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Abstract

Quantum field theories are best defined in Euclidean space-time, with
behavior in Minkowski space-time given by boundary values of an ana-
lytic continuation. Euclidean spinor fields are known however to have a
confusing relationship to Minkowski spinor fields, due to their different
behavior under space-time rotations. We argue that the necessity of pick-
ing an imaginary time direction for the analytic continuation gives a new
point of view on this problem, and allows an interpretation in Minkowski
space-time of one of the chiral factors of Spin(4) = SU(2) × SU(2) as an
internal symmetry. The imaginary time direction spontaneously breaks
this SU(2), playing the role of the Higgs field.

Twistor geometry provides a compelling framework for formulating
spinor fields in complexified four-dimensional space-time and implement-
ing the above suggestion. Projective twistor space PT naturally includes
an internal SU(3) symmetry as well as the above SU(2), and spinors on
this space behave like a generation of leptons.

Since only one chirality of the Euclidean Spin(4) is a space-time sym-
metry after analytic continuation and the Higgs field defines the imagi-
nary time direction, the space-time geometry degrees of freedom are only
a chiral SU(2) connection and a spatial frame. These may allow a consis-
tent quantization of gravity in a chiral formulation, unified in the twistor
framework with the degrees of freedom of the Standard Model.

The Penrose-Ward correspondence relates gauge fields on Euclidean
space-time, classically satisfying anti-self-duality equations, to holomor-
phic objects on projective twistor space. The above unification proposal
requires implementation as a theory with gauge symmetry on PT , per-
haps related to known correspondences between super Yang-Mills theories
and supersymmetric holomorphic Chern-Simons theories on PT.

1 Introduction

Penrose’s 1967 [28] twistor geometry provides a remarkable alternative to con-
ventional ways of thinking about the geometry of space and time. In the usual
description of space-time as a pseudo-Riemannian manifold, the spinor degree
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of freedom carried by all matter particles has no simple or natural explanation.
Twistor geometry characterizes a point in Minkowski space-time as a complex
2-plane in C4, with this C2 providing tautologically the (Weyl) spinor degree of
freedom at the point. The C4 is the twistor space T , and it is often convenient
to work with its projective version PT = CP 3, the space of complex lines in
T . Conformal symmetry becomes very simple to understand, with conformal
transformations given by linear transformations of C4.

A well-known issue with the twistor geometry formulation of fundamental
physics is that, unlike general relativity, it is inherently parity asymmetric (Pen-
rose refers to this as the “googly” problem, invoking a term from cricket). One
aspect of this is that left and right-handed Weyl spinors have a very different
nature, with spinors of only one particular handedness describing the points in
space-time. While this asymmetry causes problems with describing gravity, it
has often been speculated that it has something to do with the parity asymmetry
of the weak interactions.

Twistor geometry most naturally describes not Minkowski space-time, but
its complexification, as the Grassmanian G2,4(C) of all complex 2-planes in the
twistor space T . This allows a formulation of fundamental physics in terms of
holomorphic fields on G2,4(C), a rather different framework than the usual one
of conventional fields on Minkowski space-time. Correlation functions can be
characterized by their values on a Euclidean signature space-time, related to the
Minkowski ones by analytic continuation. The Euclidean space-time correlation
functions are better behaved: at non-coincident points they are legitimate func-
tions whereas the Minkowski versions are distributions given as boundary values
of holomorphic functions.

Focusing not on the usual Minkowski space-time version of twistor theory,
but on its analytic continuation to Euclidean space-time, it is a remarkable fact
that the specific internal symmetry groups and degrees of freedom of the Stan-
dard Model appear naturally, unified with the space-time degrees of freedom:

• Projective twistor space PT can be thought of as

CP 3 =
SU(4)

U(1)× SU(3)

or as
Sp(2)

U(1)× SU(2)

This identifies U(1), SU(2) and SU(3) internal symmetry groups at each
point in projective twistor space.

• In Euclidean space-time quantization, the definition of the space of states
requires singling out a specific direction in Euclidean space-time that will
be the imaginary time direction. Lifting the choice of a tangent vector
in the imaginary time direction from Euclidean space-time to PT , the
internal U(1)×SU(2) acts on this degree of freedom in the same way the
Standard Model electroweak symmetry acts on the Higgs field.
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• The degrees of freedom of a spinor on PT transform under internal and
space-time symmetries like a generation of Standard Model leptons.

• Connections for the chiral SU(2) symmetry that acts on the spinor de-
scribing a point, together with frames of tangent vectors in the space
directions, provide the degrees of freedom needed for a chiral version of
general relativity.

2 Euclidean quantum fields

But besides this, by freeing
ourselves from the limitation of
the Lorentz group, which has
produced all the well-known
difficulties of quantum field
theory, one has here a possibility
— if this is indeed necessary — of
producing new theories. That is,
one has the possibility of
constructing new theories in the
Euclidean space and then
translating them back into the
Lorentz system to see what they
imply.

J. Schwinger, 1958[43]

Should the Feynman path
integral be well-defined only in
Euclidean space, as axiomaticians
would have it, then there seems
to exist a very real problem when
dealing with Weyl fields as in the
theory of weak interactions or in
its unification with QCD.

P. Ramond, 1981[56]

A certain sense of mystery
surrounds Euclidean fermions.

A. Jaffe and G. Ritter, 2008[71]

That one chirality of Euclidean space-time rotations appears after analytic
continuation to Minkowski space-time as an internal symmetry is the most hard
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to believe aspect of the proposed framework for a unified theory outlined above.
One reason for the very long time that has passed since an earlier embryonic
version of this idea (see [35]) is that the author has always found this hard to
believe himself. While the fact that the quantization of Euclidean spinor fields is
not straightforward is well-known, Schwinger’s early hope that this might have
important physical significance (see above) does not appear to have attracted
much attention. In this section we’ll outline the basic issue with Euclidean spinor
fields, and argue that common assumptions about analytic continuation of the
space-time symmetry do not hold in this case. This issue becomes apparent
in the simplest possible context of free field theory. There are also well-known
problems when one attempts to construct a non-perturbative lattice-regularized
theory of chiral spinors coupled to gauge fields.

Since Schwinger’s first proposal in 1958[42], over the years it has become
increasingly clear that the quantum field theories governing our best under-
standing of fundamental physics have a much simpler behavior if one takes time
to be a complex variable, and considers the analytic continuation of the theory
to imaginary values of the time parameter. In imaginary time the invariant no-
tion of distance between different points becomes positive, path integrals often
become well-defined rather than formal integrals, field operators commute, and
expectation values of field operators are conventional functions rather than the
boundary values of holomorphic functions found at real time.

While momentum eigenvalues can be arbitrarily positive or negative, energy
eigenvalues go in one direction only, which by convention is that of positive ener-
gies. Having states supported only at non-negative energies implies (by Fourier
transformation) that, as a function of complex time, states can be analytically
continued in one complex half plane, not the other. A quantum theory in Eu-
clidean space has a fundamental asymmetry in the direction of imaginary time,
corresponding to the fundamental asymmetry in energy eigenvalues.

Quantum field theories can be characterized by their n-point Wightman
(Minkowski space-time) or Schwinger (Euclidean space-time) functions, with
the Wightman functions not actual functions, but boundary values of analytic
continuations of the Schwinger functions. For free field theories these are all
determined by the 2-point functions W2 or S2. The Wightman function W2 is
Poincaré-covariant, while the Schwinger function S2 is Euclidean-covariant.

This simple relation between the Minkowski and Euclidean space-time free
field theories masks a much more subtle relationship at the level of fields, states
and group actions on these. In both cases one can construct fields and a
Fock space built out of a single-particle state space carrying a representation
of the space-time symmetry group. For the Minkowski theory, fields are non-
commuting operators obeying an equation of motion and the single-particle state
space is an irreducible unitary representation of the Poincaré group.

The Euclidean theory is quite different. Euclidean fields commute and do
not obey an equation of motion. The Euclidean single-particle state space is
a unitary representation of the Euclidean group, but far from irreducible. It
describes not physical states, but instead all possible trajectories in the space
of physical states (parametrized by imaginary time). The Euclidean state space
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and the Euclidean fields are not in any sense analytic continuations of the cor-
responding Minkowski space constructions. For a general theory encompassing
the relation between the Euclidean group and Poincaré group representations,
see [60].

One can recover the physical Minkowski theory from the Euclidean theory,
but to do so one must break the Euclidean symmetry by choosing an imaginary
time direction. In the following sections we will outline the relation between the
Minkowski and Euclidean theories for the cases of the harmonic oscillator, the
free scalar field theory, and the free chiral spinor field theory.

2.1 The harmonic oscillator

The two-point Schwinger function for the one-dimensional quantum harmonic
oscillator of frequency ω (ω > 0) is

S2(τ) =
1

(2π)(2ω)
e−ω|τ |

with Fourier transform

S̃2(s) =
1√
2π

∫ ∞
−∞

eisτS2(τ)dτ =
1

(2π)3/2
1

s2 + ω2

In the complex z = t+ iτ plane, S2 can be analytically continued to the upper
half plane as

1

(2π)(2ω)
eiωz

and to the lower half plane as

1

(2π)(2ω)
e−iωz

The Wightman functions are the analytic continuations to the t (real z) axis,
so come in two varieties:

W−2 (t) = lim
ε→0+

1

(2π)(2ω)
eiω(t+iε)

and

W+
2 (t) = lim

ε→0+

1

(2π)(2ω)
e−iω(t−iε)

The conventional interpretation of W±2 is not as functions, but as distribu-
tions, given as the boundary values of holomorphic functions. Alternatively (see
appendix A), one can interpret W±2 (t) as the lower and upper half-plane holo-
morphic functions defining a hyperfunction. Like distributions, hyperfunctions
can be thought of a elements of a dual space to a space of well-behaved test
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functions, in this case a space of real analytic functions. The Fourier transform
of W2 is then the hyperfunction

W̃2(E) =
i

(2π)3/2
1

ω2 − E2

which is a sum of terms W̃±2 (E) supported at ω > 0 and −ω < 0. Note that
the convention that e−iEt has positive energy means that Fourier transforms of
positive energy functions are holomorphic for τ < 0.

The physical state space of the harmonic oscillator is determined by the
single-particle state space H1 = C. H1 is the state space for a single quantum,
it can be thought of as the space of positive energy solutions to the equation of
motion

(
d2

dt2
+ ω2)φ = 0 (2.1)

H1 can also be constructed using W+
2 , by defining

(f, g) =

∫ ∞
−∞

∫ ∞
−∞

f(t2)W+
2 (t2 − t1)g(t1)dt1dt2

=

∫ ∞
−∞

∫ ∞
−∞

f(t2)
e−iω(t2−t1)

(2π)(2ω)
g(t1)dt1dt2

=
1

2ω
f̃(ω)g̃(ω)

for f, g functions in S(R) and taking the space of equivalence classes

H1 = [f ] ∈ {f ∈ S(R)}/{(f, f) = 0}

One can identify such equivalence classes as

[f ] =
1√
2ω
f̃(ω)

H1 is C with standard Hermitian inner product

〈[f ], [g]〉 =
1

2ω
f̃(ω)g̃(ω)

Note that it doesn’t matter whether one takes real or complex valued functions
f , in either case one gets the same quotient complex vector space H1.

Given H1 and the inner product 〈·, ·〉, the full state space H is an inner
product space given by the Fock space construction, with

H = S∗(H1) =

∞⊕
k=0

Sk(H1)

In this case the symmetrized tensor product Sk(H1) of k copies of H1 = C is
just again C, the states with k-quanta. A creation operator a†(f) (for f real)
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acts by symmetrized tensor product with [f ] and a(f) is the adjoint operator.
One can define an operator

φ̂(f) = a(f) + a†(f)

and then
〈0|φ̂(f)φ̂(g)|0〉 = 〈[f ], [g]〉

φ̂(t) should be interpreted as an operator-valued distribution, writing

φ̂(f) =

∫ ∞
−∞

φ̂(t)f(t)dt

φ̂ satisfies the equation of motion 2.1.
One can use the Schwinger function S2 to set up a Euclidean (imaginary

time τ) Fock space, taking E1 to be the space of real-valued functions in S(R)
with inner product

(f, g)E1 =

∫ ∞
−∞

∫ ∞
−∞

f(τ2)S2(τ2 − τ1)g(τ1)dτ1dτ2

=

∫ ∞
−∞

∫ ∞
−∞

f(τ2)
e−ω|τ2−τ1|

(2π)(2ω)
g(τ1)dτ1dτ2

The Fock space will be
E = S∗(E1 ⊗C)

based on the complexification of E1, with operators a†E(f), aE(f), φ̂E(f), φ̂E(τ)

defined for f ∈ E1. Expectation values of products of fields φ̂E(f) for such
real-valued f can be given a probabilistic interpretation (see for instance [16]).

Note that the imaginary time state space and operators are of a quite dif-
ferent nature than those for real time. The operators φ̂E(τ) do not satisfy an
equation of motion, and commute for all τ . They describe not the annihila-
tion and creation of a single quantum, but an arbitrary path in imaginary time
of a configuration-space observable. The state space is much larger than the
real-time state space, with E1 infinite dimensional as opposed to H1 = C.

One way to reconstruct the physical real-time theory from the Euclidean
theory is to consider the fixed τ subspace of E1⊗C of complex functions localized
at τ0. Here f(τ) = aδ(τ − τ0) for a ∈ C and one defines a Hermitian inner
product on E1 ⊗C by

(f, g)E1⊗C =

∫ ∞
−∞

∫ ∞
−∞

f(τ2)S2(τ2 − τ1)g(τ1)dτ1dτ2

While elements of E1 satisfy no differential equation and have no dynamics,
one does have an action of time translations on E1, with translation by τ0 taking
aδ(τ) to aδ(τ − τ0). Since the inner product satisfies

(aδ(τ), bδ(τ − τ0)) = abe−ω|τ0|
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one sees that one can define a Hamiltonian operator generating imaginary time
translations on these states by taking H to be multiplication by ω. The imagi-
nary time translation operator e−τ0ω can be analytically continued from τ0 > 0
to real time t as

U(t) = e−itω

Another way to reconstruct the real-time theory is the Osterwalder-Schrader
method, which begins by picking out the subspace E+1 ⊂ E1 ⊗ C of functions
supported on τ < 0. Defining a time reflection operator on E1 by

Θf(τ) = f(−τ)

one can define
(f, g)OS = (Θf, g)E1⊗C

The physical H1 can then be recovered as

H1 =
{f ∈ E+1 }

{(f, f)OS = 0}

Note that for f, g ∈ E+1 one has (since f, g are supported for τ < 0)

(f, g)OS =

∫ ∞
−∞

∫ ∞
−∞

f(−τ2)
e−ω|τ2−τ1|

(2π)(2ω)
g(τ1)dτ1dτ2

=

∫ ∞
−∞

∫ ∞
−∞

f(τ2)
eω(τ2+τ1)

(2π)(2ω)
g(τ1)dτ1dτ2

=
1

(2π)(2ω)

∫ ∞
−∞

f(τ2)eωτ2dτ2

∫ ∞
−∞

g(τ1)eωτ1dτ1

=
1

2ω
f̃(−iω)g̃(−iω)

This gives a map
f ∈ E+1 → [f ] ∈ H1

similar to that of the real-time case

f → [f ] =
1√
2ω
f̃(−iω) =

1√
2ω
√

2π

∫ ∞
−∞

eωτf(τ)dτ

2.2 Relativistic scalar fields

The theory of a mass m free real scalar field in 3 + 1 dimensions can be treated
as a straightforward generalization of the above discussion of the harmonic oscil-
lator, treating time in the same way, spatial dimensions with the usual Fourier
transform. Defining

ωp =
√
|p|2 +m2

the Fourier transform of the Schwinger function is

S̃2(s,p) =
1

(2π)3
1

s2 + ω2
p
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and the Schwinger function itself is

S2(τ,x) =
1

(2π)2

∫
R4

ei(τs+x·p) 1

(2π)3
1

s2 + ω2
p

dsd3p

=
m

(2π)3
√
τ2 + |x|2

K1(m
√
τ2 + |x|2)

where K1 is a modified Bessel function. This has an analytic continuation to
the z = t+ iτ plane, with branch cuts on the t axis from |x| to ∞ and −|x| to
−∞.

−|x| |x|
t

τ

The Wightman function W+
2 (t,x) will be defined as the limit of the analytic

continuation of S2 as one approaches the t-axis from negative values of τ . This
will be analytic for spacelike t < |x|, but will approach a branch cut for timelike
t > |x|. The Fourier transform of W±2 will be, as a hyperfunction (in the
time-energy coordinate)

W̃2(p) =
1

(2π)3
i

ω2
p − E2

or, as a distribution, the delta-function distribution

W̃+
2 (p) =

1

(2π)2
θ(E)δ(E2 − ω2

p)

on the positive energy mass shell E = +ωp. Here W+
2 (x) is

W+
2 (t,x) =

1

(2π)4

∫
R3

1

2ωp
e−iωpteip·xd3p

As in the harmonic oscillator case, one can use it to reconstruct the single
particle state space H1, defining

(f, g) =

∫
R4

∫
R4

f(x)W+
2 (x− y)g(y)d4xd4y
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for f, g ∈ S(R4) (R4 is Minkowski space), and equivalence classes

H1 = [f ] ∈ {f ∈ S(R4)}/{(f, f) = 0}

The inner product on H1 is given by

〈[f ], [g]〉 =

∫
R4

θ(E)δ(E2 − ω2
p)f̃(p)g̃(p)d4p

where p = (E,p) and θ is the Heaviside step function. Elements [f ] of H1 can

be represented by functions f̃ on R3 of the form

f̃(p) = f̃(ωp,p)

In this representation, H1 has the Lorentz-invariant Hermitian inner product

〈[f ], [g]〉 =

∫
R3

f̃(p)g̃(p)
d3p

2ωp

Using the Fock space construction (as in the harmonic oscillator case, where
H1 = C), the full physical state space is

H = S∗(H1) =

∞⊕
k=0

Sk(H1)

with creation operators a†(f) acting by symmetrized tensor product with [f ].
a(f) is the adjoint operator and one can define field operators by

φ̂(f) = a(f) + a†(f)

Writing these distributions as φ̂(t,x), one recovers the usual description of
Wightman functions as

W+
2 (x− y) = 〈0|φ̂(x)φ̂(y)|0〉

The operators φ̂(x) satisfy the equation of motion(
∂2

∂t2
−∆ +m2

)
φ̂ = 0

and φ̂(x), φ̂(y) commute for x and y space-like separated, but not for time-like
separations (due to the branch cuts described above).

The Euclidean (imaginary time) theory has the Fock space

E = S∗(E1 ⊗C)

where E1 is the space of real-valued functions in S(R4) (now R4 is Euclidean
space) with inner product

(f, g)E1 =

∫
R4

∫
R4

f(x)S2(x− y)g(y)d4xd4y
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This Fock space comes with operators a†E(f), aE(f), φ̂E(f), φ̂E(x) defined for

f ∈ E1. Expectation values of products of fields φ̂(f) for such real-valued f can
be given a probabilistic interpretation in terms of a Gaussian measure on the
distribution space S ′(R4) (for details, see [16]).

As in the harmonic oscillator case, there are two ways to recover the real
time theory from the Euclidean theory. In the first, one takes H1 ⊂ E1 to be the
functions on Euclidean space-time localized at a specific value of τ , say τ = 0,
of the form

f(τ,x) =
1

2π
δ(τ)F (x)

Evaluating the inner product for these, one finds

(f, g)E1 =

∫
R3

F̃ (p)G̃(p)
d3p

2ωp

which is the usual Lorentz-invariant inner product. The rotation group SO(3)
of spatial rotations acts on this τ = 0 subspace of E1 and this action passes to
an action on the physical H1. Time translations act on E1 and one can use the
infinitesimal action of such translations to define the Hamiltonian operator on
H1.

To recover the physical state space from the Euclidean theory by the Osterwalder-
Schrader method, one has to start by picking an imaginary time direction in the
Euclidean space R4, with coordinate τ . One can then restrict to the subspace
E+1 ⊂ E1 of functions supported on τ < 0. Defining a time reflection operator
on E1 by

Θf(τ,x) = f(−τ,x)

one can define
(f, g)OS = (Θf, g)E1

The physical H1 can be recovered as

H1 =
{f ∈ E+1 }

{(f, f)OS = 0}

In both the Euclidean and Minkowski space-time formalisms one has a uni-
tary representation of the space-time symmetry groups (the Euclidean group
E(4) and the Poincaré group P respectively) on the spaces E1,H1 and the cor-
responding Fock spaces. In the Minkowski space-time case this is an irreducible
representation, while in the Euclidean case it is far from irreducible, and the
representations in the two cases are not in any sense analytic continuations of
each other.

The spatial Euclidean group E(3) is in both E(4) and P , and the two meth-
ods for passing from the Euclidean to Minkowski space theory preserve this
group action. For translations in the remaining direction, one can fairly readily
define the Hamiltonian operator using the semi-group of positive imaginary time
translations in Euclidean space, then multiply by i and show that this generates
real time translations in Minkowski space-time.
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More delicate is the question of what happens for group transformations in
other directions in SO(3, 1) (the boosts) and SO(4). In the Minkowski theory,
boosts act on H1, preserving the inner product, so one has a unitary action
of the Poincaré group on H1 and from this on the full state space (the Fock
space). But while elements of SO(4) not in the spatial SO(3) act on E1 pre-
serving (·, ·)E1 , they do not preserve the positive time subspace E+1 and do not
commute with the time reflection operator Θ. One can construct operators on
E+1 giving infinitesimal generators corresponding to directions in the Lie algebra
complementary to the Lie algebra of SO(3), and then show that these can be
analytically continued and exponentiated to give the action of boosts on H1.
That this can be done was first shown by Klein and Landau in 1982 (by a not
completely straight-forward argument, see [21]).

2.3 Spinor fields

While scalar field theories and pure gauge theories have well-understood and
straightforward formulations in Euclidean space-time, the question of how to
define spinor quantum field theories in Euclidean space-time has always been
(see the quote from Jaffe and Ritter above) much more problematic. At the
end of this paper one can find a fairly complete bibliography of attempts to
address this question over the years, none of which provide a fully satisfactory
answer. Schwinger’s earliest work argued that in Euclidean space a doubling of
the spinor degrees of freedom was necessary, and a version of Euclidean spinor
fields due to Osterwalder and Schrader [47] that includes such a doubling has
been the conventionally accepted best solution to the definitional problem.

We’ll consider the theory of a chiral (Weyl) spinor field in Minkowski space,
and then see what problems arise when one tries to find a corresponding Eu-
clidean field theory. It is well-known (see the quote at the beginning of this
section from [56]) that a problem arises immediately if one tries to write down
a Euclidean path integral for such a theory: there is no way to write an SO(4)
invariant Lagrangian just using one chirality.

The equation of motion for a right-handed Weyl spinor is(
∂

∂t
+ σ ·∇

)
ψ(t,x) = 0

or, in energy-momentum space

(E − σ · p)ψ̃(E,p) = 0 (2.2)

Since one has
(E + σ · p)(E − σ · p) = E2 − |p|2

solutions in energy-momentum space will also satisfy

(E2 − |p|2)ψ̃(E,p) = 0

and be supported on the light-cone E = ±|p|.
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The momentum space Wightman function for the Weyl spinor theory will
be the hyperfunction

W̃2(E,p) =
−i

(2π)3
1

E − σ · p
=
−i

(2π)3
E + σ · p
E2 − |p|2

or equivalently the distribution

W̃+
2 (E,p) =

1

(2π)2
θ(E)(E + σ · p)δ(E2 − |p|2)

This is matrix-valued, and on solutions to 2.2 gives the inner product

〈ψ̃1, ψ̃2〉 =

∫
R4

ψ̃†1(E,p)(E + σ · p)ψ̃2(E,p)θ(E)δ(E2 − |p|2)dEd3p

=

∫
R3

ψ̃†1(p)(|p|+ σ · p)ψ̃2(p)
d3p

2|p|

=

∫
R3

ψ̃†1(p)ψ̃2(p)d3p

Here ψ̃(p) = ψ̃(|p|,p).
The last expression is manifestly invariant under spatial (Spin(3)) rotations,

but not Lorentz (Spin(3, 1) = SL(2,C)) transformations. One can see Lorentz
invariance using the first expression, since for Ω ∈ SL(2,C) one has

(Ω†)−1(E + σ · p)Ω−1 = E′ + σ · p′

where E′,p′ are the Lorentz-transformed energy-momenta

(E′,p′) = Λ−1 · (E,p)

(Λ ∈ SO(3, 1) corresponds to Ω ∈ Spin(3, 1) in the spin double cover).
Note that the operator E + σ · p is just the momentum space identification

of Minkowski space-time R3,1 with 2 by 2 hermitian matrices:

x = (t, x1, x2, x3)↔M =

(
t+ x3 x1 − ix2
x1 + ix2 t− x3

)
with the Minkowski norm given by −detM . One can identify complexified
Minkowski space-time R3,1 ⊗C = C4 with all 2 by 2 complex matrices by:

(t+ iτ, z1, z2, z3)↔M =

(
t+ iτ + z3 z1 − iz2
z1 + iz2 t+ iτ − z3

)
Euclidean space-time R4 will get identified with complex matrices of the form

(τ, x1, x2, x3)↔M =

(
iτ + x3 x1 − ix2
x1 + ix2 iτ − x3

)
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and analytic continuation between Euclidean and Minkowski space takes place
on functions of such matrices.

The group Spin(4,C) = SL(2,C)× SL(2,C) acts on complex matrices by

M → gLMg−1R

preserving the determinant (here gL, gR ∈ SL(2,C)). The subgroup SL(2,C)

such that gR = (g†L)−1 is the Lorentz group Spin(3, 1) that preserves Minkowski
space-time, the subspace of hermitian matrices. The subgroup

SU(2)L × SU(2)R = Spin(4)

such that gL ∈ SU(2)L and gR ∈ SU(2)R preserves the Euclidean space-time.
If one tries to find a Schwinger function S2 related by analytic continuation

to W2 for the Weyl spinor theory, the factor E + σ · p in the expression for W2

causes two sorts of problems:

• After analytic continuation to Euclidean space-time it takes spinors trans-
forming under SU(2)R to spinors transforming under a different group,
SU(2)L. If the only fields in the theory are right-handed Weyl spinor
fields, the Schwinger function cannot give an invariant inner product.

• After analytic continuation the self-adjoint factor E + σ · p is neither
self-adjoint nor skew-adjoint. This makes it difficult to give S2 an inter-
pretation as inner product for a Euclidean field theory.

The first problem can be addressed by introducing fields of both chiralities,
giving up on having a theory of only one chirality of Weyl spinors. The ad-
jointness problem however still remains. Schwinger and later authors have dealt
with this problem by doubling the number of degrees of freedom. Schwinger’s
argument was that this was necessary in order to have Euclidean transformation
properties that did not distinguish a time direction. The problem also appears
when one tries to find a generalization of the time-reflection operator Θ that
allows reconstruction of the Minkowski theory from the Euclidean theory. The
conventional wisdom has been to follow Osterwalder-Schrader, who deal with
this by doubling the degrees of freedom, using a Θ which interchanges the two
sorts of fields[27]. A fairly complete bibliography of attempts to deal with the
Euclidean quantum spinor field is included at the end of this article.

2.4 Physical states and SO(4) symmetry breaking

It appears to be a fundamental feature of Euclidean quantum field theory that,
although Schwinger functions are SO(4) invariant, recovering a connection to
the physical theory in Minkowski space-time requires breaking SO(4) invari-
ance by a choice of time direction. In Minkowski space-time there is a Lorentz-
invariant distinction between positive and negative energy, while in Euclidean
space-time the corresponding distinction between positive and negative imagi-
nary time is not SO(4) invariant.
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While the Euclidean Fock space has an SO(4) action, states in it correspond
not to physical states, but to paths in the space of physical states. A choice of
imaginary time direction is needed to get physical states, either by restriction to
a constant imaginary time subspace or by restriction to a positive imaginary time
subspace together with use of reflection in imaginary time. The path integral
formalism has the same feature: one can write Schwinger functions as an SO(4)
invariant path integral, but to get states one must choose a hypersurface and
then define states using path integrals with fixed data on the hypersurface.

Needing to double spinor degrees of freedom and not being able to write
down a free chiral spinor theory have always been disconcerting aspects of Eu-
clidean quantum field theory. An alternate interpretation of the problems with
quantizing spinor fields in Euclidean space-time would be that they are a more
severe version of the problem with scalars, and again the quantization of such
theories requires introducing a new degree of freedom that picks out an imagi-
nary time direction.

This breaking of SO(4) symmetry is a sort of spontaneous symmetry break-
ing with not the lowest energy state, but the distinction between positive and
negative energy being responsible for the symmetry breaking. In section 4 we
will argue that this spontaneous symmetry breaking is exactly the observed
spontaneous symmetry breaking of the electroweak symmetry of the standard
model. We will first though turn to a geometric framework in which one can nat-
urally understand the analytic continuation between Euclidean and Minkowski
spinor fields.

3 Twistor geometry

Twistor geometry is a 1967 proposal [28] due to Roger Penrose for a very dif-
ferent way of formulating four-dimensional space-time geometry. For a detailed
expository treatment of the subject, see [31] (for a version aimed at physicists
and applications in amplitude calculations, see [2]). Fundamental to twistor ge-
ometry is the twistor space T = C4, as well as its projective version, the space
PT = CP 3 of complex lines in T .

3.1 Compactified and complexified space-time

The relation of twistor space to conventional space-time is that complexified
and compactified space-time is identified with the Grassmanian M = G2,4(C)
of complex two-dimensional linear subspaces in T . A space-time point is thus
a C2 in C4 which tautologically provides the spinor degree of freedom at that
point. The spinor bundle S is the tautological two-dimensional complex vector
bundle over M whose fiber Sm at a point m ∈ M is the C2 that defines the
point.

The group SL(4,C) acts on T and transitively on the spaces PT and M
of its complex subspaces. Points in the Grassmanian M can be represented as
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elements
ω = (v1 ⊗ v2 − v2 ⊗ v1) ∈ Λ2(C4)

by taking two vectors v1, v2 spanning the subspace. Λ2(C4) is six conplex di-
mensional and scalar multiples of ω gives the same point in M , so ω identifies
M with a subspace of P (Λ2(C4)) = CP 5. Such ω satisfy the equation

ω ∧ ω = 0 (3.1)

which identifies (the “Klein correspondence”) M with a submanifold of CP 5

given by a non-degenerate quadratic form. Twistors are spinors in six dimen-
sions, with the action of SL(4,C) on Λ2(C4) = C6 preserving the quadratic
form 3.1, and giving the spin double cover homomorphism

SL(4,C) = Spin(6,C)→ SO(6,C)

To get the tangent bundle of M , one needs not just the spinor bundle S,
but also another two complex-dimensional vector bundle, the quotient bundle
S⊥ with fiber S⊥m = C4/Sm. Then the tangent bundle is

TM = Hom(S, S⊥) = S∗ ⊗ S⊥

with the tangent space TmM a four complex dimensional vector space given by
the Hom(Sm, S

⊥
m), the linear maps from Sm to S⊥m.

A choice of coordinate chart on M is given by picking a point m ∈ M and
identifying S⊥m with a complex two plane transverse to Sm. The point m will be
the origin of our coordinate system, so we will denote Sm by S0 and S⊥m by S⊥0 .
Now T = S0 ⊕ S⊥0 and one can choose basis elements e1, e2 ∈ S0, e3, e4 ∈ S⊥0
for T . The coordinate of the two-plane spanned by the columns of

1 0
0 1
z01 z01
z10 z11


will be the 2 by 2 complex matrix

Z =

(
z01 z01
z10 z11

)
This coordinate chart does not include all of M , since it misses those points
in M corresponding to complex two-planes that are not transverse to S⊥0 . Our
interest however will ultimately be not in the global structure of M , but in its
local structure near the chosen point m, which we will study using the 2 by
2 complex matrix Z as coordinates. When we discuss M we will sometimes
not distinguish between M and its local version as a complex four-dimensional
vector space with origin of coordinates at m.
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Writing elements of T as 
s1
s2
s⊥1
s⊥2


an element of T will be in the complex two plane with coordinate Z when(

s⊥1
s⊥2

)
= Z

(
s1
s2

)
(3.2)

This incidence equation characterizes in coordinates the relation between lines
(elements of PT ) and planes (elements of M) in twistor space T . We’ll some-
times also write this as

s⊥ = Zs

An SL(4,C) determinant 1 matrix(
A B
C D

)
acts on T by (

s
s⊥

)
→
(
As+Bs⊥

Cs+Ds⊥

)
On lines in the plane Z this is[

s
Zs

]
→
[
As+BZs
Cs+DZs

]
=

[
(A+BZ)s

(C +DZ)(A+BZ)−1(A+BZ)s

]
so the corresponding action on M will be given by

Z → (C +DZ)(A+BZ)−1

Since Λ2(S0) = Λ2(S⊥0 ) = C, S0 and S⊥0 have (up to scalars) unique choices
εS0

and εS⊥
0

of non-degenerate antisymmetric bilinear form, and corresponding

choices of SL(2,C) ⊂ GL(2,C) acting on S0 and S⊥0 . These give (again, up to
scalars), a unique choice of a non-degenerate symmetric form on Hom(S0, S

⊥
0 ),

such that
〈Z,Z〉 = detZ

The subgroup

Spin(4,C) = SL(2,C)× SL(2,C) ⊂ SL(4,C)

of matrices of the form (
A 0
0 D

)
with

detA = detD = 1
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acts on M in coordinates by

Z → DZA−1

preserving 〈Z,Z〉.
Besides the spaces PT and M of complex lines and planes in T , it is also

useful to consider the correspondence space whose elements are complex lines
inside a complex plane in T . This space can also be thought of as P (S), the
projective spinor bundle over M . There is a diagram of maps

P (S)

PT M

µ ν

where ν is the projection map for the bundle P (S) and µ is the identification
of a complex line in S as a complex line in T . µ and ν give a correspondence
between geometric objects in PT and M . One can easily see that µ(ν−1(m)) is
the complex projective line in PT corresponding to a point m ∈M (a complex
two plane in T is a complex projective line in PT ). In the other direction,
ν(µ−1) takes a point p in PT to α(p), a copy of CP 2 in M , called the “α-plane”
corresponding to p.

In our chosen coordinate chart, this diagram of maps is given by

(Z, s) ∈ P (S)

[
s
Zs

]
∈ PT Z ∈M

µ
ν

The incidence equation 3.2 relating PT and M implies that an α-plane is a null
plane in the metric discussed above. Given two points Z1, Z2 inM corresponding
to the same point in PT , their difference satisfies

s⊥ = (Z1 − Z2)s = 0

Z1 − Z2 is not an invertible matrix, so has determinant 0 and is a null vector.

3.2 The Penrose-Ward transform

The Penrose transform relates solutions of conformally-invariant wave equations
on M to sheaf cohomology groups, identifying

• Solutions to a helicity k
2 holomorphic massless wave equation on U .

• The sheaf cohomology group

H1(Û ,O(−k − 2))
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Here U ⊂M and Û ⊂ PT are open sets related by the twistor correspondence,
i.e.

Û = µ(ν−1(U))

We will be interested in cases where U and Û are orbits in M and PT for a
real form of SL(4,C). Here O(−k − 2) is the sheaf of holomorphic sections of
the line bundle L⊗(−k−2) where L is the tautological line bundle over PT . For
a detailed discussion, see for instance chapter 7 of [31].

The Penrose-Ward transform is a generalization of the above, introducing
a coupling to gauge fields. One aspect of this is the Ward correspondence, an
isomorphism between

• Holomorphic anti-self-dual GL(n,C) connections A on U ⊂M .

• Holomorphic rank n vector bundles E over Û ⊂ PT .

Here “anti-self-dual” means the curvature of the connection satisfies

∗FA = −FA

where ∗ is the Hodge dual. There are some restrictions on the open set U , and
E needs to be trivial on the complex projective lines corresponding to points
m ∈ U .

In one direction, the above isomorphism is due to the fact that the curva-
ture FA is anti-self-dual exactly when the connection A is integrable on the
intersection of an α-plane with U . One can then construct the fiber Ep of E
at p as the covariantly constant sections of the bundle with connection on the
corresponding α-plane in M . In the other direction, one can construct a vector
bundle Ẽ on U by taking as fiber at m ∈ U the holomorphic sections of E
on the corresponding complex projective line in PT . Parallel transport in this
vector bundle can be defined using the fact that two points m1,m2 in U on the
same α-plane correspond to intersecting projective lines in PT . For details, see
chapter 8 of [31] and chapter 10 of [24].

Given an anti-self-dual gauge field as above, the Penrose transform can be
generalized to a Penrose-Ward transform, relating

• Solutions to a helicity k holomorphic massless wave equation on U , coupled
to a vector bundle Ẽ with anti-self-dual connection A.

• The sheaf cohomology group

H1(Û ,O(E)(−k − 2))

For more about this generalization, see [14].
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3.3 Twistor geometry and real forms

So far we have only considered complex twistor geometry, in which the relation
to space-time geometry is that M is a complexified version of a four real dimen-
sional space-time. From the point of view of group symmetry, the Lie algebra
of SL(4,C) is the complexification

sl(4,C) = g⊗C

for several different real Lie algebras g, which are the real forms of sl(4,C).
To organize the possibilities, recall that SL(4,C) is Spin(6,C), the spin group
for orthogonal linear transformations in six complex dimensions, so sl(4,C) =
so(6,C). If one instead considers orthogonal linear transformations in six real
dimensions, there are different possible signatures of the inner product to con-
sider, all of which become equivalent after complexification. This corresponds
to the possible real forms

g = so(3, 3), so(4, 2), so(5, 1), and so(6)

which we will discuss (there’s another real form, su(3, 1), which we won’t con-
sider). For more about real methods in twistor theory, see [38].

3.3.1 Spin(3, 3) = SL(4,R)

The simplest way to get a real version of twistor geometry is to take the discus-
sion of section 3 and replace complex numbers by real numbers. Equivalently,
one can look at subspaces invariant under the usual conjugation, given by the
map σ

σ


s1
s2
s⊥1
s⊥2

 =


s1
s2
s⊥1
s⊥2


which acts not just on T but on PT and M . The fixed point set of the action
on M is M2,2 = G2,4(R), the Grassmanian of real two-planes in R4. As a
manifold, G2,4(R) is S2 × S2, quotiented by a Z2. M2,2 is acted on by the
group Spin(3, 3) = SL(4,R) of conformal transformations. σ acting on PT
acts on the CP 1 corresponding to a point in M2,2 with an action whose fixed
points form an equatorial circle.

Coordinates can be chosen as in the complex case, but with everything real.
A point in M2,2 is given by a real 2 by 2 matrix, which can be written in the
form

Z =

(
x0 + x3 x1 − x2
x1 + x2 x0 − x3

)
for real numbers x0, x1, x2, x3. M2,2 is acted on by the group Spin(3, 3) =
SL(4,R) of conformal transformations as in the complex case by

Z → (C +DZ)(A+BZ)−1
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with the subgroup of rotations

Z → DZA−1

for A,D ∈ SL(2,R) given by

Spin(2, 2) = SL(2,R)× SL(2,R)

This subgroup preserves

〈Z,Z〉 = detZ = x20 − x23 − x21 + x22

For the Penrose transform in this case, see Atiyah’s account in section 6.5
of [5]. For the Ward correspondence, see section 10.5 of [24].

3.3.2 Spin(4, 2) = SU(2, 2)

The real case of twistor geometry most often studied (a good reference is [31]) is
that where the real space-time is the physical Minkowski space of special relativ-
ity. The conformal compactification of Minkowski space is a real submanifold of
M , denoted here by M3,1. It is acted upon transitively by the conformal group
Spin(4, 2) = SU(2, 2). This conformal group action on M3,1 is most naturally
understood using twistor space, as the action on complex planes in T coming
from the action of the real form SU(2, 2) ⊂ SL(4,C) on T .

SU(2, 2) is the subgroup of SL(4,C) preserving a real Hermitian form Φ of
signature (2, 2) on T = C4. In our coordinates for T , a standard choice for Φ is
given by

Φ

((
s
s⊥

)
,

(
s′

(s⊥)′

))
=
(
s s⊥

)(0 1
1 0

)(
s′

(s⊥)′

)
= s†(s⊥)′ + (s⊥)†s′ (3.3)

Minkowski space is given by complex planes on which Φ = 0, so

Φ

((
s
Zs

)
,

(
s
Zs

))
= s†(Z + Z†)s = 0

Thus coordinates of points on Minkowski space are anti-Hermitian matrices Z,
which can be written in the form

Z = −i
(
x0 + x3 x1 − ix2
x1 + ix2 x0 − x3

)
= −i(x01 + x · σ)

where σj are the Pauli matrices. The metric is the usual Minkowski metric,
since

〈Z,Z〉 = detZ = −x20 + x21 + x22 + x23

One can identify compactified Minkowski space M3,1 as a manifold with the Lie
group U(2) which is diffeomorphic to (S3 × S1)/Z2. The identification of the
tangent space with anti-Hermitian matrices reflects the usual identification of
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the tangent space of U(2) at the identity with the Lie algebra of anti-Hermitian
matrices.

SL(4, C) matrices are in SU(2, 2) when they satisfy(
A† C†

B† D†

)(
0 1
1 0

)(
A B
C D

)
=

(
0 1
1 0

)
The Poincaré subgroup P of SU(2, 2) is given by elements of SU(2, 2) of the
form (

A 0
C (A†)−1

)
where A ∈ SL(2,C) and A†C = −C†A. These act on Minkowski space by

Z → (C + (A†)−1Z)A−1 = (A†)−1ZA−1 + CA−1

One can show that CA−1 is anti-Hermitian and gives arbitrary translations on
Minkowski space. The Lorentz subroup is Spin(3, 1) = SL(2,C) acting by

Z → (A†)−1ZA−1

Here SL(2, C) is acting by the standard representation on S0, and by the
conjugate-dual representation on S⊥0 .

Note that, for the action of the Lorentz SL(2,C) subgroup, twistors written
as elements of S0⊕S⊥0 behave like usual Dirac spinors (direct sums of a standard
SL(2,C) spinor and one in the conjugate-dual representation), with the usual
Dirac adjoint, in which the SL(2,C)-invariant inner product is given by the
signature (2, 2) Hermitian form

〈ψ1, ψ2〉 = ψ†1γ0ψ2

Twistors, with their SU(2, 2) conformal group action and incidence relation to
space-time points, are however something different than Dirac spinors.

The SU(2, 2) action on M has six orbits: M++,M−−,M+0,M−0,M00, where
the subscript indicates the signature of Φ restricted to planes corresponding
to points in the orbit. The last of these is a closed orbit M3,1, compactified
Minkowski space. Acting on projective twistor space PT , there are three orbits:
PT+, PT−, PT0, where the subscript indicates the sign of Φ restricted to the
line in T corresponding to a point in the orbit. The first two are open orbits
with six real dimensions, the last a closed orbit with five real dimensions. The
points in compactified Minkowski space M00 = M3,1 correspond to projective
lines in PT that lie in the five dimensional space PT0. Points in M++ and M−−
correspond to projective lines in PT+ or PT− respectively.

One can construct infinite dimensional irreducible unitary representations of
SU(2, 2) using holomorphic geometry on PT+ or M++, with the Penrose trans-
form relating the two constructions [13]. For PT+ the closure of the orbit PT+,
the Penrose transform identifies the sheaf cohomology groups H1(PT+,O(−k−
2)) for k > 0 with holomorphic solutions to the helicity k

2 wave equation on
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M++. Taking boundary values on M3,1, these will be real-analytic solutions to
the helicity k

2 wave equation on compactified Minkowski space. If one instead
considers the sheaf cohomology H1(PT+,O(−k − 2)) for the open orbit PT+
and takes boundary values on M3,1 of solutions on M++, the solutions will be
hyperfunctions, see [32].

The Ward correspondence relates holomorphic vector bundles on PT+ with
anti-self-dual GL(n,C) gauge fields on M++. However, in this Minkowski sig-
nature case, all solutions to the anti-self-duality equations as boundary values
of such gauge fields are complex, so one does not get anti-self-dual gauge fields
for compact gauge groups like SU(n).

3.3.3 Spin(5, 1) = SL(2,H)

Changing from Minkowski space-time signature (3, 1) to Euclidean space-time
signature (4, 0), the compactified space-time M4 = S4 is again a real subman-
ifold of M . To understand the conformal group and how twistors work in this
case, it is best to work with quaternions instead of complex numbers, iden-
tifying T = H2. When working with quaternions, one can often instead use
corresponding complex 2 by 2 matrices, with a standard choice

q = q0 + q1i + q2j + q3k↔ q0 − i(q1σ1 + q2σ2 + q3σ3)

For more details of the quaternionic geometry that appears here, see [5] or [30]
The relevant conformal group acting on S4 is Spin(5, 1) = SL(2,H), again

best understood in terms of twistors and the linear action of SL(2,H) on T =
H2. The group SL(2,H) is the group of quaternionic 2 by 2 matrices satisfying a
single condition that one can think of as setting the determinant to one, although
the usual determinant does not make sense in the quaternionic case. Here one
can interpret the determinant using the isomorphism with complex matrices,
or, at the Lie algebra level, sl(2,H) is the Lie algebra of 2 by 2 quaternionic
matrices with purely imaginary trace.

While one can continue to think of points in S4 ⊂M as complex two planes,
one can also identify these complex two planes as quaternionic lines and S4 as
HP 1, the projective space of quaternionic lines in H2. The conventional choice
of identification between C2 and H is

s =

(
s1
s2

)
↔ s = s1 + s2j

One can then think of the quaternionic structure as providing an alternate
notion of conjugation than the usual one, given instead by left multiplying by
j ∈ H. Using jzj = −z one can show that

σ


s1
s2
s⊥1
s⊥2

 =


−s2
s1
−s⊥2
s⊥1

 (3.4)
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σ satisfies σ2 = −1 on T , so σ2 = 1 on PT . We will see later that while σ has
no fixed points on PT , it does fix complex projective lines.

The same coordinates used in the complex case can be used here, where now
S⊥0 is a quaternionic line transverse to S0, so coordinates on T are the pair of
quaternions (

s
s⊥

)
These are also homogeneous coordinates for points on S4 = HP 1 and our choice
of Z ∈ H given by (

s
Zs

)
as the coordinate in a coordinate system with origin the point with homogeneous
coordinates (

1
0

)
The point at ∞ will be the one with homogeneous coordinates(

0
1

)
This is the quaternionic version of the usual sort of choice of coordinates in the
case of S2 = CP 1, replacing complex numbers by quaternions. The coordinate
of a point on S4 with homogeneous coordinates(

s
s⊥

)
will be

s⊥s−1 =
(s⊥1 + s⊥2 j)(s1 − s1j)
|s1|2 + |s2|2

=
s⊥1 s1 + s⊥2 s2 + (−s⊥1 s2 + s⊥2 s1)j

|s1|2 + |s2|2
(3.5)

A coordinate of a point will now be a quaternion Z = x0 + x1i + x2j + x3k
corresponding to the 2 by 2 complex matrix

Z = x01− ix · σ =

(
x0 − ix3 −ix1 − x2
−ix1 + x2 x0 + ix3

)
The metric is the usual Euclidean metric, since

〈Z,Z〉 = detZ = x20 + x21 + x22 + x23

The conformal group SL(2,H) acts on T = H2 by the matrix(
A B
C D

)
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where A,B,C,D are now quaternions, satisfying together the determinant 1
condition. These act on the coordinate Z as in the complex case, by

Z → (C +DZ)(A+BZ)−1

The Euclidean group in four dimensions will be the subgroup of elements of the
form (

A 0
C D

)
such that A and D are independent unit quaternions, thus in the group Sp(1) =
SU(2), and C is an arbitrary quaternion. The Euclidean group acts by

Z → DZA−1 + CA−1

with the spin double cover of the rotational subgroup now Spin(4) = Sp(1) ×
Sp(1). Note that spinors behave quite differently than in Minkowski space:
there are independent unitary SU(2) actions on S0 and S⊥0 rather than a non-
unitary SL(2,C) action on S0 that acts at the same time on S⊥0 by the conjugate
transpose representation.

The projective twistor space PT is fibered over S4 by complex projective
lines

CP 1 PT = CP 3

S4 = HP 1

π (3.6)

The projection map π is just the map that takes a complex line in T identified
with H2 to the corresponding quaternionic line it generates (multiplying ele-
ments by arbitrary quaternions). In this case the conjugation map σ of 3.4 has
no fixed points on PT , but does fix the complex projective line fibers and thus
the points in S4 ⊂M . The action of σ on a fiber takes a point on the sphere to
the opposite point, so has no fixed points.

Note that the Euclidean case of twistor geometry is quite different and much
simpler than the Minkowski one. The correspondence space P (S) (here the
complex lines in the quaternionic line specifying a point in M4 = S4) is just PT
itself, and the twistor correspondence between PT and S4 is just the projection
π. Unlike the Minkowski case where the real form SU(2, 2) has a non-trivial
orbit structure when acting on PT , in the Euclidean case the action of the real
form SL(2,H) is transitive on PT .

In the Euclidean case, the projective twistor space has another interpreta-
tion, as the bundle of orientation preserving orthogonal complex structures on
S4. A complex structure on a real vector space V is a linear map J such that
J2 = −1, providing a way to give V the structure of a complex vector space
(multiplication by i is multiplication by J). J is orthogonal if it preserves an
inner product on V . While on R2 there is just one orientation-preserving or-
thogonal complex structure, on R4 the possibilities can be parametrized by a
sphere S2. The fiber S2 = CP 1 of 3.6 above a point on S4 can be interpreted as
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the space of orientation preserving orthogonal complex structures on the four
real dimensional tangent space to S4 at that point.

One way of exhibiting these complex structures on R4 is to identify R4 = H
and then note that, for any real numbers x1, x2, x3 such that x21 + x22 + x23 = 1,
one gets an orthogonal complex structure on R4 by taking

J = x1i + x2j + x3k

Another way to see this is to note that the rotation group SO(4) acts on orthogo-
nal complex structures, with a U(2) subgroup preserving the complex structure,
so the space of these is SO(4)/U(2), which can be identified with S2.

More explicitly, in our choice of coordinates, the projection map is

π :

[
s

s⊥ = Zs

]
→ Z =

(
x0 − ix3 −ix1 − x2
−ix1 + x2 x0 + ix3

)
For any choice of s in the fiber above Z, s⊥ associates to the four real coordinates
specifying Z an element of C2. For instance, if s =

(
1, 0
)
, the identification of

R4 with C2 is 
x0
x1
x2
x3

↔ (
x0 − ix3
−ix1 + x2

)

The complex structure on R4 one gets is not changed if s gets multiplied by a
complex scalar, so it just depends on the point [s] in the CP 1 fiber.

For another point of view on this, one can see that for each point p ∈ PT ,
the corresponding α-plane ν(µ−1(p)) in M intersects its conjugate σ(ν(µ−1(p)))
in exactly one real point, π(p) ∈ M4. The corresponding line in PT is the line
determined by the two points p and σ(p). At the same time, this α-plane
provides an identification of the tangent space to M4 at π(p) with a complex
two plane, the α-plane itself. The CP 1 of α -planes corresponding to a point in
S4 are the different possible ways of identifying the tangent space at that point
with a complex vector space. The situation in the Minkowski space case is quite
different: there if CP 1 ⊂ PT0 corresponds to a point Z ∈ M3,1, each point p
in that CP 1 gives an α-plane intersecting M3,1 in a null line, and the CP 1 can
be identified with the “celestial sphere” of null lines through Z.

In the Euclidean case , the Penrose transform will identify the sheaf cohomol-
ogy group H1(π−1(U),O(−k − 2)) for k > 0 with solutions of helicity k

2 linear
field equations on an open set U ⊂ S4. Unlike in the Minkowski space case, in
Euclidean space there are U(n) bundles Ẽ with connections having non-trivial
anti-self-dual curvature. The Ward correspondence between such connections
and holomorphic bundles E on PT for U = S4 has been the object of inten-
sive study, see for example Atiyah’s survey [5]. The Penrose-Ward transform
identifies

• Solutions to a field equation on U for sections Γ(Sk ⊗ Ẽ), with covariant
derivative given by an anti-self-dual connection A, where Sk is the k’th
symmetric power of the spinor bundle.
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• The sheaf cohomology group

H1(Û ,O(E)(−k − 2))

where Û = π−1U .

For the details of the Penrose-Ward transform in this case, see [18].

3.3.4 Spin(6) = SU(4)

If one picks a positive definite Hermitian inner product on T , this determines a
subgroup SU(4) = Spin(6) that acts on T , and thus on PT,M and P (S). One
has

PT =
SU(4)

U(3)
, M =

SU(4)

S(U(2)× U(2))
, P (S) =

SU(4)

S(U(1)× U(2))

and the SU(4) action is transitive on these three spaces. There is no four real
dimensional orbit in M that could be interpreted as a real space-time that would
give M after complexification.

In this case the Borel-Weil-Bott theorem relates sheaf-cohomology groups
of equivariant holomorphic vector-bundles on PT,M and P (S), giving them
explicitly as certain finite dimensional irreducible representations of SU(4). For
more details of the relation between the Penrose transform and Borel-Weil-
Bott, see [6]. The Borel-Weil-Bott theorem [8] can be recast in terms of index
theory, replacing the use of sheaf-cohomology with the Dirac equation [9]. For
a more general discussion of the relation of representation theory and the Dirac
operator, see [19].

4 Twistor geometry and unification

Conventional attempts to relate twistor geometry to fundamental physics have
concentrated on the Minkowski signature real form, providing a fundamental
role for Weyl spinors and a different perspective on space-time symmetries,
naturally incorporating conformal invariance. The Penrose transform gives an
alternative treatment of conformally invariant massless linear field equations on
Minkowski space-time in terms of sheaf cohomology of powers of the tautological
bundle on PT . Since there are no non-trivial solutions of the Minkowski space-
time SU(n) anti-self-duality equations, there is no role for the Penrose-Ward
transform to play. Twistor geometry appears to have little to say about either
the internal symmetries of the Standard Model or the origin of the Einstein
equations of general relativity.

Taking Euclidean space-time as fundamental, the situation is quite different,
indicating a possible new unified way of understanding the basic degrees of free-
dom of the Standard Model and gravity. Weyl spinors still play a fundamental
role, and usual space-time symmetries are recovered after analytic continua-
tion. One also gets the Standard Model internal symmetries, from U(2) and
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SU(3) internal symmetries at each point on the projective twistor space PT ,
with SU(2) ⊂ U(2) spontaneously broken. The fundamental degrees of free-
dom governing gravitational forces are now chiral, related to the usual story of
Ashtekar variables. The Penrose-Ward transform relates a holomorphic version
of gauge-field dynamics on projective twistor space to a chiral one on Euclidean
space-time. A generation of Standard Model fermions naturally fit into spinor
fields on PT .

In this section we’ll examine this proposal in more detail, in the next turn
to the new problems it raises.

4.1 U(2) electroweak symmetry and its spontaneous sym-
metry breaking

As discussed in section 3.3.3, the fibration 3.6 of PT over M4 can be identified
with the projective spinor bundle P (S). The fiber above each point of M4 is the
space of orthogonal complex structures on the tangent space at the point, so a
copy of SO(4)/U(2). To each element s of the fiber S0, one gets an identification
of the real tangent space at 0 with maps from s to elements of S⊥0 , which has a
complex vector space structure. The corresponding complex structure this puts
on the real tangent space at 0 only depends on the complex line generated by
s, so the point it determines in P (S0).

One thus has for each point in PT = P (S) a complex structure on the
tangent space at π(s) and a U(2) ⊂ SO(4) group that leaves that complex
structure invariant. These together give a principal bundle

U(2) Sp(2)

PT = Sp(2)/U(2)

over PT where the choice of Sp(2) (acting in the usual way on H2) depends on
how twistor space C4 is identified with H2.

As discussed in section 2, given a quantum field theory defined in Euclidean
space time, the four-dimensional rotational symmetry needs to be broken by a
choice of (imaginary) time direction in order to define the states of the theory.
The choice of an (imaginary) time direction is given by the choice of vector in
the tangent space of M4. For each point in the fiber of 3.6 this tangent space
gets identified with C2 and a tangent vector in the (imaginary) time direction
transforms under U(2) as the usual representation on C2. Note that this is the
way the Higgs field in the Standard Model transforms under the electroweak
U(2). This indicates that the Higgs field of the Standard Model has a Euclidean
space-time geometrical significance, as a vector pointing in the imaginary time
direction, with the necessary breaking of symmetry needed to define the space
of states corresponding to electroweak symmetry breaking.

A choice of (imaginary) time direction has been made by our choice of coor-
dinates on M4 (equation 3.5): the real direction in the quaternionic coordinate.
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This choice could be changing by changing coordinates, for instance by an action
of Spin(4),

s⊥s−1 → q1s
⊥s−1q−12

for (q1, q2) a pair of unit quaternions. The subgroup q1 = q2 is a Spin(3)
subgroup which changes the coordinates while leaving the (imaginary) time
direction direction invariant. This will correspond to spatial rotations, and
these transformations will act on the states of the theory.

One way to characterize the single-particle state space H1 for a spinor field
is in terms of the initial data at t = 0 for a solution to a Dirac equation. This
has the disadvantage of obscuring the Poincaré group action on H1, but the
advantage that one can identify the spacelike t = 0 subspace of Minkowski
space M3,1 (which will be a 3-sphere denoted M3) with the τ = 0 equator M4

0

in Euclidean space M4 = S4 that divides the space into upper (τ > 0) and lower
(τ < 0) hemispheres M4

+ and M4
−.

Taking the Euclidean point of view as starting point, recall from section
3.3.3 that, after choosing an identification of H2 with C4, one has a fibration of
PT over S4 = M4. In the coordinates for S4 of equation 3.5, setting τ = x0 = 0
corresponds to the condition that the real part of the numerator vanish, so

s⊥1 s1 + s⊥2 s2 + s⊥1 s1 + s⊥2 s2 = 0

Note that (by equation 3.3), this is exactly the condition

Φ(s, s) = 0

that describes the five-dimensional subspace N = PT0 of PT which contains the
complex lines corresponding to Minkowski space M3,1. One has the fibration

CP 1 N = PT0 PT = CP 3

M3 S4 = HP 1

π

as well as

CP 1 PT± PT = CP 3

M4
± S4 = HP 1

π

Instead of relating Euclidean and Minkowski space spinor fields by analytic
continuation of solutions of the massless Dirac equation between M4 and M3,1,
one can instead use the Euclidean and Minkowski Penrose transforms to relate
both to holomorphic objects on PT . The single-particle state space then will
be given by holomorphic sections of a bundle over PT+, the part of PT that
projects to the upper hemisphere of M4.
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4.2 Chirality and gravitational degrees of freedom

Recall that the tangent bundle to M is

TM = Hom(S, S⊥) = S∗ ⊗ S⊥

and tangent vectors in TmM identify the fibers Sm and S⊥m. This implies that
cotangent vectors also give such an identification, and one finds that the bundle
of two-forms satisfies

Λ2M ⊂ Hom(S, S)⊕Hom(S⊥, S⊥)

We’ll call two-forms in Λ2
− ⊂ Hom(S, S) anti-self dual and those in Λ2

+ ⊂
Hom(S⊥, S⊥) self-dual. Here we’re following the conventions of [4] which should
be consulted for more details about this and what follows. An alternate defini-
tion of Λ2

±M is as the ±1 eigenspaces of the Hodge star operator.
If one gauges the Spin(4) symmetry acting on the tangent space to M , the

gauge fields are the spin-connection, taking values in the Lie algebra of Spin(4),
su(2) + su(2). These two factors separately act on the S and S⊥ bundles and
can be identified with the anti-self dual and self dual fibers of Λ2(M). The
curvature of the spin connection takes values in linear maps from Λ2(M) to
itself, and with respect to the Λ2

± decomposition has the block-diagonal form:(
A B
BT C

)
The corresponding metric will be Einstein when B = 0.

There is a long history of “chiral” formulations of the theory of general
relativity which use the spin connection and take advantage of the above de-
composition into self-dual and anti-self-dual pieces. For an extensive discussion
of this topic, see [22] (this book includes a final chapter discussing twistor space
versions of this, see also [17]). Besides the spin connection, such a theory also
needs to incorporate the tetrad fields giving the vectors in orthonormal frames.

Note that the proposal here is that the electroweak SU(2) gauge fields are
the spin connection fields above corresponding to the second su(2) factor, the
one acting on the bundle S⊥. There is also a long history of proposals for
“graviweak unification”, for two examples see [26] and [3]. The version of this
idea proposed here is rather different due to its use of Euclidean space-time and
identification of the imaginary time component of a tetrad as responsible for
spontaneous symmetry breaking. Further work is needed to see if this gives a
viable version of quantized gravity, one which would be naturally unified with
the electroweak theory.

4.3 Spinors on PT

Taking as fundamental the space PT with its fibration to M4, one can ask what
holomorphic vector bundle on PT corresponds to the Standard Model matter
fields. It turns out that the spinor bundle on PT has the correct properties to
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describe a generation of leptons. At a point p ∈ PT , the complex tangent space
splits into a sum

Tp = Vp ⊕Hp

of

• a complex one-dimensional vertical subspace Vp, tangent to the CP 1 fiber.

• a complex two-dimensional horizontal subspace Hp, which is the real four-
dimensional tangent space to M4 at π(p), given the complex structure
corresponding to the point p in the fiber above π(p).

For details about the relation between spinors and the complex exterior algebra,
see chapter 31 of [37], in particular section 31.5 about the case of spinors in four
dimensions.

Spinors for the sum Vp ⊕ Hp will be given by a tensor product of spinors
for Vp and those for Hp. Spinors for Vp give the usual spinor fiber Sπ(p), those
for Hp are given by Λ∗(Hp) ⊗ Cp, where Cp is the complex line in the fiber
Sπ(p) corresponding to the point p. Elements of Λ∗(Hp) transform U(2) like a
generation of leptons:

• Λ1(Hp) is complex two-dimensional, has the correct transformation prop-
erties to describe a left-handed neutrino and electron.

• Λ2(Hp) is complex one-dimensional, has the correct transformation prop-
erty (weak hypercharge −2) to describe a right-handed electron.

• Λ0(Hp) is complex one-dimensional, has the correct transformation prop-
erties (zero electroweak charges) to describe a conjectural right-handed
neutrino.

4.4 SU(3) symmetry

So far we have just been using aspects of twistor geometry that at a point
p ∈ PT involve the fiber Lp ⊂ C4 of the tautological line bundle L over PT , as
well as the fibration 3.6 to M4. Just as in the case of the Grassmanian M , where
one could define not just a tautological bundle S, but also a quotient bundle
S⊥, over PT one has not just L, but also a quotient bundle L⊥. This quotient
bundle will have a complex 3-dimensional fiber at p given by L⊥p = C4/Lp. One
can think of PT as

PT =
U(4)

U(1)× U(3)
=

SU(4)

S(U(1)× U(3))
=
SU(4)

U(3)

where the U(1) factor acts as unitary transformations on the fiber Lp, while the
U(3) acts as unitary transformations on the fiber C4/Lp. The SU(3) ⊂ U(3)
subgroup provides a possible origin for the color gauge group of the Standard
Model, with fermion fields taking values in L⊥P giving the quarks.

In the case of the U(2) electroweak symmetry, to a point p ∈ PT we asso-
ciated not just the line Lp, but also the spinor space Sπ(p), with Lp ⊂ Sπ(p).

31



The internal electroweak SU(2) acts on S⊥π(p), while the color SU(3) acts on

L⊥p . One needs to avoid defining these spaces as subspaces of the same C4 in
order to ensure that the two group actions commute as needed by the Standard
Model.

5 Open problems and speculative remarks

The unification proposal discussed here is still missing some crucial aspects.
Exactly how to formulate a generation of fermions in terms of objects on PT
in such a way that the SU(3) internal symmetry acts as expected remains to
be worked out. Note that the well-known problems of defining spinor fields in
lattice gauge theory may take on a new aspect when lifted to PT . In particular, a
well-known problem is that Kähler-Dirac (or Kogut-Susskind) fermions carry far
too many degrees of freedom, taking values in Λ∗(R4) rather than the spinors.
Identifying these degrees of freedom as internal degrees of freedom when lifted
to PT = P (S) (with the spinor degree of freedom coming from the fiber) may
be possible. The well-known problems with putting chiral gauge symmetry on
the lattice may also have some solution when working on PT instead of the
four-dimensional base space.

More speculatively, it is possible that the fundamental theory involves not
just the usual twistor geometry of PT , but should be formulated on the seven-
sphere S7, which is a circle bundle over PT . S7 is a remarkably unusual ge-
ometric structure, exhibiting a wide range of different symmetry groups, since
one has

S7 = Spin(8)/Spin(7) = Spin(7)/G2 = Spin(6)/SU(3) = Spin(5)/Sp(1)

as well as algebraic structures arising from identifying S7 with the unit octo-
nions. Our discussion has exploited the last two geometries on S7, not the first
two.

Most critically, it is unclear what the origin of generations might be. This
issue is crucial for any hope of understanding where fermion masses and mixing
angles come from.

The proposal to think about the Standard Model on PT rather than on
Minkowski space involves a significant reconfiguration of the degrees of freedom
and symmetry principles governing the theory. In the conventional definition
of the Standard Model, internal symmetry groups are attached to each point in
space-time, giving a gauge symmetry when treated independently at each point
in space-time. In the twistor space setting described here, internal symmetry
groups are attached instead to each point in PT. Recall that, from the Minkowski
space point of view, such a point corresponds to a null-line, a light ray, so gauge
degrees of freedom live not at points but on light rays. From the Euclidean
point of view, each point in PT projects to a single point in M4, but this is true
for an entire sphere of points in PT . So, for a Euclidean space-time point one
has not a single gauge degree of freedom, but a sphere’s worth of them.
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Much remains to be done in order to realize a fundamental theory based
on PT , since is not clear how the quantum field theory formalism should be
implemented there. From the point of view of geometric quantization and rep-
resentation theory, the relevant case here of the orbits of SU(2, 2) on PT is
an exceptionally challenging one. It is a fundamental example of a “minimal”
orbit, for which geometric quantization runs into difficult technical problems
due to the lack of an appropriate invariant polarization. For a 1982 history of
work on this specific case, see appendix A of [29]. These problems have been
studied from the point of view of Minkowski space-time conformal symmetry
(SU(2, 2)). It may be that the analytic continuation to the Euclidean space-
time perspective will give new insight into these problems. For some discussion
of the relation of the Dirac operator on a manifold such as M4 to the Dolbeault
operator on the the projective twistor space, see [12].

The idea of studying quantum Yang-Mills theory on twistor space has at-
tracted attention over the years, going back for instance to work of Nair [25]
in 1988. This works best in a formalism based on expanding about a chiral
version of Yang-Mills, as studied by Chalmers-Siegel [10]. In 2003 Witten [34]
made major advances in calculating Yang-Mills amplitudes using twistor space,
and this led to an active ongoing program of studying such amplitudes that
exploits twistor space ideas. For more of the literature relating supersymmetric
Yang-Mills theories and quantum field theories on projective twistor space, see
for instance [7], [11] and the review article [1].

The Standard Model internal symmetries on projective twistor space consid-
ered here are part of the twistor space geometry, so somewhat different than the
usual purely internal symmetries studied when relating twistor space and Yang-
Mills theory. Together with the extra feature of a degree of freedom breaking
Euclidean rotational invariance, this does not appear to correspond to previ-
ously studied theories.

For another possible point of view on the anti-self-duality equations, note
that they can be formulated as the vanishing of a moment map, and see an old
speculative discussion of the significance of this in [36]. N = 2 and N = 4 super
Yang-Mills give topological quantum field theories (see [33]), with the feature
that a “twisting” of the space-time symmetry into an internal symmetry plays
a crucial role.

6 Conclusions

The main conclusion of this work is that twistor geometry provides a compelling
picture of fundamental physics, integrating internal and space-time symmetries,
as long as one treats together its Euclidean and Minkowski aspects, related
through the projective twistor space PT. The Euclidean aspect is crucial for
understanding the origin of the Standard Model internal symmetries and the
breaking of electroweak symmetry, which is inherent in the Euclidean space-time
definition of physical states.

Much work remains to be done to explicitly construct and understand a full
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theory defined on PT that would correspond to the Standard Model and general
relativity, with the expected three generations of matter fields. Such a theory
might allow understanding of currently unexplained features of the Standard
Model, as well as possibly making testable predictions that differ from those of
the Standard Model. In particular, the framework proposed is fundamentally
chiral as a theory of gravity, not just in the electroweak sector, and this may
have observable implications.

An argument from beauty can be made, as twistor unification provides a
strikingly elegant way of understanding both space-time geometry and known
internal symmetries. In addition, the geometric Langlands program in recently
years has given evidence for a dramatic unified perspective relating number
theory, geometry and representation theory. The quantum field theory version
of geometric Langlands [20] is based on the same sort of N = 4 super Yang-Mills
theory that may be related to twistor unification (for a recent twistor version,
see [15]), raising the possibility of a remarkable unification of mathematics and
physics at a fundamental level.

A Hyperfunctions

Wightman functions are conventionally described as tempered distributions on
a Schwarz space of test functions. Such distributions occur as boundary values
of holomorphic functions, and one can instead work with hyperfunctions, which
are spaces of such boundary values. Like distributions, they can be thought of
a elements of a dual space to a space of well-behaved test functions, which will
be real analytic, not just infinitely differentiable. For an enlightening discussion
of hyperfunctions in this context, a good source is chapter 9 of Roger Penrose’s
The Road to Reality [41].

A.1 Hyperfunctions on the circle

In the case of the unit circle, one can generalize the notion of functions by
considering boundary values of holomorphic functions on the open unit disk.
Taking the circle to be the equator of a Riemann sphere, a hyperfunction on
the circle can be defined as a pair of functions, one holomorphic on the open
upper hemisphere, the other holomorphic on the open lower hemisphere, with
pairs equivalent when they differ by a globally holomorphic function.

Boundary values of functions holomorphic on the upper hemisphere corre-
spond to Fourier series with Fourier coefficients satisfying an = 0 for n < 0, those
with an = 0 for n > 0 correspond to boundary values of functions holomorphic
on the lower hemisphere. The global holomorphic functions on the sphere are
just the constants, those with only a0 non-zero. Hyperfunctions allow one to
make sense of a very large class of Fourier series (those with coefficients growing
at less than exponential rate as n→ ±∞) as linear functionals on real analytic
test functions (whose coefficients an fall off faster than e−c|n| for some c > 0).
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The discrete series representations of the non-compact Lie group SL(2,R)
can naturally be constructed using such hyperfunctions on the circle. The group
SL(2,R) acts on the Riemann sphere, with orbits the upper hemisphere, the
lower hemisphere, and the equator. The discrete series representations are hy-
perfunctions on the equator, boundary values of holomorphic sections of a line
bundle on either the upper or lower hemisphere. For more about this, see sec-
tion 10.1 of [6]. For a more general discussion of hyperfunctions on the circle
and their relation to hyperfunctions on R, see the previously mentioned chapter
9 of [41].

A.2 Hyperfunctions on R

Solutions to wave equations are conventionally discussed using the theory of dis-
tributions, since even the simplest plane-wave solutions are delta-functions in
energy-momentum space. Distributions are generalizations of functions that can
be defined as elements of the dual space (linear functionals) of some well-behaved
set of functions, for instance smooth functions of rapid decrease (Schwartz func-
tions) for the case of tempered distributions. The theory of hyperfunctions gives
a further generalization, providing a dual of an even more restricted set of func-
tions, analytic functions. Two references which contain extensive discussions of
the theory of hyperfunctions with applications are [40] and [39].

To motivate the definition of a hyperfunction on R, consider the boundary
values of a holomorphic function Φ+ on the open upper half plane. These give
a generalization of the usual notion of distribution, by considering the linear
functional on analytic functions (satisfying an appropriate growth condition)
on R

f → lim
ε→0+

∫ ∞
−∞

Φ+(t+ iε)f(t)dt

Usual distributions are often written with a formal integral symbol denoting the
linear functional. In the case of hyperfunctions, this is no longer formal, but
becomes (a limit of) a conventional integral of a holomorphic function in the
complex plane, so contour deformation and residue theorem techniques can be
applied to its evaluation.

It is sometimes more convenient to have a definition involving symmetrically
the upper and lower complex half-planes. The space B(R) of hyperfunctions on
R can be defined as equivalence classes of pairs of functions (Φ+,Φ−), where
Φ+ is a holomorphic function on the open upper half-plane, Φ− is a holomorphic
function on the open lower upper half-plane. Pairs (Φ1,+,Φ1,−) and (Φ2,+,Φ2,−)
are equivalent if

Φ2,+ = Φ1,+ + ψ, Φ2,− = Φ1,− + ψ

for some globally holomorphic function ψ. We’ll then write a hyperfunction as

φ = [Φ+,Φ−]

The derivative φ′ of a hyperfunction φ is given by taking the complex derivatives
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of the pair of holomorphic functions representing it

φ′ = [Φ′+,Φ
′
−]

As a linear functional on analytic functions, the hyperfunction φ is given by

f →
∮ ∞
−∞

φ(t)f(t)dt ≡ lim
ε→0+

∫ ∞
−∞

(Φ+(t+ iε)− Φ−(t− iε))f(t)dt

We’ll use coordinates t on R, z = t+iτ on C since our interest will be in physical
applications involving functions of time t, as well as their analytic continuations
to imaginary time τ .

One way to get hyperfunctions is by choosing a function Φ(z) on C, holo-
morphic away from the real axis R, and taking

φ = [Φ|UHP ,Φ|LHP ]

For example, consider the function

Φ =
i

2π

1

z − ω

where ω ∈ R. As a distribution, corresponding hyperfunction will be given by
the limit

φ(t) = lim
ε→0+

i

2π

(
1

t+ iε− ω
− 1

t− iε− ω

)
= lim
ε→0+

1

π

1

(t− ω)2 + ε2

The limit on the right-hand side is well-known as a way to describe the delta
function distribution δ(t− ω) as a limit of functions. Using contour integration
methods one finds that the hyperfunction version of the delta function behaves
as expected since ∮ ∞

−∞

i

2π

1

t− ω
f(t)dt = f(ω)

One would like to define a Fourier transform for hyperfunctions, with the
same sort of definition as an integral in the usual case, so

F(φ)(E) = φ̃(E) =
1√
2π

∫ ∞
−∞

eiEtφ(t)dt (A.1)

with the inverse Fourier transform defined by

F−1(φ̃)(t) = φ(t) =
1√
2π

∫ ∞
−∞

e−iEtφ̃(E)dE

The problem with this though is that the Fourier transform and its inverse don’t
take functions holomorphic on the upper or lower half plane to functions with
the same property.
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One can however define a Fourier transform for hyperfunctions (satisfying a
growth condition, called “Fourier hyperfunctions”) by taking advantage of the
fact that for a class of functions f(E) supported on E > 0 (respectively E < 0)

1√
2π

∫ ∞
−∞

e−iEzf(E)dE

is holomorphic in the lower half (respectively upper half) z plane (since the
exponential falls off there). The decomposition of a hyperfunction φ(t) into
limits of holomorphic functions Φ+,Φ− on the upper and lower half planes cor-

responds to decomposition of φ̃(E) into hyperfunctions φ̃−(E), φ̃+(E) supported
for negative and positive E respectively. This is similar to what happened for
hyperfunctions on the circle, with Φ+,Φ− analogous to functions holomorphic

on the upper or lower hemispheres, φ̃−(E), φ̃+(E) analogous to the Fourier co-
efficients for positive or negative n.

For an example, consider the hyperfunction version of a delta function sup-
ported at E = ω, ω > 0:

φ̃(E) = φ̃+(E) =
i

2π

1

E − ω
≡ i

2π
lim
ε→0+

(
1

E + iε− ω
− 1

E − iε− ω

)
This has as inverse Fourier transform the hyperfunction

φ(t) =
1√
2π

∫ ∞
−∞

i

2π

1

E − ω
e−iEtdE =

1√
2π
e−iωt

which has a representation as

φ(t) = [0,− 1√
2π
e−iωz]

The Fourier transform of this will be

φ̃(E) =
1√
2π

∫ ∞
−∞

eiEtφ(t)dt

=
1√
2π

∫ ∞
−∞

eiEt
1√
2π
e−iωtdt

but this needs to be interpreted as a sum of integrals for t negative and t positive

=
1

2π
lim
ε→0+

(

∫ 0

−∞
ei(E−iε−ω)tdt+

∫ ∞
0

ei(E+iε−ω)tdt)

=
i

2π
lim
ε→0+

(
1

E + iε− ω
− 1

E − iε− ω

)
An example that is relevant to the case of the harmonic oscillator is that of

φ̃(E) =
1

E2 − ω2
=

1

2ω

(
1

E − ω
− 1

E + ω

)
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where the first term is a hyperfunction with support only at ω > 0, the second
only at −ω < 0. The inverse Fourier transform is

φ(t) =
iπ

ω

1√
2π

(eiωt − e−iωt)

where the first term should be interpreted as the equivalence class

iπ

ω

1√
2π

[eiωz, 0]

and the second as the equivalence class

iπ

ω

1√
2π

[0, e−iωz]
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[20] Anton Kapustin and Edward Witten. “Electric-Magnetic Duality And
The Geometric Langlands Program”. In: Commun. Num. Theor. Phys.
1 (2007), pp. 1–236. arXiv: hep-th/0604151.

[21] Abel Klein and Lawrence Landau. “From the Euclidean Group to the
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