P = M N. Then sa € a}; @r C.

We recall the description of the Plancherel measure from [52] (see also [53] or [26] for
the notations used here): for o € ¥ ,,, where X¢ , is the root system defined in (2.1.13),
there exist qa,qar € R>1,¢; € Ry for a € Yo ,,, such that

Mooy 0= Xa)0=Xe) (04 X)(14XeD)
 (1-ga'Xa)1—ga'Xah) (1+¢. Xa)(1+q.0Xah)

(4.0.9)

4.0.10. For a € Yo, by [54, Proposition 3.1] there is a unique of € (M, /M;)" such
that HY, (o) € Ra and (h,, af) = 2. We set

Yo = {ozﬁ ta€Xo,} and XY= {ozﬁ tha €S0}

The quadruple (X%, M, /M, 30, (M,/M;)Y) is a root datum with Weyl group Wo.
It has a natural action of the group W (M, ), and R(QO) is the stabilizer of its basis
determined by P (see [54]). We endow this based root datum with the parameter ¢r and
the labels
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A@) :=10g(¢aga-)/log(gr) and  N(a) :=log(gags-)/ l0g(qr). (4.0.11)

To the above data we associate the affine Hecke algebra
HigN A qr) = Hag (25, My /M1, X0, (My/M1)Y, X\, X*, qF). (4.0.12)

It is defined as the vector space C[Wop] ®c C[M,/M;] with the following multiplication
rules:

o C[Wo] = span{T,, : w € Wo} is embedded as H(Wo, q3), the Iwahori-Hecke algebra
of Wo, i.e.

TwTy =Ty i L(w) + £(v) = L(ww), (4.0.13)
(Ts, + D)(Ts, — ™) =0 ifa e Ao, -
where £(w) is the word length of w';
o C[M,/M;] ~ C|O] is embedded as a subalgebra;
o for a € Ap,, and x € M, /M; (corresponding to 0, € C[M,/M]):

A(@)+2* (o) () =2* () ) 01 — asa(x)
2 —q 2 ) = o

0, T, — Tsﬁsa(l.) = (q;\,ﬂ(a) -1+ X;l(q 1— X572 °

xd s

4.0.14. We set
Wig = Wo x ZE(VQ. (4.0.15)

From now on we assume that the parabolic subgroup P is maximal. Then we have
M, = G, and W (M) is either trivial or of order 2.

Remark 4.0.16.

(1) The groups W(M,O), Wo, and R(O) are either trivial or of order 2. In particular,
Yo, is either empty or {a, —a}.

(2) For G = Ga, if 0 #£ ¢V, then W (M, O) = 1. It suffices to only check the case where
o~oV.
In general, if W(M,O) = 1, then the parabolically induced representation is irre-
ducible, so we do not need to work with the case. In the case of Gz, the condition
W(M,O) # 1 happens to be characterized by the condition that o is self-dual. See

[50] for more details.

e, £(w) is the smallest integer £ > 0 such that w is a product of £ generators sq.
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4.0.17. If X, # 0, then W (M) # {1} and the group Wp is generated by the unique
non-trivial element of W (M), say sp. Then we have Wo = W(M,0) = W(M). In
particular, if Xp , # 0, we have R(O) = {1}.

The condition X , = 0 is equivalent to the following

pf(x®a)#0 for any x € Xy (M). (4.0.18)
We recall the following theorem of Harish-Chandra.

Theorem 4.0.19. (Harish-Chandra) [52, 5.4.2.2 and 5.4.2.3] Let M be a Levi subgroup
of a maximal parabolic subgroup of G and let o be a unitary irreducible supercuspidal
representation of M.

(a) If u%(o) =0, then W(M) = {1,sn} # {1}, and spro ~ 0.

(b) Suppose W (M) # {1}. Then u(c) # 0 if and only if the representation i% (o)

is reducible. In this case, the representation iIGD(o) is the direct sum of two mon-

isomorphic irreducible representations.

4.0.2. Some background on Gg

In the case where G is the split Go, we obtain more precise results than in previous
sections. Let T be a maximal split torus in G. Let R be the set of roots of G with respect
to T. Let (1, €2, €3) be the canonical basis of R, equipped with the scalar product ( | )
for which this basis is orthonormal. Then {« := €1 — g9, 8 := —2¢1 + €2 + €3} defines a
basis of R, and

RT ={a,B,a+ B,2a+ B,3a + 3,3a + 25} (4.0.20)
is a subset of positive roots in R. We have
(ala) =2, (B|B)=6 and (a|f)=-3. (4.0.21)
Hence « is a short root, while 3 is a long root.
4.0.22. As in [44], we fix an isomorphism:

No: T =5 F* x F* (4.0.23)
t— ((2a+ B)(1), (a + B)(1)). (4.0.24)

Under this identification we have
aV(a) =n,(a,a™') and BY(a) =7n,'(1,a) for any a € F*. (4.0.25)

Let GV be the dual group of G over C, obtained via an identification of the roots of GV
with the coroots of G and vice versa. Then GV is a complex reductive group of type
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Go, with simple roots o and 3Y. Note that a¥ (resp. 3Y) is the long (resp. short) root
of GV. Consider the torus TV dual to T. Then TV is a maximal torus of GV. We fix an

isomorphism:

nav: T = C* xC* (4026)
t— (@ +28Y)(t), (a¥ + BY)(1)). (4.0.27)

We have
aV(a) = n/;vl(l, a) and BY(a) = nﬁ_vl (a,a™ ') for any a € F*. (4.0.28)

4.0.29. For each root v € R(G), we fix root group homomorphisms z: F — G and
Z-homomorphisms (,: SLy(F) — G as in [18, (6.1.3) (b)]. We have

n@=6 (5 1) o= (7)) amd o=¢ (5 2). @os

For v € {a, 8}, let P, be the maximal standard parabolic subgroup of G' generated by
7. Let M, be the centralizer of the image of (7')¥ in G, where 7' is the unique positive
root orthogonal to v, i.e.

3 if =
/ {a+ﬁ Br=a (4.0.31)

3a+28 ify=8.

Then M, is a Levi factor for P,. Moreover, M, and Mg are representatives of the two
conjugacy classes of maximal Levi subgroups of G.
We extend (y: SLa(F') — M, to an isomorphism ¢, : GLa(F) — M, by

C’y((é ?)) =Gy ((8 t91>>, fort € F*. (4.0.32)

Then the restriction of ¢ ! to T coincides with the isomorphism
Ny: T — F* x F*, (4.0.33)
where 7, has been defined in (4.0.23), and
ng: t = ((a+ B)(t), a(t)). (4.0.34)
4.1. Explicit Hecke algebra parameters

4.1.1. The long root case
Let 9 be a fixed nontrivial additive character of F, and v be the dual of 1. Assume
for now the Levi factor M of P = M N is generated by the long root of G. Let o be an
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irreducible unitary supercuspidal representation of M. We denote by w := w, the central
character of o. Let L/F be a quadratic extension. Let x be a character of L*. Let x’
be the conjugate of x, i.e. x'(a) = x(a). Let II(¢) denote the Gelbart-Jacquet lift of o
as defined in [24]. Our notations follow [50]. The Plancherel measure p(sa, o) has the
following four possibilities ([4]).

4.1.1. Case I. If w is unramified, and if 0 = o(7) with 7 = Ind%ﬁ X, with 2y’ unramified,
then

(1~ w(@)gp*) (1 — wH(w)g7)
(1 - w N @)gp ) (1~ w(w)gp' )

(1= X2 "Mwr)qr*) A — x2X (wL)q})

p(s8,0)=1(G/P)2qp i Hen (@) (4.1.2)

(1= "Ywr)ag )1 = x72xX (wr)a; )
(4.1.3)
Comparing (4.1.2) with the Plancherel formula in (4.0.9), we have
Xa — —2s
{ (#) w(fF/)q‘f B (4.1.4)
Xa(s) =—=x*X""Hwr)q,”,
which implies that
w(wr)gp?® +x*x "wr)g;* = 0. (4.1.5)
Since ¢, = ¢/(E/F) | (4.1.5) only has a solution when f(L/F) = 2 and
w(wr) +x*x @) =0, (4.1.6)
which is satisfied in our case. In particular, we have
Qo = 4Fr, Gor =4qL = Qf;(L/F)- (4.1.7)
Therefore we have
)‘(a) = log(QQQa*l)/log(QF) =1+ f(L/F)7 (4 1 8)
A (@) = [1og(gagq-)/loglqr)| = |1 = F(L/F)|. o
Hence the parameters for the extended affine Hecke algebra in this case are q},ff (L/F)
and qlﬁ}—f(L/F)I.

4.1.9. Case II. If w, is ramified and ¢ = o(7) with 7 = Ind%f X, and x2x’ unramified,
_ (o N —nlo 1— 2.1 —1 =5)(1 — -2/ s
1(s@, 0) = (G P)2geX @) =n(@) ( : x/_xl (wa)qus )( x_2 x/ (wL)qfl)+s
(1= " Hww)g ") = x 72X (we)g, ™)
(4.1.10)




34 A.-M. Aubert, Y. Xu / Advances in Mathematics 436 (2024) 10938/

We compare (4.1.10) to the Plancherel formula (4.0.9) and obtain
for =1, o =qr=q"" (4.1.11)
Recall the definition of X, as
Xa(x) = x(hg) (4.1.12)

where x € X™(M)/X" (M, o). Since the map ¢s: m +— |det(m)|% is an unramified
character of M, we have

Xa(hs) = O0CX "DN(wr)ar® (4.1.13)
Recall from (4.0.11) that
0" = gada- € Rt (4.1.14)

Thus by (4.1.11), we have q;‘,(a) =qL = q{,(L/F), where f(L/F) is the residue degree and

is thus 1 if L/F is ramified, and 2 if L/F is unramified. In particular
Ma) = f(L/F), X'(a)= f(L/F). (4.1.15)
Note that for w € W(M, O), one may check that
w(Xa) = X (4.1.16)

Since w(a) = a for w € W(M,O) when G = Gg, (4.1.16) is simply w(X,) = X,. On
the other hand, by [53, Prop 1.1] we have

wXa(x) = w(Xa(X)) = wix(hy)) = x(w(hy)) = x(hyw) = x(he) = Xa(x)
Thus wX, = Xo = Xy(a)- This reduces to check, in the long root case, that
$20480CX " Hwr)ap®) = xX*X N (wr)e® (4.1.17)
Since Y, = {1,2a + B} in the long root M = M” case, we have
W(35) = {1, s2a+5}- (4.1.18)

Thus the Iwahori-Hecke algebra of W (X)), as defined in (4.0.13), is given by

HOV(SY), q)) = {Z({1,52a+ﬁ},qF), L/F is ramified (4.1.19)

({1, 82045}, q%), L/F is unramified
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Therefore, the affine Hecke algebra in this case is given by
Hart(MP) = H({1, 52015} a1 ") w C[O] (4.1.20)
4.1.21. Case IIL. If w is unramified and o # o(7) or x?y’ is ramified,

(1~ w(@)gp*) (1 — w ! (w)g5)

~’ — ~(G/P 2 n(w)+n(oxI(c))—n(o)
:U‘(SOé O’) ’V( / ) qr (1 _ wfl(w)q;H»QS)(l . w(w)qE1725)

(4.1.22)
In this case, we have
Xa(s) = w(@)ap™ (4.1.23)
Gax = 1; do = 4F
Thus A(«) = 1 and M\*(a) = 1. The parameters in this case are simply gp.
4.1.24. Case IV. If w ramified and o # o(7) or x?Y’ is ramified,
n(s@, o) = 1(G/ P> Mm@ (4.1.25)
In this case, we have
Ga =1, go-=1 (4126)

Thus A(«) = 0 and A*(«) = 0. Thus the parameters in this case are trivial.

4.1.2. The short oot case

Now we give the explicit computation in the short root case. Assume the Levi factor
M of P = MN is generated by the short root of split Go. Let o be an irreducible unitary
supercuspidal representation of M. Let w = w, be its central character. Then by [51,
Proposition 6.2] the Plancherel measure u(s@, o) is given by the formula

if w is unramified

7(G/p)2q;(0)+n(o®w) (1—w(@)qp?*) (1—w(w) " 1¢2

- “1_2s 1 —1+t2s
u(sa,o) = (I—w(@)g='=2*)(1—w(w@) gz ")
v(G/P)qu(GHn(an(a@w) otherwise
(4.1.27)
Here n(o), n(w) and n(o ® w) are the corresponding conductors.
4.1.28. Case I. If w is unramified,
~ n(o)+n(cQw ]-_ o2 ]-_ Loz
/A(SO&,O’) _ ,Y(G/P)QqF( )+n(ocQ@w) ( w(w)qF )( w(w) QF) (4129)

(1 - w(@gp )1 —w(@)tgp ")

Comparing (4.1.29) with (4.0.9) implies that
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o =4qr, qor =1 (4.1.30)

Since x is an unramified character of M, we have

Xa(xs) = w(@)gp™. (4.1.31)

Recall from (4.0.11) that q}\,(a) = ¢afa+ € Rs1. Thus by (4.1.30), we have qi\p(a) = qF

and thus A(a) =1 and A*(a)) = 1. Note that for w € W (M, ©O), one may check that
w(Xa) = Xua). (4.1.32)

Since w(a) = o for w € W(M,O) for G = Ga, (4.1.32) is simply w(X,) = X,. On the
other hand, by [53, Prop 1.1] we have

wXa(x) = w(Xa(x) = w(x(ha)) = xX(w(ha)) = X(hw(a)) = X(ha) = Xa(x). (4.1.33)

Thus wXo = Xo = Xy(a). Since B = {3a 4 26} in the short root M = M, case (see
[51, p. 389]), we have

W(E5) = {1, s3a+28} (4.1.34)
Therefore we have the affine Hecke algebra
Hart(Mo) = H({1, 830425}, qr) ¥ C[O). (4.1.35)
4.1.36. Case II. In the other case,
u(sa, o) = 'y(G/P)Qq"("H”(‘”H"("@“) (4.1.37)
Comparing (4.1.37) and (4.0.9) gives us
da =1, gar =1 (4.1.38)

Therefore we have ¢ = 1 and thus A(a) = 0 and A\*(a) = 0. Therefore the affine Hecke
algebra in this case is given by

Hag(Ma) = H({1, 530425}, 1) x C[O). (4.1.39)

Remark 4.1.40. The computations of Hecke algebras with explicit parameters in this
section will be collected into tables in § 4.2.2.
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4.2. Intertwining algebras

4.2.1. For b € F*/F*2 let Uy(1,1) be the quasi-split unitary group, and U(2) the
compact unitary group in two variables in F(v/b). We write F*/F*2 = {1,¢,w,ew},
and the possible unitary groups in 2 variables are:

U:(1,1), Ue(2), Us(1,1), Ux(2), Uew(1,1), Ue(2).

The group U.(1,1) is an unramified group. The group U, (1,1) is ramified, where @’ €
{w,ew}.

4.2.2. We now classify the twisted Levi sequences in Gy (up to conjugacy) for M = M,
with v € {a, 5}:

(1) Essentially depth zero case: If py,, is an essentially depth-zero supercuspidal type
on M, then X, is of the form (M,y,é,r, par) (hence in particular M® = M),

where Ky, = Myo ~ GLa(0op) is a maximal compact subgroup of GLa(F') and
r = depth(pys,,) is an integer. If r = 0, we may assume that ¢ = 1 without loss of
generality.

(a) G = (G) (here G = G, it is a depth zero case: r = 0),
(b) G = (M, G) (here G® = M = M and r # 0).
(2) Positive depth cases [4]:
(a) G = (U(1,1),G),
(b) G = (Ug(1,1),G), with @’ € {w,cw},
(c) G = (M G),
(d) G = (MM, G),
where MO is a torus in G°.

When M = M,,, we have three possibilities for MDP, denoted Ty e, Ty and T, 5. If ¢g
has trivial restriction to Z3,, then it can be extended to a character of U, and we use
the same notation ¢ to denote the extended character.

Let G} denote the reductive quotient of Gj. Let @’ € {w,ew}. We have

GO _ {U(l, 1) if G°=U.(1,1), (423

Y S0y GO =TUL(1,1).

Remark 4.2.4. The central character w, of o can be either ramified or unramified. It is
unramified if and only if wyo is trivial. When w,, is ramified, w,o is quadratic.

Lemma 4.2.5. We have

W& ~ We. (4.2.6)
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Proof. The representation o is regular and p is good for G, i.e. p # 2,3 and does not
divide the order (= 1) of the fundamental group of Gge,. Hence Lemma 2.2.9 applies
and gives the desired isomorphism. 0O

4.2.1. The intertwining algebras of types attached to G°

4.2.7. The case G° = MP". It occurs in both the essentially depth-zero case with r # 0
and in the positive depth cases. We have two possibilities for M°: either M° ~ GLy(F)
or M is a torus. In both cases, the algebra H(G°, ppo) = H(M?P, ppo) is commutative
by [13, 5.5,5.6].

4.2.8. The case G° = U_(1,1). If Wé% = {1}, then H(G", ppo) is commutative, as seen in
Remark 2.1.60. From now on we suppose that Wé% # {1}. Let a — @ be the non-trivial
element of Gal(L/F'). Set

o._ (01 (0 = _(of or 0
w" = (1 O)’ wy = <WL R and P:= . NG°. (4.2.9)

Recall that ppo denotes the contragredient representation of p°. By [10, §3.1], the
Iwahori-Matsumoto presentation of H(U.(1,1), ppo) is given by: H(U.(1,1), ppo) is the
space spanned by functions

Ty,: G° = Endg(V,—,), forie{0,1}, (4.2.10)
satisfying
Tw,(pgp") = ppo (p)Tw, (9)ppo (p'), where p,p’ € P and g € G°. (4.2.11)
Here T, is supported on ‘Bw;P, and satisfies the quadratic relation
(Tw, — qr)(Tw, +1) = 0. (4.2.12)

One can then deduce the Bernstein presentation of H(U(1,1), ppo) using [36, §3]. In

particular, we have q;\,(a) =qp.

4.2.13. The case G° = U,/(1,1). Let @’ € {w,ew}. Since Uy (1,1) is ramified, by
[10, §5.1.1], the algebra H(Uy/(1,1), ppo) has trivial parameters with R(O°) # 1 and

Woo = 1if wy| oX = 1; and the Hecke algebra has parameter gr otherwise, in which case
Weo # 1 and R(OY) = 1.

4.2.2. The intertwining algebras of types attached to G

4.2.14. Long root essentially depth zero case.
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(a) 7=0, x> =1 case and o = o(1) for T = Ind%’;){:
We have pjs self-dual, o and 7 correspond via LLC for GLy(F'). Since o has depth
zero, L/F is unramified (so e(L/F) = 1 and f(L/F) = 2). We have the following
four cases:

’=1 unramified. This corresponds to

o The central character w, = 1 and x2%x
Case 4.1.1, in which case the Plancherel formula has a zero, and the Hecke alge-
bra is affine non-commutative, with parameters g3 and qr. We have Wo # 1 and
R(O) = 1. Since G = G in this case, Wp = Weo and R(O) = R(OY).

2 X'~ 1 is unramified. This corre-

e The central character w, # 1 is ramified, and x*y
sponds to Case 4.1.9, in which case the Plancherel formula has a zero, and the
Hecke algebra is affine non-commutative, with parameters ¢%. We have We # 1
and R(O) = 1. Since G = G in this case, Wo = Wpo and R(O) = R(OV).

’=1 ramified. This corresponds to

o The central character w, = 1 and x%x
Case 4.1.21, in which case the Plancherel formula has a zero, and the Hecke
algebra is affine non-commutative, with parameter qp. We have Wy # 1 and
R(O) = 1. Since G = G in this case, Wp = Wepo and R(O) = R(OY).

o The central character w, # 1 is ramified, and 2y’ ~! is ramified. This corresponds
to Case 4.1.24, in which case the Plancherel formula has no zero, and the Hecke
algebra is affine commutative of the form C[R(O)] plus the translation part C[O)].
We have Wp = 1 (and we don’t know what R(Q) is in this case). Since G = G°
in this case, Wo = Wepo and R(O) = R(OV).

(b) =0 and o # o(7): We have 0 = o(7') where 7/ = Ind%ﬁ( for ¢ such that (7' = ¢

(the Galois conjugate). Since o is still depth zero, we still have L/F unramified.

e The central character w, = 1. This corresponds to Case 4.1.21, in which case the
Plancherel formula has a zero, and the Hecke algebra is affine non-commutative,
with parameters qr. We have Wp # {1} and R(O) = {1}. Since G = G° in this
case, Wo = Wpo and R(O) = R(O°).

e The central character w, # 1 ramified. This corresponds to Case 4.1.24, in which
case the Plancherel formula has no zero, and the Hecke algebra is affine commuta-
tive of the form C[R(O)] plus the translation part C[O], we have Wy = {1} (and
we don’t know what R(O) is in this case). Since G = GV in this case, Wo = Wpo
and R(O) = R(O°).

(c) 7 # 0 essentially depth zero case: Recall from §4.2.7 that G® = M = M°. Thus we

have

Weo C Ngo(M©)/M° = Ny (M)/M = {1}.
By Lemma 4.2.5, we get W& = {1} In this case, W(M,0) = W(M°, 0% =1
Thus the algebras H(G, p) and H(G?, p°) are both of the form C[O], and they are
isomorphic.

4.2.15. Table for long root essentially depth zero cases.
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Table 4.2.15
Long root essentially depth zero cases.
T D we X*x'7! R(O) R(O°) L/F # X (M, 0) Wo Woo H(G, p) H(G, p°)
=1 unramified =1 =1 unramified 2 #1  #1 non-comm, q%, g non-comm, g%, qr
X cubic
#1 unramified =1 =1 unramified 2 #1  #1 non-comm, g%, ¢2 non-comm, ¢%, ¢2
re—o (G, M), (y,¢), X cubic o 9r P dR
(M0, par)) =1 ramified =1 =1 unramified 2 #1 #1  non-comm, gp, g noN-comm, g, ¢p
X cubic
#1 ramified * * unramified 2 =1 =1 C[R(O)]XC[O] C[R(O)]XC[O]
X cubic
=1 x not cubic =1 =1 unramified 2 #1  #1  non-comm, qp, qp non-comm, qr, qp
#1 N/A * * unramified 2 =1 =1 C[R(O)]XC[O] C[R(O)]xC[O]
r#£0 (((M,G), M), #1 N/A =1 =1 unramified 2 =1 =1 C[O] clo]
(y,¢), (r,0),
(¢, 1),
(My,0, par))

4.2.16. Long root positive depth case

(a) Uy (1,1) case: 0 = o(7') # o(7), where 7 is induction of some quadratic character.

(Note that the cubic character only occurs in depth zero, because we are assuming

p

# 2,3. There are two possibilities, ¢0|Z?u could be either trivial or non-trivial:

When ¢Q
Case 4.1.21, in which case the Plancherel formula has a zero, and the Hecke

z9, = 1 unramified, since 0 = o(7') # o(7), this corresponds to

algebra is affine non-commutative, with parameters ¢r. We have W # {1} and
R(O) = 1. By 4.2.13, the Hecke algebra for G° also has gr parameter. Thus we
have Weo # {1} and R(O°) = 1.

When ¢o|zo, = sign character ramified, since o = o(7') # o(7), this corresponds
to Case 4.1.24, in which case the Plancherel formula has no zero, and the Hecke
algebra is of the form C[R(O)] x C[O]. We have Wn = {1}. By 4.2.13, we have
Weo = {1} and R(O°) # 1. Thus R(O) = R(O°) # 1 by Lemma 2.2.9.

(b) Uc(1,1) case: 0 = o(7') # o(7), where 7’ is the induction of some quadratic charac-

ter.

When ¢o|zo = 1 unramified, since o = o(7’) # o(7), this corresponds to 4.1.21,
in which case the Plancherel formula has a zero, and the Hecke algebra for G is
affine non-commutative, with parameters . We have Wy # {1} and R(O) = {1}.
From 4.2.8, we have Weo # {1} and R(O°) = {1}. Note that the cardinality of
X (M,o(7")) is 2 (see Remark 2.1.10).

4.2.17. Table for long root positive depth cases. We summarize the above in the following

table:
Table 4.2.17
Long root positive depth cases.
MO goly, 4 G R(O) R(O°) L/F #Xu (M, D) Wo Woo H(G, p) H(G, p")
= sign character #1 (U.(1,1),G) #1 #1 ramified 1 =1 =1 C[R(O)]XC[O] C[R(O)]xC[O]
Ts,=  #1 #sign character =1 (M°, G) =1 =1 ramified 1 =1 =1 Ccl[o] C[o0°)]
both #1 (M°, M, G) =1 =1 ramified 1 =1 =1 C[O] Clo°)
=1 =1 (U.(1,1),G) =1 =1 unramified 2 #1  #1  non-comm. gp,qr non-comm. qr,qr
Tse #1 =1 (M°,G) =1 =1 unramified 2 =1 =1 C[O] C[0]

both #1 (M°, M, G) =1 =1 unramified 2 =1 =1 C[O] C[0°)]
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4.2.18. Short root essentially depth zero case.

(a) r =0, there are only two cases:

e When par|z;, = 1, this corresponds to the central character being unramified

case, and in this case the Plancherel formula in 4.1.28 has a zero. Thus Wy # 1

and thus R(O) = 1. In this case the Hecke algebra is non-commutative, and the

g-parameter is just ¢ = qr. The case for G° again follows from 4.2.13.

o When py| 73, # 1, this corresponds to the central character being ramified case,

and in this case the Plancherel formula in 4.1.36 has no zero, and thus We = {1}.

In this case the Hecke algebra is commutative, and the g-parameter is trivial.

(b) r # 0 essentially depth zero case. The same argument as in §4.2.14(c) applies.

4.2.19. Table for short root essentially depth zero cases.

Table 4.2.19
Short root essentially depth zero cases.
i D w, R(O) R(O°) L/ #Xu(M,0) Wo Woo H(G, p) H(GY, p")
— ) =1 =1 —1 #1 #1 non-comm, qp, ¢ non-comm
r=0 (G, M), (v: 1), (M0, pua)) 41« * =1 =1 C[R(O)]xC[O] C[R(O)] x C[O]
(M, G), M), (y, ), (r,0), =1 _ _ ami -1 =
r#0 (62 1), (My00 par) =1 =1 unramified 2 =1 =1 C[O] C[0"]

4.2.20. Short root positive depth case.

(a) G° =Ug (1,1) case:

e When ¢0|Z% =1, the Plancherel formula on the Gg side in 4.1.28 has a zero, and
thus We # {1} and thus R(O) = {1}. In this case the Hecke algebra H(G, p) is
non-commutative, and the g-parameter is just ¢ = gr. By Lemma 2.2.9, we have
W (MO 0% # 1, and since Wpo # 1 by 4.2.13, we have R(O°) = 1. Moreover,

the Hecke algebra H(G?, p°) has parameter g by 4.2.13.

« When the central character (of GL5"™) @] z9, = sign character # 1 is ram-
ified, the Plancherel formula on the G2 side in 4.1.36 has no zero, and thus
Weo = {1}. In this case the Hecke algebra H(G, p) = C[R(O)] x C[O] has trivial
g-parameter. On the other hand, since I(o) is reducible by [51, Proposition 6.2],
we have R, # 1. Since W, x R, = W(M,o0) C W(M,0O) = Wy x R(O) and
Wo =1, we have R, C R(O) and thus R(O) # 1. By Lemma 2.2.9, we also have

R(0O%) # 1 since Wpo = 1 by 4.2.13.

(b) G° =U.(1,1) case: When $olz9, = 1 the Plancherel formula on the Gy side in 4.1.28
has a zero, and thus Wy # {1} and thus R(O) = {1}. In this case the Hecke algebra

H(G, p) is non-commutative, and the g-parameter is just ¢ = gp. From 4.2.8, we

have Weo # {1} and R(OY) = {1}.
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4.2.21. Table for short root positive depth cases. We summarize the above in the following
table:

Table 4.2.21
Short root positive depth cases.
MO oz, ¢ G R(©) R(®") L/F Xw(M,0) Wo Woo H(G,p) H(GY, p?)
=1 =1 o, @) =1 =1 ramified 1 #1 #1  non-comm, qp non-comm, qp
. = sign character #1 #1 #1 ramified 1 =1 =1 C[R(0)] x C[O] C[R(0)] x C[O°]
! #1#sign character =1 (M°, G) =1 =1 ramified 1 =1 =1 C[o] C[O°]
both #1 (M°, M, G) =1 =1 ramified 1 =1 =1 C[o] C[O°]
=1 =1 (U.(1,1),G) = =1 unramified 2 #1  #1  non-comm. qp non-comm. qp
Ta,e #1 =1 (M°, G) =1 =1 unramified 2 =1 =1 Clo] [elfel)]
both #1 (M°, M,G) =1 =1 unramified 2 =1 =1 C[O] clo”

4.2.22. We keep the notations of §2.1. The following theorem establishes the validity,
for Ga, of a generalization of a conjecture of Yu's [56, Conjecture 0.2] for supercuspidal
types, which was proved by Ohara in [45]. The following result shows that a stronger
version of Theorem 2.2.14(2) holds for the group Ga.

Theorem 4.2.23. Let p # 2,3. The algebras H(G) = Endg(IIg) and H® (G°) :=
Endgo (H“’(’;O) are isomorphic.

Proof. By Proposition 2.1.58, it is equivalent to show that the algebras H(G, pp) and
H(GP, ppo) are isomorphic. The latter can be read directly from the Tables 4.2.15, 4.2.17,
4.2.19 and 4.2.21. 0O

The following corollary is a stronger version of Lemma 4.2.5 for G = Ga.
Corollary 4.2.24. The groups R(O) ~ R(O%) and Wo ~ Weo.

Proof. This can be read directly from our Tables 4.2.15, 4.2.17, 4.2.19 and 4.2.21, with
explanations given in the sections immediately preceding the tables. O

4.2.25. On Lusztig’s conjecture. Let L°: W) — N be the weight function® on Wi
defined by

L*(sq) := Aa) and L°(s)) :== \*(a). (4.2.26)
In [40, §1.a], Lusztig made the following conjecture.

Conjecture 4.2.27. (Lusztig) The function L*® on the affine Weyl group WS; is in the
collection of weight functions described in [37-39].

Many cases of Conjecture 4.2.27 have been proved in [53], e.g. for principal series
representations of G.

2 ie., L°(w) > 0 for all w € WSz — {1}, and L®(ww’) = L° (w) + L*(w’) for any w,w’ € W such that
L(ww") = L(w) + L(w").
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Theorem 4.2.28. Conjecture 4.2.27 holds for the group Gs.

Proof. It follows from Tables 4.2.15, 4.2.17, 4.2.19 and 4.2.21. O

5. Applications to other groups

Let N be a positive integer. Let Jj denote the N x N-matrix - . When

N =2n, let Jy := (_(i Ig).

5.1. Symplectic group
The F-rational points of the symplectic group Sp,,, are given by
Spo,, (F) = {g € GLan(F) : 'gJong = Jan} - (5.1.1)
Let P be the Siegel parabolic subgroup of Sp,,, (F'), i.e. the maximal parabolic subgroup
consisting of matrices whose lower left n x n-block is zero. The standard Levi factor of
P is isomorphic to GL, (F).
5.2. General symplectic group
The F-rational points of the algebraic group GSp,,, are given by
GSpy, (F) = {g € GLan(F) : "gJ2ng = pn(9)Jon, n(g) € F*}. (5.2.1)

Let P be the Siegel parabolic subgroup of GSp,,, (F'). The standard Levi factor of P is
isomorphic to GL,,(F) x GLy(F).

5.8. Special orthogonal group
The F-rational points of the algebraic group SOy are given by
SON(F) ={g € GLN(F) : 'gJyg = Jy, det(g) = 1}. (5.3.1)
Let P be the Siegel parabolic subgroup of SOy (F). The standard Levi factor of P is
isomorphic to GL,,(F), where N =2n+ 1 or N = 2n.
The LLC for GL,,(F'), established in [29,27,49], shows that the L-packets are always

singletons in this case. Thus, by Proposition 1.2.5, the properties (1) and (2) are satisfied
in the three cases above.
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