
Euclidean Twistor Unification and the Twistor P1

Peter Woit

Columbia University
Mathematics Department

University of Texas at Dallas Math Colloquium, May 6, 2022

Note: These slides at
https://www.math.columbia.edu/~woit/utdallas.pdf

For more details, see
https://arxiv.org/abs/2104.05099

Peter Woit (Columbia University Mathematics Department)Euclidean Twistor Unification and the Twistor P1 April 2022 1 / 34

https://www.math.columbia.edu/~woit/utdallas.pdf
https://arxiv.org/abs/2104.05099


Background: fundamental physics

Our best theory of fundamental physics has three somewhat different
components:

1 A four-dimensional space-time M with a pseudo-Riemannian metric of
signature (3, 1). The dynamics of the metric are given by Einstein’s
equations (theory of general relativity).

2 A principal SU(3)× SU(2)× U(1) bundle with connection over M.
The dynamics of the connection are given by the Yang-Mills
equations.

3 Matter fields on M with values that transform as space-time spinors
and a specific set of representations of SU(3)× SU(2)× U(1) .
Dynamics is given by the Dirac equation.

For 2 and 3 we have a consistent quantum theory (the Standard Model),
for 1 only a consistent classical theory. We would like a “unified theory”, a
quantum theory bringing together 1, 2, 3.
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A proposal: twistor geometry and Euclidean signature

Penrose (1967) gave a very different formulation of four-dimensional space
time, in which a space-time point is a complex 2-plane in a “twistor
space” C4. Physicists have studied this intensively for Minkowski signature
space-time.
Mathematicians (beginning with Atiyah, 1977) have also studied this, but
for Euclidean signature space-time.

A question

Can one make progress on unification by using twistor geometry to
describe space-time, taking as fundamental Euclidean signature space-time
and analytically continuing in complex time to Minkowski signature?

Peter Woit (Columbia University Mathematics Department)Euclidean Twistor Unification and the Twistor P1 April 2022 3 / 34



The free particle

Consider a free particle moving in one spatial dimension. The Hamiltonian
operator (units such that ℏ = 1) acts on wave-functions

H = − 1

2m

d2

dx2

Solutions to the Schrödinger equation i ddtψ = Hψ are given by

e−iHtψ(x , 0)

Taking Fourier transforms in x , on ψ̃(p, t) the operator H is the diagonal

operator p2

2m , and e−iHt is multiplication by e−i p
2

2m
t . The inverse Fourier

transform then gives

ψ(x ′, t) =

∫ ∞

−∞
K (x ′, x , t)ψ(x , 0)

where

K (x ′, x , t) =
1

2π

∫ ∞

−∞
e−i p

2

2m
te ip(x

′−x)dp
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Imaginary time and the propagator

One way to make sense of K (the propagator) as a distribution is to
introduce a complex time variable z = t + iτ and then define K as the
boundary value at τ = 0 of something holomorphic for τ < 0

K (x ′, x , t) = lim
τ→0−

K (x ′, x , z) = lim
τ→0−

1

2π

∫ ∞

−∞
e−i p

2

2m
ze ip(x

′−x)dp

One can define K by analytic continuation from its values for
z = iτ, τ < 0, where it is the well-known heat kernel, solving the heat
equation rather than the Schrödinger equation.
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Path integrals

In the path integral formalism one tries to define an integral over paths

K (x ′, x , t) =

∫
q(0)=x ,q(t)=x ′

e−i
∫ t
0

1
2
mq̇2dt′Dq(t ′)

There is no possible well-defined measure on the space of paths that will
make sense of this, but replacing t by iτ one can define such integrals. In
general (passing to quantum field theories and integrals over fields)

Defining QFTs by path integrals

Looking at the path integrals∫
F [ϕ]e iSM(ϕ)dϕ versus

∫
F [ϕ]e−SE (ϕ)dϕ

If you do rigorous mathematics you can’t make sense of the first, can
sometimes make sense of the second (ask a mathematical physicist).
If you do numerical calculations, same thing (ask a lattice gauge theorist).
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Relativistic quantum field theory and Euclidean space-time

In relativistic quantum field theory one treats time and space on an equal
footing, using the Minkowski metric on x = (t, x)

|x |2M = |x |2 − t2

quantizing fields ϕ(x) to treat arbitrary numbers of particles. Every
quantum field theory textbook explains that there’s a problem even in free
field QFT. Computing the propagator involves taking the Fourier
transform of

i

ω2
p
− E 2

where ω2
p
= |p|2 +m2. To do this you have to decide what to do about

the poles E = ±ωp. The physically sensible answer corresponds to
analytically continuing from imaginary time τ , defining the theory in
Euclidean space-time with

|x |2E = |x |2 + τ2
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Four-dimensional geometry and 2x2 complex matrices

Complexifying not just time, but space-time, one can do four-dimensional
complex geometry by identifying C4 with 2x2 complex matrices

(z0, z1, z2, z3) ↔ z = z01− i(z1σ1+ z2σ2+ z3σ3) =

(
z0 − iz3 −z2 − iz1
z2 − iz1 z0 + iz3

)
(here σj are the Pauli matrices) and defining

|z |2 = det z

Pairs gL, gR ∈ SL(2,C)× SL(2,C) = Spin(4,C) act preserving |z | by

z → gLzg
−1
R

We are interested in real forms of this (real 4d vector spaces that give the
above after complexification).
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Real forms

Three real forms and the corresponding groups (real forms of Spin(4,C))
are

(2, 2) signature inner product: Spin(2, 2) = SL(2,R)× SL(2,R),
using gL, gR ∈ SL(2,R).
(3, 1) signature inner product: Spin(3, 1) = SL(2,C), using
gR = (g †

L)
−1

This is Minkowski space-time.

(4, 0) signature inner product: Spin(4, 0) = SU(2)× SU(2), using
gL, gR ∈ SU(2).
This is Euclidean space-time.

Our interest will be in the Minkowski and Euclidean cases, together with
the analytic continuation relating them.
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Euclidean signature and quaternions

In Euclidean signature, can use quaternions instead of complex matrices

(x0, x1, x2, x3) ↔ x = x01+ x1i + x2j + x3k

with |x |2 = xx and rotations given by pairs qL, qR of unit length
quaternions.

x → qLxq
−1
R

Note that when we do this, we now have a conjugation operation
(changing sign of i , j , k).
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Spinor geometry

Thinking of four-dimensional vectors as 2 x 2 complex matrices, they are
linear maps from one C2 (called the (half)-spinor space SR) to another C2

(called the (half)-spinor space SL). Corresponding to the action on vectors

x → gLxg
−1
R

we have actions on SR ,SL by(
ψ1

ψ2

)
R

∈ SR → gR

(
ψ1

ψ2

)
R

∈ SR(
ψ1

ψ2

)
L

∈ SL → gL

(
ψ1

ψ2

)
L

∈ SL

Analytically continuing spinors is problematic

In Euclidean space, gR and gL are independent SU(2) matrices.

In Minkowski space, gR ∈ SL(2,C) and gL is determined by gR
(= (g−1

R )†).
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Twistor theory

Twistor geometry is a different way of thinking about the geometry of
space-time, first proposed in 1967 by Penrose. It naturally provides a joint
complexification of Minkowski and Euclidean space-time and a way to look
at analytic continuation between them. In twistor theory one takes as
fundamental twistor space T = C4 (or its projective version PT = CP3,
the complex lines in T ).
Historical note: Penrose writes that he had the basic idea in late 1963. At
that time he was at UT Austin, and after the Kennedy assasination he
planned to meet up with colleagues from UT Dallas (Ivor Robinson,
Wolfgang Rindler, Istvan Ozsvath) for a road trip to San Antonio and
elsewhere. After spending time with them he was being driven back to
Austin by Ozsvath, who evidently was not very talkative, and during this
ride he had the idea.
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Why twistor space?

Two arguments for twistors

In twistor theory spinors are tautological

Points of space-time will correspond to a C2 ⊂ T (or projectively a
CP1 ⊂ CP3) tautologically giving the fiber SR of the half-spinor bundle.

The CP1 is directly experienced

In Minkowski space-time, the CP1 describing a space-time point
corresponds to the sphere of directions of light rays one sees when one
opens an eye.
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Minkowski space-time twistors: a picture

Minkowski space-time is defined by a nondegenerate signature (2, 2)
Hermitian form Φ on T . On complex lines, the zero set of Φ is N5 ⊂ PT .

Red lines are CP1 ⊂ PT (or C2 ⊂ T ). Lines in N5 correspond to points in
Minkowski space. When two lines intersect, corresponding points are
light-like separated.
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Conformal geometry of Minkowski space-time

The space of lines CP1 ⊂ N5 gives a compactified version of Minkowski
space-time The group SU(2, 2) preserves Φ = 0 and acts on Minkowski
space-time by conformal transformations. SU(2, 2) = Spin(4, 2) is a
double cover of the conformal group SO(4, 2).

The Penrose transform

Solutions of helicity s > 0 massless wave equations on Minkowski
space-time correspond to elements of the sheaf cohomology group

H1(PT+,O(−2s − 2))

The conformal group acts on these spaces of solutions. For physicists
twistor methods help understand the conformal symmetry of solutions of
massless wave equations. For mathematicians (representation theorists)
they provide interesting examples of infinite-dimensional unitary
representations of the non-compact group SU(2, 2).
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Other metric signatures

Twistor theory most naturally provides a complexified version of
(compactified) Minkowski space-time. This is the Grassmanian Gr2,4(C) of
all C2 ⊂ T (or all CP1 ⊂ PT ), which is 4-complex dimensional. The
group SL(4,C) = Spin(6,C) acts linearly on T and on Gr2,4(C) or PT .
There are three interesting 4-real dimensional subspaces of Gr2,4(C) with
complexification Gr2,4(C):

Compactified Minkowski space-time as described earlier. This is
determined by the choice of Φ. The conformal group Spin(4, 2) is a
real form of SL(4,C) = Spin(6,C).
The real Grassmanian Gr2,4(R). This is determined by the standard
real structure on T (or PT ) and is acted on by the real form
Spin(3, 3) of Spin(6,C).
The sphere S4, acted upon by the conformal group Spin(5, 1), which
is another real form of Spin(6,C). This is the version of space-time
with Euclidean signature metric that interests us.
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Euclidean twistor theory

Euclidean signature space-time twistors are best understood using
quaternions. One can identify T = C4 = H2 and use the fact that
S4 = HP1, quaternionic projective space. The conformal group
Spin(5, 1) = SL(2,H) acts transitively on PT and S4 through its linear
action on H2.
One has a fibration with fibers CP1

CP1 PT = CP3

S4

π

where the map π takes a complex line in C4 to the quaternionic line it
generates.
This deserves a picture (compare to more complicated Minkowski picture).
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Euclidean twistor fibration: a picture
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Two interpretations of PT

PT is the projective spin bundle P(SR)

The fiber at a point is the CP1 of projective SR space.

PT is the bundle of complex structures on S4

The CP1 = S2 fiber above a point on S4 can be identified with the
possible choices of complex structure on the tangent space at the point.

These definitions generalize PT to give a twistor space for any Riemannian
manifold in d = 4. If the metric is anti-self-dual, this twistor space is a
complex manifold and allows study of the Riemannian geometry using
holomorphic methods.
For a hyperkähler manifold M, this generalization of PT is the product
space

M × CP1
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The twistor real structure on CP3

On a complex manifold such as CP3, one can ask about “real structures”
which are anti-holomorphic maps

ρ : CP3 → CP3

such that ρ2 = 1.
One gets a real structure from conjugation of complex coordinates, but
there is another one, the “twistor real structure” ρtw . If one identifies C4

and H2 with their corresponding i, then multiplication by j is an
anti-holomorphic map satisfying j 2 = −1 on C4 and inducing an
anti-holomorphic map ρtw with square 1 on CP3.
This ρtw is the structure needed to get Euclidean signature space time out
of PT . The action of ρtw on PT has no fixed points, but it does have
fixed CP1s, in fact a four-dimensional family of them parametrized by S4

which fibers PT .
See previous picture.
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The twistor P1

Each CP1 fiber comes with a real structure ρtw with no fixed points,
identifying CP1 = S2. This is the antipodal map.
Identifying C2 with the quaternion z1 + z2j . One gets, in homogeneous
coordinates [z1, z2] or coordinate z = z1/z2

ρtw ([z1, z2]) = [−z2, z1], ρtw (z) = −1/z

In a sense I won’t try and make precise here, there are two “real forms” of
CP1, something defined over R that becomes CP1 when you extend
scalars to C. The real structure on CP1 gives the action of the Galois
group Gal(C/R) = Z/2Z. These are RP1 for the usual real structure, the
twistor P1 for ρtw .
Another point of view on this is that there are two different 4d algebras
over the reals that complexify to M(2,C): M(2,R) and H.
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An advertisement

Last fall I became fascinated by the fact that the twistor P1 that describes
a space-time point in Euclidean signature twistor theory also appears in
new work by Fargues-Scholze on the Langlands program in number theory.
They reformulate the local Langlands conjecture for each prime in terms of
geometric Langlands on something called the Fargues-Fontaine curve. The
Fargues-Fontaine curve at the infinite prime is the twistor P1.
For more about this, see
https://arxiv.org/abs/2104.05099
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Relating Euclidean and Minkowski

In a quantum field theory formulated on Minkowski space-time, there is no
distinguished time direction, no need for such a thing to define states and
operators. The situation is very different for a quantum field theory
formulated on Euclidean space-time. To define physical states and
operators one needs to pick an imaginary time direction, with asymmetry
in ± imaginary time corresponding to the physical asymmetry in ± energy.
In terms of symmetries, you need to break SO(4) covariance by choosing a
τ = 0 hyperplane and using (Osterwalder-Schrader) reflection in that
hyperplane. This will allow one to get from the SO(4) covariant Euclidean
Fock space theory to a physical Fock space theory with SO(3, 1)
covariance.
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Minkowski and Euclidean QFT are very different

Minkowski Euclidean

Positive energy condition: f̂ (E )
supported on E > 0

f (t) =
∫∞
−∞ f̂ (E )e iEtdE is holo-

morphic on the upper half complex
time plane (τ > 0)

Field operators satisfy a wave equa-
tion

Field operators satisfy no equation
of motion (always off-shell)

Field operators don’t commute Field operators always commute

Physical state space can be de-
fined Lorentz covariantly (can spec-
ify E > 0 covariantly)

Defining physical state space re-
quires breaking 4d rotational invari-
ance (can’t specify τ > 0 without
breaking SO(4))

The Lorentz group SO(3, 1) acts on
physical states and operators

The rotation group SO(4) acts on
Euclidean Fock space states and
operators, but these are not physi-
cal states or operators
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Euclidean twistor fibration and continuation to Minkowski

In twistor geometry the new structure needed on PT to get to Minkowski
signature is a 5-dimensional hypersurface N5 which splits it into two pieces.
N5 is the inverse image under π of an equator S3 ⊂ S4 that one can think
of as the τ = 0 subspace for some choice of imaginary time direction.
For different choices of imaginary time direction, you get different N5s and
different versions of Minkowski space-time as lines in N5.
This deserves another picture.
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Another picture, including distinguished imaginary time
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Unification: general relativity as a gauge theory

There’s a long history of attempts to treat Einstein’s general relativity as a
gauge theory, trying to emulate the success of the Yang-Mills gauge
theory. One can formulate GR as a gauge theory, taking

G = SO(3, 1) and the principal G -bundle of orthonormal frames on
spacetime M.

A connection ω (the spin-connection) with curvature Ω on this bundle

A frame bundle comes with an R4-valued canonical 1-form e (the
vierbeins).

The Palatini action is∫
M
ϵABCDe

A ∧ eB ∧ ΩCD(ω)

Equations of motion: from varying ω, ω is torsion-free (Levi-Civita
connection), from varying e, get the Einstein equations.
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Euclidean signature general relativity

If we work in Euclidean signature spacetime, ω takes values in
spin(4) = su(2)R ⊕ su(2)L.
We can just use the su(2)R component ωR , and its curvature ΩR and still
get the Einstein equations. One way to do this is to just replace Ω in the
Palatini action by ΩR . Both ωR and ΩR act on SR spinors, not on SL
spinors. Remarkably, one can recover the Einstein equations just using
ωR ,ΩR .
Note that this doesn not work in Minkowski space-time, where ω takes
values in so(3, 1) = sl(2,C).
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Gravi-weak unification

There have been attempts to unify the weak interactions with gravity,
using the chiral decomposition of the spin connection as above, with
SU(2)R a space-time symmetry giving a gravity theory, and SU(2)L the
internal symmetry of a Yang-Mills theory of the weak interactions. Our
proposal is of this nature, but with the following different features:

Take the Euclidean signature QFT theory as fundamental, with
Minkowski signature physics to be found later by analytic
continuation.

Note that in Euclidean QFT one component of the vierbein is
distinguished (the imaginary time direction).

Use twistor geometry to get not just an SU(2)L internal symmetry
but the full electroweak SU(2)L × U(1) electroweak internal
symmetry, with the imaginary time component of the vierbein
behaving like a Higgs field.
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Twistor unification: gravi-weak

If one works on the projective twistor space PT , one can get the idea of
gravi-weak unification to work (in its Euclidean form):

There is not just an SU(2) internal symmetry, but also a U(1), given
by the complex structure specified by the point in the fiber. This
complex structure picks out a U(2) ⊂ SO(4), the complex structure
preserving orthogonal transformations of the tangent space to the
point on the base S4. This is the electroweak U(2) symmetry, to be
gauged to get the standard electroweak gauge theory.

If one lifts the choice of vector in the imaginary time direction up to
PT , it transforms like the Higgs field: it is a vector in C2 (using the
complex structure on the tangent space given by the point in the
fiber). The U(2) act on this C2 in the usual way. Each choice of
Higgs field breaks the U(2) down to a U(1) subgroup, which will be
the unbroken gauge symmetry of electromagnetism.
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Twistor unification: QCD

Besides specifying a point on S4 and a complex structure on its tangent
space, a point in PT specifies a complex line C ⊂ C4. The U(1) discussed
above is the group of phase transformations of that complex line. At the
same time, the point in PT specifies a three-complex dimensional space,
the quotient space C4/C. Using the standard Hermitian form on C4, the
group SU(4) acts on C4 preserving this form.
Looking at this action as an action on the space of lines PT = CP3, the
stabilizer of a point is the group U(3). This includes the U(1) which acts
on the line, but also an SU(3) that acts on the quotient.
Using the quaternion picture we’ve found that a choice of a point on S4

gives a decomposition H2 = H⊕H and picks out an Sp(1)× Sp(1)
subgroup of Sp(2).
Using the complex picture, a point on PT gives a decomposition
C4 = C⊕ C3 and picks out a U(3) subgroup of SU(4). We thus have the
right internal and spin rotation symmetries to gauge and get a unified
theory.
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A generation of matter fields

A generation of SM matter fields has exactly the transformation properties
under the SM gauge groups as maps from C4 to itself, or

Hom(C⊕ C3,SR ⊕ SL) = (C⊕ C3)∗ ⊗ (SL ⊕ SR)

One could write this space as

(C−1 ⊗ C3
1
3
)⊗ (C2

0 ⊕ C−1 ⊕ C+1)

which is
C2
−1 ⊕ C−2 ⊕ C0 ⊕ (C3 ⊗ C2) 1

3
+ C3

− 2
3
+ C3

4
3

Here the subscripts are U(1) weights (weak hypercharge), the C2 are the
fundamental representation of SU(2)L and the C3 are the fundamental
representation of SU(3). For the first generation, the terms above
correspond respectively to the fundamental particles(

νe
e

)
L

, eR , (νe)R ,

(
u
d

)
L

, uR , dR
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Problems and opportunities

In this proposal, the fundamental symmetries and degrees of freedom of
GR and the SM are there, but in an unusual reorganized form. For
instance, some degrees of freedom now live on points of PT which one
can think of as light-rays, rather than on points of space-time. One needs
to find a formalism on PT that corresponds to the usual Yang-Mills
formalism on the base S4. Need to use holomorphicity on the CP1 fibers
to match degrees of freedom on S4 and on PT . This requires a rethinking
of the usual foundations of the theory. Resolving these questions may
provide opportunities for addressing some long-standing problems (e.g. the
renormalizability of the gravity theory). Work in progress....
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Attractive aspects of this picture of fundamental physics

Spinors are tautological objects (a point in space-time is a space of
Weyl spinors), rather than complicated objects that must be
separately introduced in the usual geometrical formalism.

Analytic continuation between Minkowski and Euclidean space-time
can be naturally performed in twistor geometry.

Exactly the internal symmetries of the Standard Model occur.

The intricate transformation properties of a generation of Standard
Model fermions correspond to a simple construction.

One gets a new chiral formulation of gravity, unified with the SM.

Conformal symmetry is built into the picture in a fundamental way.

Points in space time are described by the p = ∞ analog of the
Fargues-Fontaine description of the “points” p of number theory.
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