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Abstract. In this week, we will briefly talk about Néron-Tate Heights and

Fermat’s descent Theorem. Again, for more details, please check Bianca’s
notes and Bombieri [1] chapter 9.1 - 9.4.
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1. Introduction

The theorem of Néron-Tate height is the main recipe needed to extend Mordell-
Weil theorem for Elliptic Curves to Abelian Varieties, namely the finite generation
of the group of rational points of an abelian variety defined over a number field.

We shall see in next week’s material for a historical overview. For this week,
we will introduce tools that would allow us to extend this result to the general
Mordell-Weil Theorem.

As in the case of the Elliptic Curve, we will split into two steps: in the first
step, we will outline the proof for weak Mordell-Weil Theorem for general abelian
varieties, and then we give a generalized version of Fermat’s descent theorem, which
will allow us to prove strong Mordell-Weil Theorem.

2. Néron Tate Height and Fermat’s Descent Theorem

So ultimately, our goal is to prove the following lemma, which will be crucial in
completing the proof of Mordell-Weil Theorem:

Lemma 2.1. Let K be a number field and let c be ample and even. Then ĥc

vanishes exactly on the torsion subgroup of A(K). Moreover, there is a unique
scalar product ⟨, ⟩ on the abelian group A(K)⊗Z R such that

ĥc(x) = ⟨x⊗ 1, x⊗ 1⟩
for every x ∈ A(K),

where we will soon define ĥ, which is commonly known as Néron-Tate Height.
Over the rest of the section, we will give a survey of important results in Néron-Tate
heights.

Let K be a field and let A be an abelian variety over K. Let X be a complete
variety over K. Then we know that we have the height homomrphism

h : Pic(X) → RX(K)/O(1),
1
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which associates c with the equivalence class of heights hc.
But the problem with Weil Heights is, there do not exist a canonical height

function associated to c ∈ Pic(X), as they are only determined up to a bounded
constant.

To solve this, we take our resolution to theorem of cube. for every c ∈ Pic(A)
we have a quadratic function

Mor(X,A) → Pic(X), φ∗ 7→ φ∗(c).

where we may decompose c into an even and odd part c = c+ + c−, and we there
fore have the associated decomposition of height homomorphism:

q : Mor(X,A) → RX(K)O(1), φ 7→ hφ∗(c).

We conclude that q = q+ + q− for the quadratic form q+(φ) := hφ∗(c+) and the
linear form q−(φ) := hφ∗(c−). The most important fact is that, this decomposition
is unique. Motivating by the observation, we have the following:

Observation 2.1. Let hc± be an arbitrary height function in the class hc± . For
any integer n, we have n2hc+ = h[n]∗(c+) and nhc− = h[n]∗(c−). By theorem of
height function, there is a constant C(n) such that for every a ∈ A

|hc+(na)− n2hc+(a)| ≤ C(n)

and

|hc−(na)− nhc−(a)| ≤ C(n).

Definition 2.2 (Quasi-Homogeneous). Let N be a multiplicatively closed subset
of R (resp. R+) acting on a set S by means of a map such that n(mx) = (nm)x
for x ∈ S . A function h : S → R is quasi-homogeneous of degree d ∈ N (resp.
d ∈ R+) for N if for n ∈ N there is a positive constant C(n) such that

|h(nx)− ndh(x)| ≤ C(n)

for every x ∈ S, and is homogeneous of degree d for N if h(nx) = ndh(x).

We then have the following theorem:

Theorem 2.3. Let N act on the set S as before and let h : S → R be quasiho-
mogeneous of degree d > 0. If N has an element of absolute value > 1, then there

is a unique homogeneous function ĥ : S → R of degree d for N such that ĥ − h is
bounded.

The proof of this is purely algebraic, which we will omit here. The readers are
welcome to check [1], chapter 9.

We then introduce the Tate’s limit argument:

Theorem 2.4. Let c ∈ Pic(A) and let c = c+ + c− be a decomposition into an
even part c+ and an odd part c−. Then the classes hc± are independent of the

choice of the decomposition. There is a unique homogeneous height function ĥc± in
the class hc± , of degree 2 in the + case and degree 1 in the − case.

This theorem allows the definition of Néron-Tate height:

Definition 2.5 (Néron-Tate height). The height function ĥc := ĥc++ ĥc− is called
the Néron–Tate height associated to c.
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To complete this section, we associate our bilinear form with Néron Tate Height,
which would allow us to prove the Fermat Descent Theorem.

Let M be an abelian group and let b be a real-valued symmetric bilinear form on
M . We have in mind the example M = A(K) and a certain bilinear form associated
to a Néron–Tate height. The kernel of b is the abelian group

N := {x ∈ M |b(x, y) = 0 for every y ∈ M}.

Then b induces a symmetric bilinear form b on M := M/N and the kernel of b is
zero. Since b is real valued, M is torsion free and all torsion elements of M are
contained in N . We conclude that

M → MR := M ⊗Z R,mm⊗ 1

is injective. Let M
′
be a finitely generated subgroup of M . The restriction of b

to the free abelian group M
′
extends uniquely to a bilinear form b

′
on M

′
R . Let

M
′
Q = M

′ ⊗Z Q. An easy argument shows that

M
′
Q ⊂ MQ

and soM
′
R ⊂ MR. SinceMR is the union of allM

′
and the bilinear forms b

′
coincide

on overlappings by uniqueness, we have a unique extension of b to a bilinear form
bR on MR.

Thus we would like that bilinear form on bR(x, y) determines a scalar product
and an associated norm ∥x∥2 = bR(x, x) on MR. In fact, we have the following
lemma:

Lemma 2.6. With the notation and assumptions above, the bilinear form bR is

positive definite if and only if for every finitely generated subgroup M
′
of M and

for every C > 0 the set

{x ≤ M | bR(x, x) ≤ C}
is finite.

Finally, our goal is to offer a explicit formula that would allow us to calculate
Néron-Tate heights.

Theorem 2.7. Let K be a number field and let c be ample and even. Then ĥc

vanishes exactly on the torsion subgroup of A(K). Moreover, there is a unique
scalar product ⟨, ⟩ on the abelian group A(K)⊗Z R such that

ĥc(x) = ⟨x⊗ 1, x⊗ 1⟩

for every x ∈ A(K).

For a complete proof of this would require more algebraic geometry input, which
we shall omit here.

With this, we are now ready to prove the second part-Fermat Descent Theorem.
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