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States and Imaginary Time Quantum Theory

Asymmetry in imaginary time

Even in the simplest QM systems of free non-relativistic particle, if you
relate time and energy with Fourier transform, positivity of energy implies
asymmetry in imaginary time.

If f̂ (E ) is supported on E > 0, the Fourier transform

f (t) =

∫ ∞
−∞

f̂ (E )e iEtdE

gives a well-defined holomorphic function on the upper complex t + iτ
plane (more specifically, see Paley-Wiener theorems).
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States and Imaginary Time Quantum Theory

Motivations for working in imaginary time

Some reasons why quantum field theories are best defined in imaginary
time:

In every textbook computation of real-time propagators, you find
yourself integrating through a pole. To make this well-defined, you
need to use analytic continuation, with the condition of positive
energy propagation corresponding to analytic continuation to one sign
of imaginary time.

In real time you get functions like e iEt and have to worry about what
happens at ±∞. In one sign of imaginary time, e−Eτ well-behaved.

Real time Wightman functions are not functions but distributions,
best thought of as boundary values of holomorphic functions.
Real-time quantum fields only commute for space-like separations.
In imaginary time, quantum fields always commute. They can be
simultaneously diagonalized at all points, and often treated by the
methods of classical statistical mechanics.
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States and Imaginary Time Quantum Theory

States in real time

In real time, to get a free particle QFT, one first defines a single particle
state space H1 as the positive energy solutions of a linear wave equation,
then the full state space as the corresponding Fock space (symmetric or
anti-symmetric tensor products).

For instance, for a relativistic scalar field, H1 is the space of functions on
the positive mass shell, square integrable with respect to the
Lorentz-invariant inner product.
Note that there is no need to specify a particular time-like direction as the
time direction, or to specify a t = 0 hypersurface.
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States and Imaginary Time Quantum Theory

States in imaginary time

Quantization in imaginary time works differently. You can’t just take
square integrable solutions of the analytically continued wave equation as
H1 (there aren’t any) and use Fock space methods. You must choose a
time direction and then define states asymmetrically, using e.g. τ > 0.

Path integral formalism: you see this because to define the state space
you must pick a hypersurface, and think of it as a spacelike hypersurface.
(Euclidean) canonical formalism: you must work not with momentum
space functions on a mass-shell but with functions of imaginary time for
τ > 0. The inner product used start with a Euclidean invariant one, but
then adds a time-reflection operation in the definition of the inner product
on physical states. This must satisfy Osterwalder-Schrader positivity to
get unitarity.
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Spinors in Minkowski and Euclidean space

Spinors in Minkowski space

In Minkowski space the Lorentz group is SL(2,C), and Weyl spinors
transform as either the standard representation on C2 or as the complex
conjugate representation.
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Spinors in Minkowski and Euclidean space

Spinors in Euclidean space

In Euclidean space, the space-time rotation group is
Spin(4) = SU(2)× SU(2). There are now two completely different kinds
of chiral spinors, not related by conjugation.
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Spinors in Minkowski and Euclidean space

Problems with Euclidean spinor QFT

There is a long history of attempts to make sense of how to analytically
continue from a spinor QFT in Euclidean space to one in Minkowski space.
The usual conclusion is that the way to do this is to

Not attempt to analytically continue states.

Examine the Euclidean two-point Schwinger function, which
transforms under Spin(4), note that this does not have the right
Hermiticity properties to correspond to a field interpretation with a
single field.

Double the number of fields, giving consistent Schwinger functions
and operator formalism, but a complicated relationship between
physical states and fields.

One motivation for twistors: a possibly consistent framework for better
understanding the analytic continuation problem for spinors.
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Twistor Geometry

Twistors: some history and background

Twistor geometry is a different way of thinking about the geometry of
space-time. Some history

1967: Proposed by Roger Penrose

1970s-1980s: Solutions to conformally invariant wave equations in
terms of sheaf cohomology on CP3

1977: Relations between anti-self-dual gauge fields and holomorphic
bundles on CP3 (Ward, Atiyah, others)

2003: Perturbative gauge theory amplitudes using string theory on
CP3 (Witten).

Suggested reference: Twistor Geometry and Field Theory by Ward and
Wells.
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Twistor Geometry

Spacetime and the Grassmannian G2,4(C)

Twistors and space-time

Conformally compactified, complexified Minkowski space is the
Grassmanian G2,4(C) of complex 2-planes in C4. Or, equivalently, the
space of complex projective lines (CP1s) in complex projective 3-space.

Advantages of this point of view:

The conformal group action is easily understood.

Spinors are tautological: by definition the C2 of spinor degrees of
freedom at a point in space-time IS the point. Equivalently, the
spinor bundle over space-time is the tautological bundle S (fiber at
C2 ⊂ C4 is the C2).

Compactified Minkowski space and compactified Euclidean space (S4)
are two real slices of the same complex manifold, with the spinor
bundle a holomorphic vector bundle. This provides the context
needed for better understanding analytic continuation of spinor fields.
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Twistor Geometry

Relating (projective) twistor space and space-time

P(S) = {C ⊂ C2 ⊂ C4}

PT = {C ⊂ C4} M = {C2 ⊂ C4}

µ ν

pt. ∈ PT CP2 ⊂ M (”α− plane”)

CP1 ⊂ PT pt. ∈ M

ν◦µ−1

µ◦ν−1
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Twistor Geometry

Solutions of wave equations

The Penrose transform identifies two very different things:

Wave equation on space-time

Solutions to a helicity k
2 holomorphic massless wave equation on U ⊂ M

Holomorphic objects on PT

The sheaf cohomology group

H1(Û,O(−k − 2))

where Û = µ ◦ ν−1(U).
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H1(Û,O(−k − 2))
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Twistor Geometry

Penrose-Ward correspondence

The Ward correspondence identifies holomorphic anti-self-dual GL(n,C)
connections on U ⊂ M and holomorphic rank n vector bundles on
Û ⊂ PT .

The Penrose transform generalizes to an identification of:

Wave equations on space-time, coupled to gauge field

Solutions to a helicity k
2 holomorphic massless wave equation on U ⊂ M,

coupled to a vector bundle with ASD connection.

Holomorphic objects on PT

The sheaf cohomology group

H1(Û,O(E )(−k − 2))

for E a holomorphic vector bundle.
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Û ⊂ PT .
The Penrose transform generalizes to an identification of:

Wave equations on space-time, coupled to gauge field

Solutions to a helicity k
2 holomorphic massless wave equation on U ⊂ M,

coupled to a vector bundle with ASD connection.

Holomorphic objects on PT

The sheaf cohomology group
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Real forms

Real forms

Twistor geometry provides a beautiful framework for formulating
something close to known fundamental physics:
Solutions to the (massless) Dirac equation coupled to a background
(ASD) gauge field, in 4d spacetime.

The problem

Twistor geometry discussed so far is the complexification of what we want,
giving us holomorphic solutions on complex space-time.

There are various “real forms” that complexify to complex twistor
geometry (M = G2,4(C))

The real Grassmanian G2,4(R)

Conformal compactification of Minkowski space (S3 × S1)

Conformal compactification of Euclidean space (S4)
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Real forms

Minkowski space twistors

Attempts to relate twistor theory to physics have concentrated on
Minkowski signature real form. See Ward-Wells for details.

One way to define the Minkowski real form: choose a nondegenerate
signature (2, 2) Hermitian form Φ on C4. This picks out (compactified)
Minkowski space as the subspace of C2 ⊂ C4 on which Φ = 0. On PT , it
picks out a subspace N ⊂ PT of C ⊂ C4 on which Φ = 0.

Should draw a picture here!

Note that α-planes intersect (compactified) Minkowski space in null lines.
The CP1 = S2 in PT corresponding to a point in Minkowski space can be
identified with the “celestial sphere” of light rays through that point.
Φ = 0 determines a real form SU(2, 2) = Spin(4, 2) of SL(4,C) that acts
transitively on (compactified) Minkowski space. This is the conformal
group, it also acts on solutions to massless wave equations.
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Real forms

Analytic continuation

The twistor formalism provide an ideal framework for understanding
analytic continuation of spinor fields between (compactified) Euclidean
and Minkowski space.

As in the conventional story, the solutions of the massless Dirac equation
on Minkowski space are boundary values of holomorphic solutions on
complexified Minkowski space. In the Penrose transformed version, such
solutions are sheaf cohomology groups of holomorphic vector bundles on
the open subspace PT+ ⊂ PT on which Φ > 0, with the usual solutions
the boundary values on N. This open subset is an orbit of the conformal
group SU(2, 2).
Just as in the conventional story, the Euclidean signature quantization
requires picking a time direction, equivalently a t = 0 subspace (equator of
S4) that will be shared with Minkowski space. The asymmetry in
imaginary time now corresponds to the fact that Euclidean picture states
will be defined in terms of spinor fields on only one hemisphere of the S4.
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Real forms

Euclidean space twistors

Euclidean signature twistor geometry is much simpler than the Minkowski
space version. Restricted to S4, the map µ is an isomorphism, so there is a
single fibration

CP1 P(S) = PT = CP3

S4

π

Should draw a picture here!
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Real forms

Euclidean space twistors, quaternions and complex
structures

Euclidean space twistors are best understood using quaternions

Identifying C4 = H2 and noting that S4 = HP1, the projection

π : PT = CP3 → S4 = HP1

is just the map taking a complex line to the quaternionic line it generates.

PT is the bundle of complex structures on S4

The CP1 = S2 fiber above a point on S4 can be identified with the
possible choices of complex structure on the tangent space at the point.
For a general Riemannian manifold in d = 4, if the metric is ASD, the
bundle of complex structures is a complex manifold and allows study of
the geometry using holomorphic methods.
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Twistor Unification and the Standard Model

Twistor unification: internal symmetries

Twistor unification proposal

At short distances, unification via a conformally invariant theory of
space-time and chiral spinors, based on twistor geometry. The fundamental
structure is the projective twistor space PT , with points in space-time
given by complex projective lines in PT , Euclidean and Minkowski
signature real slices related by analytic continutation as described above.

Internal symmetries

Using T = H2

PT =
Sp(2)

U(1)× SU(2)

The U(1)× SU(2) is the internal electroweak symmetry.
Using T = C4

PT =
SU(4)

U(1)× SU(3)

the SU(3) is the color symmetry.
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Twistor Unification and the Standard Model

Electroweak symmetry breaking

In a Euclidean signature theory, the definition of the state space breaks the
full Euclidean space-time symmetry (SO(4)), by a choice of time direction.
In the twistor picture, this choice of time direction corresponds to the
choice of a signature (2, 2) Hermitian form Φ, with PT now broken up
into pieces given by the sign of Φ

PT = PT+ ∪ (N = PT 0) ∪ PT−

which are the inverse images of Euclidean time on S4 positive, zero, or
negative.

Up on PT , the tangent vector pointing in the unit time direction lies in a
tangent space that is identified with C2 (by the complex structure given by
the point in the fiber). The internal electroweak symmetry group U(2)
acts on this by the defining representation. This is exactly the
transformation property of the usual Higgs field that converntionally
breaks the electroweak symmetry.
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Twistor Unification and the Standard Model

Spinors on PT = CP3

Taking PT as fundamental, instead of the Dirac operator acting on spinor
fields on Euclidean space-time S4, one should look at fields on PT . One
can analyze the structure of spinors on PT and find that they are in some
sense products of

Pull-backs to PT of the spinors on S4

Spinors on the fiber CP1

The second of these gives the Weyl-spinor degree of freedom that one also
sees as a chiral spinor in Minkowski space and is invariant under the
internal U(2). The first however transforms non-trivially under U(2), with
the right degrees of freedom to give a generation of leptons (including a
neutral right-handed neutrino).
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What’s Missing?

What’s missing for a full unified theory?

The geometrical framework described so far provides an elegant unification
of precisely the known internal and space-time symmetries of the Standard
Model. There is still a lot more needed to have a full theory, in particular:
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What’s Missing?

Matter degrees of freedom on PT

While a spinor on PT gives a single generation of leptons, one also want
quarks, and three generations. Quarks are rather naturally introduced,
since a point in PT corresponds to a decomposition

T = C4 = C⊕ C3

with the internal SU(3) acting trivially on the first factor, as the
fundamental representation on the second factor.

More seriously, it is very
unclear where multiple generations might come from. Using quaternions
and complex numbers, one has not fully exploited all the possible
structures on the real eight-dimensional space T . In terms of unit vectors,
S7 carries several different kinds of geometry

S7 = Spin(8)/Spin(7) = Spin(7)/G2 = Spin(6)/SU(3) = Spin(5)/Sp(1)

In particular, we have used complex (Spin(6) = SU4)) and quaternionic
(Spin(5) = Sp(2)) aspects of the geometry, but not the octonionic aspects
that appear in S7 = Spin(7)/G2.
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What’s Missing?

Matter field dynamics on PT

In the usual twistor formalism, instead of space-time equations of motion,
one has purely holomorphic characterizations of the fields on PT , eg. as
H1 sheaf cohomology groups. One likely needs something different than
just sheaf cohomology to replace equations of motion on PT . Since one
wants fields that take values in spinors on PT , presumably what is needed
is some version of the Dirac equation on PT .
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What’s Missing?

Gauge field dynamics

The Penrose-Ward correspondence relates holomorphic structures on PT
to ASD connections on space-time. One needs some version of this that
reflects the full Yang-Mills equations.
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What’s Missing?

Quantum gravity

One can naturally consider the problem of incorporating gravity into this
framework from the point of view that takes the spin connection and the
vierbeins as fundamental variables. The new factors here are that,
formulated in Euclidean space, only half of the usual spin connection is
present (the other is the internal SU(2)), so one seems to have a
“self-dual” sort of gravity theory. In addition, one of the vierbeins is
distinguished, playing the role of the Higgs field. One would like to find a
dynamics for these degrees of freedom that is well-defined at short
distances, gives the usual Einstein-Hilbert effective action at large
distances, while giving an appropriate dynamics to the Higgs field.
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Conclusions

Conclusions

I hope that I’ve at least convinced you of three things:

The Euclidean space quantization is more interesting and more
non-trivial than usual thought, not just a matter of adding factors of√
−1 in the right places.

Twistor geometry is a compelling way to thing about 4d space-time
geometry, especially the geometry of spinors.

There are intriguing prospects here for unifying space-time and
internal symmetries in an unexpected manner, well worth further
investigation.
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