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Four dimensional geometry and spinors

Four-dimensional geometry and 2x2 complex matrices

One can do four-dimensional complex geometry by identifying C4 with 2x2
complex matrices

(z0, z1, z2, z3)↔ z = z01− i(z1σ1 + z2σ2 + z3σ3)

and defining
|z |2 = det z

Pairs gL, gR ∈ SL(2,C)× SL(2,C) = Spin(4,C) act preserving |z | by

z → gLzg
−1
R

We are interested in “real forms” of this (real 4d subspaces that give
above after complexification).
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Four dimensional geometry and spinors

Real forms

Three real forms are

(2, 2) signature inner product: Spin(2, 2) = SL(2,R)× SL(2,R),
using gL, gR ∈ SL(2,R).

(3, 1) signature inner product: Spin(3, 1) = SL(2,C), using

gR = (g †L)−1

This is Minkowski space-time.

(4, 0) signature inner product: Spin(4, 0) = SU(2)× SU(2), using
gL, gR ∈ SU(2).
This is Euclidean space-time.

Our interest will be in the Minkowski and Euclidean cases, together with
the analytic continuation relating them.
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Four dimensional geometry and spinors

Euclidean signature and quaternions

In Euclidean signature, can use quaternions instead of complex matrices

(x0, x1, x2, x3)↔ x = x01 + x1i + x2j + x3k

with |x |2 = xx and rotations given by pairs ql , qR of unit length
quaternions.

x → qLxq
−1
R

Note that when we do this, we now have a conjugation operation
(changing sign of i , j , k).
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Four dimensional geometry and spinors

Spinor geometry

If one expresses four-dimensional vectors as 2x2 complex matrices, one can
think of vectors as linear maps from one C2 (called the (half)-spinor space
SR) to another C2 (called the (half)-spinor space SL). Corresponding to
the action on vectors by

x → gLxg
−1
R

we have actions on SR ,SL by(
ψ1

ψ2

)
R

∈ SR → gR

(
ψ1

ψ2

)
R

∈ SR(
ψ1

ψ2

)
L

∈ SL → gL

(
ψ1

ψ2

)
L

∈ SL

Note that

In Euclidean space, gR and gL are independent SU(2) matrices.

In Minkowski space, gR ∈ SL(2,C) and gL is determined by gR
(= (g−1R )†).
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Twistor geometry

Twistor theory

Twistor geometry is a different way of thinking about the geometry of
space-time, first proposed in 1967 by Penrose. It naturally provides a joint
complexification of Minkowski and Euclidean space-time and a way to look
at analytic continuation between them.
4d conformal symmetry is most easily understood using twistors, especially
if one works with the conformal compactification of space-time (S4 instead
of R4 in the Euclidean case).
Most discussions for physicists focus on the Minkowski version, we’re more
interested in the Euclidean version, together with what is needed to do
analytic continuation from Euclidean to Minkowski.
Suggested references:

Twistor Geometry and Field Theory by Ward and Wells.

Any expository article about twistors by Penrose, or The Road to
Reality chapter on twistors.
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Twistor geometry

Twistor space

In twistor theory one takes as fundamental twistor space T = C4 (or its
projective version PT = CP3, the complex lines in T ).
Points of space-time will correspond to a C2 ⊂ T , tautologically giving the
fiber SR of the half-spinor bundle.
Such C2 correspond to CP1s in PT . Looking at all C2 ⊂ T , one gets the
Grassmanian Gr2,4(C) which is 4-complex dimensional. Compactified
Euclidean or Minkowski space-time (or Gr2,4(R) are 4-real dimensional
subspaces of Gr2,4(C), or equivalently, 4-real dimensional families of
CP1 ⊂ PT = CP3.
In the physical Minkowski space-time, the CP1 describing a space-time
point corresponds to the sphere of directions of light rays one sees when
one opens an eye.
The conformal groups are given by real forms Spin(5, 1) = SL(2,H)
(Euclidean), Spin(4, 2) = SU(2, 2) (Minkowski) and Spin(3, 3) = SL(4,R)
(Gr2,4(R)) of the group SL(4,C) = Spin(6,C) which acts linearly on T .
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Twistor geometry

Euclidean twistor theory

We’ll concentrate on Euclidean space-time twistors, which are best
understood using quaternions. One can identify T = C4 = H2 and use the
fact that S4 = HP1, quaternionic projective space. The conformal group
Spin(5, 1) = SL(2,H) acts transitively on PT and S4 through its linear
action on H2.
One has a fibration with fibers CP1

CP1 PT = CP3

S4

π

where the map π takes a complex line in C4 to the quaternionic line it
generates.
This deserves a picture:
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Twistor geometry

Euclidean twistor fibration: a picture
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Twistor geometry

Two interpretations of PT

PT is the projective spin bundle P(SR)

The fiber at a point is the CP1 of projective SR space.

PT is the bundle of complex structures on S4

The CP1 = S2 fiber above a point on S4 can be identified with the
possible choices of complex structure on the tangent space at the point.

These definitions generalize PT to give a twistor space for any Riemannian
manifold in d = 4. If the metric is ASD, this twistor space is a complex
manifold and allows study of the Riemannian geometry using holomorphic
methods.
For a hyperkähler manifold M, this generalization of PT is the product
space

M × CP1
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The twistor P1

The twistor real structure on CP3

On a complex manifold, one can ask about “real structures” which are
anti-holomorphic maps

ρ : CP3 → CP3

such that ρ2 = 1.
One gets a real structure from conjugation of complex coordinates, but
there is another one, the “twistor real structure” ρtw . If one identifies C4

and H2 with their corresponding i, then multiplication by j is an
anti-holomorphic map satisfying j 2 = −1 on C4 and inducing an
anti-holomorphic map ρtw with square 1 on CP3.
This ρtw is the structure needed to get Euclidean signature space time out
of PT . The action of ρtw on PT has no fixed points, but it does have
fixed CP1s, in fact a four-dimensional family of them parametrized by S4

which fibers PT .
See previous picture.
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The twistor P1

The twistor P1

Each CP1 fiber comes with a real structure ρtw with no fixed points,
identifying CP1 = S2. This is the antipodal map.
Identifying C2 with the quaternion z1 + z2j . One gets, in homogeneous
coordinates [z1, z2] or coordinate z = z1/z2

ρtw ([z1, z2]) = [−z2, z1], ρtw (z) = −1/z

In a sense I won’t try and make precise here, there are two “real forms” of
CP1, something defined over R that becomes CP1 when you extend
scalars to C. The real structure on CP1 gives the action of the Galois
group Gal(C/R) = Z/2Z. These are RP1 for the usual real structure, the
twistor P1 for ρtw .
Another point of view on this is that there are two different 4d algebras
over the reals that complexify to M(2,C): M(2,R) and H.
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The twistor P1

Analogs in number theory for all primes p

In number theory, for all primes p one has an analog of R, the field of
p-adic numbers Qp. The fields Qp have a much more complicated set of
field extensions than R, but the quadratic field extensions K can be
studied using the same structures as in the R case, equivalently:

Two inequivalent Qp forms of M(2,K ): M(2,Qp) and an
inequivalent quaternion algebra.
Two Qp forms of the projective line over K : the projective line over
Qp and a p-adic analog of the real twistor P1.

There is a much more sophisticated analog in arithmetic geometry for all p
of the twistor P1, the Fargues-Fontaine curve FFp. This is an analog of
something studied by Carlos Simpson: the twistor P1 with a chosen
coordinate z and corresponding C∗ action.
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The twistor P1

Recent developments in number theory

The Fargues-Fontaine curve that gives an analog for all p of the twistor P1

has found a role in:

Hodge theory: Simpson gave a reformulation of conventional Hodge
theory in which U(1) equivariant vector bundles over the twistor P1

play the role of real Hodge structures. One can formulate p-adic
Hodge theory in terms of Gal(Qp/Qp)-equivariant vector bundles
over FFp.
Local Langlands: Fargues and Scholze have shown that one can
formulate the arithmetic local Langlands conjecture in terms of the
geometric Langlands conjecture on FFp.
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The twistor P1

The Fargues-Fontaine curve vs. the twistor P1

finite p infinite p

Qp R

Cp, completion of Qp C

Fargues-Fontaine curve FFp P1
tw

pt. at ∞ given by i : Spec Cp →
FFp

0,∞ ∈ CP1, ∞ ∈ P1
tw

Gal(Qp/Qp) action on FFp U(1) action on P1
tw

vector bundles on FFp vector bundles on P1
tw

vector bundles classified by frac-
tions

vector bundles classified by half-
integers

Gal(Qp/Qp)-equivariant vector
bundles on FFp

U(1)-equivariant vector bundles on
P1
tw

p-adic Hodge structure Hodge structure

Fontaine ring B+
dR = ÔFFp ,∞ Power series ring C[[λ]] = ÔP1

tw ,∞
Ẑ-cover of FFp CP1 is Z/2Z-cover of P1

tw
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Euclidean vs. Minkowski QFT

Why Euclidean QFT?

Going back from number theory to physics, the philosophy we will pursue
is that fundamental theory should be defined in Euclidean signature
space-time, our observed physical space time is an analytic continuation.
On reason is that QFT has inherent definitional problems in Minkowski
signature that don’t occur in Euclidean signature:

Non-perturbative (path integral) problems

Looking at the path integrals∫
F [φ]e iSM(φ)dφ versus

∫
F [φ]e−SE (φ)dφ

If you do rigorous mathematics you can’t make sense of the first, can
make sense of the second (ask a mathematical physicist).
If you do numerical calculations, same thing (ask a lattice gauge theorist).
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Euclidean vs. Minkowski QFT

Euclidean QFT and the two-point function: momentum
space

Every quantum field theory textbook explains that there’s a problem even
in free field QFT. Computing the two-point function involves taking the
Fourier transform of

i

ω2
p − E 2

where
ω2
p = |p|2 + m2

To do this you have to decide what to do about at the poles E = ±ωp.
The physically sensible answer corresponds to analytically continuing the
calculation from Euclidean space-time.

Peter Woit (Columbia University Mathematics Department)Euclidean Twistor Unification and the Twistor P1 February 2022 18 / 34



Euclidean vs. Minkowski QFT

Euclidean QFT and the two-point function: position space

In position space, as a function of complex time, the two-point function is
well-defined except along the real axis for time-like (t, x). There it needs
to be defined as a distribution given by a boundary value of a holomorphic
function (a “hyperfunction”), as one takes a limit approaching the real
axis.

−|x| |x|
t

τ

Two-point functions are functions in Euclidean signature, hyperfunctions
in Minkowski signature.
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Euclidean vs. Minkowski QFT

Minkowski and Euclidean QFT are very different

here
Minkowski Euclidean

Positive energy condition: f̂ (E )
supported on E > 0

f (t) =
∫∞
−∞ f̂ (E )e iEtdE is holo-

morphic on the upper half complex
time plane (τ > 0)

Field operators satisfy a wave equa-
tion

Field operators satisfy no equation
of motion (always off-shell)

Field operators don’t commute Field operators always commute

Physical state space can be de-
fined Lorentz covariantly (can spec-
ify E > 0 covariantly)

Defining physical state space re-
quires breaking 4d rotational invari-
ance (can’t specify τ > 0 without
breaking SO(4))

The Lorentz group SO(3, 1) acts on
physical states and operators

The rotation group SO(4) acts on
Euclidean Fock space states and
operators, but these are not physi-
cal states or operators
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Relating Euclidean and Minkowski in twistor geometry

Relating Euclidean and Minkowski

To get from Euclidean signature space-time to Minkowski space-time, one
must pick an imaginary time direction, with asymmetry in ± imaginary
time corresponding to the physical asymmetry in ± energy. In terms of
symmetries, you need to break SO(4) covariance by choosing a τ = 0
hyperplane and using (Osterwalder-Schrader) reflection in that hyperplane.
This will allow one to get from the SO(4) covariant Euclidean Fock space
theory to a physical Fock space theory with SO(3, 1) covariance.
In twistor geometry the new structure needed on PT to get to Minkowski
signature is a 5-dimensional hypersurface N5 which splits it into two pieces.
Another picture:
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Relating Euclidean and Minkowski in twistor geometry

Euclidean twistor fibration: distinguished imaginary time
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Relating Euclidean and Minkowski in twistor geometry

Minkowski space twistors

The subspace N5 determines the Minkowski space-time geometry as
follows. N5 is the zero-set of a nondegenerate signature (2, 2) Hermitian
form Φ on C4. Minkowski space-time is the subspace of C2 ⊂ C4 on which
Φ = 0.
Φ = 0 determines a real form SU(2, 2) = Spin(4, 2) of SL(4,C) that acts
transitively on (compactified) Minkowski space. This is the conformal
group, it also acts on solutions to massless wave equations. In the
Euclidean case the conformal group real form was SL(2,H).
The CP1 = S2 in PT corresponding to a point in Minkowski space can be
identified with the “celestial sphere” of light rays through that point.
When two points are light-like separated, the corresponding CP1’s
intersect.
Another picture:
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Relating Euclidean and Minkowski in twistor geometry

Minkowski space-time twistors: a picture
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Gravi-weak unification in Euclidean space-time

General relativity as a gauge theory

There’s a long history of attempts to treat Einstein’s general relativity as a
gauge theory, trying to emulate the success of the Yang-Mills gauge
theory. One can formulate GR as a gauge theory, taking

G = SO(3, 1) and the principal G -bundle of orthonormal frames on
spacetime M.
A connection ω (the spin-connection) with curvature Ω on this bundle
A frame bundle comes with an R4-valued canonical 1-form e (the
vierbeins).
The Palatini action is∫

M
εABCDe

A ∧ eB ∧ ΩCD(ω)

Equations of motion: from varying ω, ω is torsion-free (Levi-Civita
connection), from varying e, get the Einstein equations.
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Gravi-weak unification in Euclidean space-time

Euclidean Ashtekar variables

If we work in Euclidean signature spacetime, ω takes values in
spin(4) = su(2)R ⊕ su(2)L.
We can just use the su(2)R component ωR , and its curvature ΩR and still
get the Einstein equations. One way to do this is to just replace Ω in the
Palatini action by ΩR . Both ωR and ΩR act on SR spinors, not on SL
spinors. Remarkably, one can recover the Einstein equations just using
ωR ,ΩR .
In the Hamiltonian formalism a la Ashtekar, one notes that if one uses ωR

on a space-like hypersurface as configuration variable, the phase space is
the same as in SU(2) Yang-Mills theory, with the same sort of Gauss-law
constraint from time-independent gauge transformations.
Instead of dynamics being determined by the Yang-Mills Hamiltonian, it is
given by the constraints coming from diffeomorphism invariance of the
Palatini action.
One usually tries to do this for so(3, 1) rather than spin(4), this requires
working with complexified variables.
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Gravi-weak unification in Euclidean space-time

Gravi-weak unification

There have been attempts to unify the weak interactions with gravity,
using the chiral decomposition of the spin connection as above, with
SU(2)R a space-time symmetry giving a gravity theory, and SU(2)L the
internal symmetry of a Yang-Mills theory of the weak interactions. Our
proposal is of this nature, but with the following different features:

Take the Euclidean signature QFT theory as fundamental, with
Minkowski signature physics to be found later by analytic
continuation.
Note that in Euclidean QFT one component of the vierbein is
distinguished (the imaginary time direction).
Use twistor geometry to get not just an SU(2)L internal symmetry
but the full electroweak SU(2)L × U(1) electroweak internal
symmetry, with the imaginary time component of the vierbein
behaving like a Higgs field.
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Twistor unification

Twistor unification: gravi-weak

If one works on the projective twistor space PT , one can get the idea of
gravi-weak unification to work (in its Euclidean form):

There is not just an SU(2) internal symmetry, but also a U(1), given
by the complex structure specified by the point in the fiber. This
complex structure picks out a U(2) ⊂ SO(4), the complex structure
preserving orthogonal transformations of the tangent space to the
point on the base S4. This is the electroweak U(2) symmetry, to be
gauged to get the standard electroweak gauge theory.
If one lifts the choice of vector in the imaginary time direction up to
PT , it transforms like the Higgs field: it is a vector in C2 (using the
complex structure on the tangent space given by the point in the
fiber). The U(2) act on this C2 in the usual way. Each choice of
Higgs field breaks the U(2) down to a U(1) subgroup, which will be
the unbroken gauge symmetry of electromagnetism.
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Twistor unification

Twistor unification: QCD

Besides specifying a point on S4 and a complex structure on its tangent
space, a point in PT specifies a complex line C ⊂ C4. The U(1) discussed
above is the group of phase transformations of that complex line. At the
same time, the point in PT specifies a three-complex dimensional space,
the quotient space C4/C. Using the standard Hermitian form on C4, the
group SU(4) acts on C4 preserving this form.
Looking at this action as an action on the space of lines PT = CP3, the
stabilizer of a point is the group U(3). This includes the U(1) which acts
on the line, but also an SU(3) that acts on the quotient.
Using the quaternion picture we’ve found that a choice of a point on S4

gives a decomposition H2 = H⊕H and picks out an Sp(1)× Sp(1)
subgroup of Sp(2).
Using the complex picture, a point on PT gives a decomposition
C4 = C⊕ C3 and picks out a U(3) subgroup of SU(4). We thus have the
right internal and spin rotation symmetries to gauge and get a unified
theory.
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Twistor unification

A generation of matter fields

A generation of SM matter fields has exactly the transformation properties
under the SM gauge groups as maps from C4 to itself, or

Hom(C⊕ C3,SR ⊕ SL) = (C⊕ C3)∗ ⊗ (SL ⊕ SR)

One could write this space as

(C−1 ⊗ C3
1
3
)⊗ (C2

0 ⊕ C−1 ⊕ C+1)

which is
C2
−1 ⊕ C−2 ⊕ C0 ⊕ (C3 ⊗ C2) 1

3
+ C3

− 2
3

+ C3
4
3

Here the subscripts are U(1) weights (weak hypercharge), the C2 are the
fundamental representation of SU(2)L and the C3 are the fundamental
representation of SU(3). For the first generation, the terms above
correspond respectively to the fundamental particles(

νe
e

)
L

, eR , (νe)R ,

(
u
d

)
L

, uR , dR
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What’s missing and conclusions

Why three generations? Octonions?

While one generation fits into a very simple construction, no reason for 3
generations.

S7 instead of CP3

Using quaternions and complex numbers, one has not fully exploited all
the possible structures on the real eight-dimensional space T . In terms of
unit vectors, S7 carries several different kinds of geometry

S7 = Spin(8)/Spin(7) = Spin(7)/G2 = Spin(6)/SU(3) = Spin(5)/Sp(1)

In particular, we have used complex (Spin(6) = SU(4)) and quaternionic
(Spin(5) = Sp(2)) aspects of the geometry, but not the octonionic aspects
that appear in S7 = Spin(7)/G2.

We have gotten a lot of mileage out of thinking of C2 as H and from
working with H2 = T . What about thinking of H2 = O?
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What’s missing and conclusions

Gauge theory on PT

In this proposal, there’s a profound reorganization of fundamental degrees
of freedom. They now live on points of PT which one can think of as
light-rays, rather than on points of space-time. Mathematically, one needs
to find a formalism on PT that corresponds to the usual Yang-Mills
formalism on the base S4. Need to use holomorphicity on the CP1 fibers
to match degrees of freedom on S4 and on PT . The Penrose-Ward
correspondence does this for anti-self-dual connections.
Similarly need to match the Dirac equation on S4 and equations on PT .
For bundles on the base with ASD connections, this is done by the
Penrose-Ward correspondence, but the U(1) and SU(3) bundles are on
PT , vary on a fiber.
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What’s missing and conclusions

True gravi-weak unification?

Have mostly just rewritten the usual electroweak and GR theory. One
difference though is that one component of the vierbein is now the Higgs,
which has the electroweak dynamics. Does this change the usual problems
about renormalizability, higher order terms in the curvature, etc?
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What’s missing and conclusions

Attractive aspects of this picture of fundamental physics

Spinors are tautological objects (a point in space-time is a space of
Weyl spinors), rather than complicated objects that must be
separately introduced in the usual geometrical formalism.
Analytic continuation between Minkowski and Euclidean space-time
can be naturally performed in twistor geometry.
Exactly the internal symmetries of the Standard Model occur.
The intricate transformation properties of a generation of Standard
Model fermions correspond to a simple construction.
One gets a new chiral formulation of gravity, unified with the SM.
Conformal symmetry is built into the picture in a fundamental way.
Points in space time are described by the p =∞ analog of the
Fargues-Fontaine description of the “points” p of number theory.
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