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Abstract

Remarkably, the twistor P1 occurs as a fundamental object in both
four-dimensional space-time geometry and in number theory. In Euclidean
signature twistor theory it is how one describes space-time points. In
recent work by Fargues and Scholze on the local Langlands conjecture
using geometric Langlands on the Fargues-Fontaine curve, the twistor P1

appears as the analog of this curve at the infinite prime.
These notes are purely expository, written with the goal of explain-

ing, in a form accessible to both mathematicians and physicists, various
different ways in which the twistor P1 makes an appearance, often as a
geometric avatar of the quaternions.

1 Introduction

In the Euclidean signature twistor description of space-time, a point in space-
time is described by a “twistor P1”: the Riemann sphere, together with the
real structure given by the antipodal involution. The physical interpretation
of this sphere is that it corresponds to the sphere of light-rays through the
corresponding point. Remarkably, the same twistor P1 occurs not just in this
physical context, but in two related mathematical contexts far removed from
physics:

• In Simpson’s approach to Hodge theory, Hodge structures are given by
equivariant vector bundles on the twistor P1.

• Recent work in arithmetic geometry and the Langlands program has made
clear that a useful tool for understanding behavior at a prime p is a new
sort of geometrical object, the Fargues-Fontaine curve. The twistor P1

is the analog of the Fargues-Fontaine curve at the “infinite prime” (the
archimedian place of the number field Q).

Euclidean twistor geometry provides a compelling basis for unification of the
fundamental internal and space-time symmetries of physics (see [19]). That the
same twistor P1 describing points of physical space-time there also fits into a
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description of the points of number theory is a remarkable relation between these
two very different subjects. The goal of these notes is to gather together some
more detail about this observation, the significance of which remains unclear.
Along the way, we’ll also point to other occurrences of the same twistor P1

in such different contexts as hyperkähler geometry and the metaplectic central
extension of the symplectic symmetry group of canonical quantization.

2 The twistor P1

The two-dimensional Riemann sphere can be identified with CP1, the space of
complex lines in C2. Homogeneous coordinates

[z1, z2]

describe points of this space as equivalence classes of pairs of complex numbers.
Taking the quotient

z = z1/z2

gives a coordinate chart identifying C with CP1 minus the point [z1, 0].
A real structure on CP1 is given by an antiholomorphic map

ρ : CP1 → CP1

such that
ρ2 = 1

One such real structure is the usual complex conjugation. In homogeneous
coordinates

ρ([z1, z2]) = [z1, z2]

or in the z coordinate
ρ(z) = z

Real points for this real structure on CP1 are those satisfying

ρ([z1, z2]) = [z1, z2]

so are on a circle in CP1, or the real number line in the z coordinate.
The twistor P1 (which we’ll often denote P1

tw) is CP1 with a different real
structure, given in homogeneous coordinates by

ρtw([z1, z2]) = [−z2, z1]

or in the z coordinate by
ρtw(z) = −1/z

As a map on coordinates (z1, z2) of C2 one has ρ2tw = −1, but ρ2tw = 1 as a map
on the space of complex lines. On the sphere, ρtw is the antipodal map taking
a point to its antipode. Note that there are no points on CP1 such that

ρtw([z1, z2]) = [z1, z2]
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since
z = −1/z =⇒ |z|2 = −1

As an object in algebraic geometry, one way the twistor P1 can be described
is as above, as a complex projective variety (CP1) together with an action of
the Galois group Gal(C/R). It can also be defined in terms of the equation
x2 + y2 + z2 = 0, which describes a curve in projective two-space. This is a
projective algebraic curve defined over the real numbers, with complex points
but no real points.

One way to understand where ρtw comes from is in terms of the quaternions
H. A conventional identification of H with C2 is given by

x0 + x1i + x2j + x3k ∈ H↔ (x0 + x1i, x2 + x3i) ∈ C2

allowing one to write quaternions as (identifying i ∈ C2 and i ∈ H)

q = z1 + z2j

for complex numbers z1 = x0 +x1i and z2 = x2 +x3i. ρtw is then multiplication
by j, since

j(z1 + z2j) =j(x0 + x1i) + j(x2 + x3i)j

=− (x2 − x3i) + (x0 − x1i)j
=− z2 + z1j

3 Twistor theory in (compactified) Euclidean space-
time

Penrose’s twistor theory generalizes the use of C2 and H above to the case of C4

and H2. T = C4 is Penrose’s twistor space, and instead of CP1 one considers
the projective twistor space CP3 = PT of complex lines in T . In twistor theory,
a point in (complexified, compactified) space-time is a C2 ⊂ T , so a point in the
Grassmannian Gr2,4(C). This provides a tautological definition of the (Weyl)
spinor bundle: the Weyl spinors at a point are the point. In terms of PT , a
space-time point is a CP1 ⊂ PT . This CP1 is the sphere of light rays through
the corresponding point, exactly the sphere one sees when one opens an eye.

Most discussions of twistor theory and physics focus on a real four-dimensional
Minkowski signature subspace of Gr2,4(C), but one can relate physics there by
analytic continuation to what happens on a real four-dimensional Euclidean sig-
nature subspace. To define such a subspace, one identifies C4 and H2 using a
pair of the earlier identifications of C2 with H by z1 + z2j. As in the CP1 case,
one has two different real structures on CP3, given by the usual conjugation

ρ([z1, z2, z3, z4]) = [z1, z2, z3, z4]

and by multiplication by j

ρtw([z1, z2, z3, z4]) = [−z2, z1,−z4, z3]
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CP3 with the real structure ρ has a three-real-dimensional space RP3 of real
points, but the twistor real structure ρtw has no real points. It does however
have real lines, i.e. CP1s in CP3 that are fixed by ρtw. Each such CP1 is a
twistor P1, with ρtw acting on it in the manner described in the previous section.
There will be a four-real-dimensional family of such CP1s, parametrized by the
four-sphere S4. To see this, consider the quaternionic analog HP1 of CP1, with
homogeneous coordinates

[q1, q2]

which describe points on this space as equivalence classes of pairs of quaternions.
Taking the quotient

q = (q2)−1q1

gives a coordinate chart identifying H with HP1 = S4 minus the point [q1, 0].
Our identification of C4 and H2 gives a mapping

π : [z1, z2, z3, z4] ∈ CP3 → [z1 + z2j, z3 + z4j] ∈ HP1

that takes a complex line in C4 to the quaternionic line in H2 that it generates.
This mapping fibers CP3 over S4, with fibers the CP1s that are real lines for
the real structure ρtw.

For the case of C2, from the linear action of SL(2,C) on C2 one gets an
action of SL(2,C) on CP1 by conformal transformations, an action which does
not commute with the real structure. In the case of C4 = H2, one gets an action
of the conformal group SL(2,H) = Spin(5, 1), again not commuting with the
real structure.

There are only the two inequivalent real structures ρ and ρtw on projective
twistor space CP3. To pick out (compactified) Minkowski space-time points in
the complexification Gr2,4(C) one needs to use a real structure that does not act
on PT = CP3 but instead takes PT to a dual projective space PT ∗. In terms
of spinors, this Minkowski space real structure takes one chirality of spinors to
the other (unlike the Euclidean case).

4 Twistor theory for R4

The CP1 fiber in the fibration

CP1 PT = CP3

S4 = HP1

π

of the previous section can be interpreted as parametrizing orthogonal complex
structures on the tangent space of the base space, allowing one to study S4

(which is not a complex manifold) using CP3, which is. Solutions of the self-
dual Yang-Mills equations on S4 correspond to holomorphic structures on vector
bundles on CP3, and this can be generalized from S4 with its usual metric to
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self-dual solutions to the Einstein equations on other four-manifolds (this is
Penrose’s non-linear graviton construction[12]).

One can instead pursue the idea of working with all orthogonal complex
structures on R4 = H simultaneously by identifying such complex structures
with points on the sphere of unit length imaginary quaternions

x1i + x2j + x3k

where x = (x1, x2, x3) is a unit vector. This sphere of complex structures on
R4 = H can be identified with CP1 and given the usual complex structure on
that space.

Instead of Penrose’s twistor space T and its projective version PT , one can
form the product of R4 and CP1, with the fibration

R4 ×CP1

CP1

π

where π is projection on the second factor. In this context, R4×CP1 is called the
twistor space. It can be given the complex structure that on R4 is determined
by the point on CP1 and on CP1 is the usual complex structure. With respect
to this complex structure, π is a holomorphic map. Note that this construction
comes with a real structure ρ which on R4 = H is the identity, and is the twistor
real structure ρtw on CP1.

The holomorphic fibration above is isomorphic to the fibration

O(1)⊕O(1)

CP1

π

Instead of using quaternions, one can realize the sphere CP1 in terms of Pauli
matrices, as the set of matrices

x1σ1 + x2σ2 + x3σ3

with x a unit vector. Taking as fiber above such a point the +1 eigenspace
of the matrix acting on C2 gives the vector bundle O(1). Two copies of this
construction give O(1)⊕O(1), a vector bundle with total space R4 ×CP1 and
fiber R4 identified with C ⊕C = C2. More generally, if one replaces R4 = H
by any quaternionic vector space of dimension d, one gets a holomorphic bundle
over CP1, direct sum of 2d copies of O(1).

5 The twistor P1 and geometry

In this section we’ll see that the twistor P1 appears in geometry in several
different guises.
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5.1 Hyperkähler manifolds

One can generalize the notion of a Kähler manifold by considering manifolds M
of dimension 4k, which come not with a single Kähler structure I, but a sphere
of such structures, given by

aI + bJ + cK

where J,K are also Kähler structures, IJ = K and (a, b, c) lie on the unit
sphere in R3. Besides the simple example of R4k = Hk, other examples of such
manifolds include co-adjoint orbits of complex Lie groups, as well as spaces of
holomorphic flat GL(n,C) connections or Higgs bundles on a Riemann surface
Σ. For such manifolds one can define a corresponding twistor space, in the same
manner as was done above for the case of R4. These twistor spaces were first
studied in [6]. For a survey of results about hyperkähler manifolds, see [7].

The authors of [6] showed that one could generalize the notion of symplectic
quotient by a group G from the case of Kähler manifolds to the hyperkähler case,
allowing one to construct new hyperkähler manifolds by taking hyperkähler quo-
tients. A fundamental source of examples is the space of self-dual Yang-Mills
connections on a bundle on R4, where quotienting by the group of gauge trans-
formations gives a finite-dimensional moduli space of solutions. One can get
many more interesting hyperkähler manifolds from these. Imposing an invari-
ance condition in one direction gives the moduli space of monopole solutions to
the Bogomolny equations, in two directions the moduli space of Higgs fields and
solutions to the Hitchin equations, in three directions complex co-adjoint orbits
and solutions to the Nahm equations.

5.2 Hodge theory and P1
tw

In Hodge theory, one studies extra structure on the cohomology groupsHn(M,C)
arising from looking at harmonic forms representing de Rham cohomology classes.
When M is a smooth compact Kähler manifold, harmonic n-forms decompose
into harmonic (p, q)-forms and one has a Hodge decomposition

Hn(M,C) = ⊕p+q=nHp,q(M)

This decomposition does not vary holomorphically with changes in the com-
plex structure of M , but the filtration on V = Hn(M,C) using the degrees of
holomorphic differential forms does have this property.

The added structure that occurs in Hodge theory is described by defining a
pure real Hodge structure of weight w on a complex vector space V with a real
structure to be a filtration

0 ⊂ Fn ⊂ Fn−1 ⊂ · · · ⊂ F 1 ⊂ F 2 = V

such that the filtration and its conjugate satisfy

F p ⊕ Fn−p+1 = V
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There are more general “mixed” Hodge structures, which we will not con-
sider here. Taking V = Hn(M,C) with its usual real structure and F p =
⊕i>pHq(M,Ωi), one has Hp,q(M) = F p ∩ F q.

In [14] and elsewhere, Simpson has shown that one can replace this definition
of a Hodge structure by a definition of a “twistor structure”, which uses bundles
on P1

tw. The classification of holomorphic vector bundles on CP1 is well-known:
they are direct sums of the O(w) which are degree w rank 1 line bundles. The
corresponding objects in the case of P1

tw (which we’ll continue to refer to as
holomorphic bundles) are rank two bundles when the degree is odd, rank one
when the degree is even. They can be denoted

OP1
tw

(w
2

)
for w an integer. Here w/2 is the slope (degree/rank) of the vector bundle.

Simpson identifies a real Hodge structure, pure of weight w, with the twistor
stucture given by the holomorphic vector bundle E on P1

tw such that

E = OP1
tw

(w
2

)
⊕OP1

tw

(w
2

)
⊕ · · · ⊕ OP1

tw

(w
2

)
where the number of terms in the sum is the dimension of the underlying vector
space V . The filtration part of the Hodge structure corresponds to an action of
the group U(1) on the bundle E .

To go back and forth between Hodge structures and twistor stuctures, one
uses the coordinate z on P1

tw, which picks out a point∞ ∈ P1
tw, about which one

can use the coordinate λ = 1/z. A U(1) group now acts on the P1
tw, preserving

∞. Given a Hodge structure on V , one constructs a twistor structure by taking
the trivial vector bundle

E1 = V ⊗R OP1
tw

away from λ = 0 and gluing it to a bundle E2 on the formal neighborhood of
λ = 0 using the filtration.

Given a U(1) equivariant twistor structure E , one can recover the Hodge
structure by taking V to be the fiber of E at a point away from λ = 0. The
action of U(1) at λ = 0 will decompose the fiber there into U(1)-weight spaces
which will be the associated graded spaces of the filtration. One can make the
following table:

Hodge structures twistor structures
Real Hodge structure U(1) equivariant holomorphic vector

bundle E on P1
tw

pure of weight w sum of OP1
tw

(
w
2

)
underlying vector space V trivial bundle E1 = V ⊗ OP1

tw
away

from ∞
Hodge filtration modification of E1 at ∞ to give E .
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5.3 Non-abelian Hodge theory

There is a non-abelian version of Hodge theory due to Simpson (see for instance
[15]), which is based on considering for a space X the moduli space of represen-
tations of the fundamental group π1(X). One takes the space of representations
of π(X) into GL(n,C) up to equivalence, and denotes it

M = H1(X,GL(n,C))

thinking of it as non-abelian cohomology in degree one. This is a set, not a
vector space, and the non-abelian nature of the coefficients implies it does not
extend to higher-degree cohomology.

For the case X = Σ a Riemann surface, this moduli space is hyperkähler,
and one can study it by using the corresponding twistor space. For different
points on CP1 one gets different definitions of the space M of quite different
natures, relating moduli spaces of Higgs bundles on Σ and moduli spaces of
holomorphic flat connections on Σ to moduli spaces of representations. One
method for constructing this twistor space uses Deligne’s λ-connections, with λ
a complex parameter corresponding to a coordinate on P1. For λ = 1 one gets
usual connections, at λ = 0 Higgs bundles.

6 The twistor P1 and arithmetic

The story of the twistor P1 has an arithmetic generalization, with a different
but very similar structure occuring for each prime number p. For each such p
one can define a norm on the field Q of rational numbers by taking

|x|p = p−a

where a is the power of p that occurs when one factors x = n/m ∈ Q. In this
norm two rational numbers are close together when their difference has a large
positive factor of p. Just as one defines the field R as the completion of Q with
respect to the usual norm | · |, one can define new fields Qp as the completions
of Q with respect to the norms | · |p. The usual norm the corresponds to an
“infinite prime” and is denoted by | · |∞.

One can then study elements of Q as elements of the completions Qp and
R, and field extensions of Q in terms of field extensions of Qp and of R. Field
extensions of R are very simple to understand, since the Galois group Gal(C/R)
of the algebraic closure is just Z/2Z. Field extensions of Qp are a much more
complicated subject, with Gal(Qp/Qp) having a rather intricate structure.

6.1 Analogs at p of H and the twistor P1

For each prime p, part of the structure of Qp and its extensions can be under-
stood as closely analogous to what happens at the infinite prime, in terms of
generalizations of the algebra H over R to more general quaternion algebras for
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each Qp. To get this generalization, for an arbitrary field F , consider the algebra
over F with basis elements 1, i, j,k satisfying the usual quaternion relations

ij = −ji = k

as well as the more general
i2 = a, j2 = b

where a, b are invertible elements in F . We’ll use the notation(
a, b

F

)
to denote this algebra.

In this notation the usual quaternion algebra is

H =

(
−1,−1

R

)
For different values of a, b,

(
a,b
R

)
will be isomorphic to either H or the algebra

M(2,R) of two-by-two real matrices. These two algebras are not isomorphic,
but become so after allowing complex coefficients, i.e.

H⊗R C = M(2,R)⊗R C = M(2,C)

Something very similar happens for F = Qp: the
(
a,b
Qp

)
fall into two iso-

mophism classes, one of which includes

M(2,Qp)

and the other of which includes (
p, u

Qp

)
where u is a unit and not a square. The second of these is a division algebra
and is the analog at the prime p of the usual quaternion algebra H at the
infinite prime. Allowing coefficients in a quadratic extension K of Qp (for p 6= 2
there are three of these: Qp[

√
p],Qp[

√
u],Qp[

√
up]) one finds that the two non-

isomorphic algebras become isomorphic(
p, u

Qp

)
⊗Qp

K = M(2,Qp)⊗Qp
K = M(2,K)

The Hilbert symbol distinguishes the two isomorphism classes, and is defined
by

(a, b)F =

1 if
(
a,b
F

)
'M(2, F )

−1 if
(
a,b
F

)
6'M(2, F )
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One can associate to each quaternion algebra the equation of a conic(
a, b

F

)
↔ C = {(x, y, z) : −ax2 − by2 + abz2 = 0}

This will have solutions in F when (a, b)F = 1, but not when (a, b)F = −1 For
the case of the quaternions H the equation for C is

x2 + y2 + z2 = 0

which has no non-zero solutions over the real numbers, but over the complex
numbers describes CP1 ⊂ CP2 in homogeneous coordinates. At a prime p, the
analog of the twistor P1 will be the conic C with equation

−px2 − uy2 + upz2 = 0

which has no solutions in Qp, but does have solutions in the quadratic extensions
K of Qp. The Galois group

Gal(K/Qp) = Z/2Z

acts on these solutions with no fixed points, providing an analog of the antipodal
map on the CP1.

A generalization of the class of quaternion algebras over a field F is the class
of finite dimensional simple algebras over F with center F . One can put an
equivalence relation

A ∼ B ↔ A⊗Mn(F ) ' B ⊗Mm(F )

on such algebras, and a product

[A] · [B] = [A⊗B]

on the equivalence classes, giving a group called the Brauer group Br(F ). For
F = R one can show that Br(R) = Z/2Z, with generator [H].

For the case F = Qp, the class [
(
p,u
Qp

)
] is of order two in Br(Qp), but in this

case the Brauer group is
Br(Qp) = Q/Z

with generators of order n subgroups given by higher dimensional algebras.
One has higher dimensional analogs of the twistor P1, given by Brauer-Severi
varieties, which are varieties over Qp which become isomorphic to projective
space when one extends scalars to the algebraic closure of Qp.

One way of understanding why one gets the same classification for quaternion
algebras and these conics is that they both represent elements in the same Galois
cohomology group

H1(Gal(F/F ), PGL2(F ))
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which has two elements. In the case F = R one gets nothing new by going to
higher degree and considering

H1(Gal(F/F ), PGLn(F ))

but for F = Qp one gets something new at each n.
In the classification of quadratic forms over a field, the Brauer group of the

field (or at least its 2-torsion) makes an appearance as an invariant of quadratic
forms. The Witt ring of equivalence classes of quadratic forms up to hyperbolic
planes has a Z/2Z-valued rank map, with kernel I. The two-torsion of the
Brauer group is isomorphic to I2/I3.

Generalizing from the case of Br(R) = Z/2Z in another direction, one
can consider Z/2Z-graded algebras and define in the same way as the Brauer
group instead the Brauer-Wall or super-Brauer group SBr(F ) of a field. Clif-
ford algebras provide representatives of elements of the super-Brauer group. In
particular, for F = R one finds that SBr(R) = Z/8Z, with representatives
given by the real Clifford algebras Cliff(r, s,R) for real vector spaces with a
non-degenerate quadratic form of signature (r, s).

The structure of SBr(R) explains the 8-fold periodicity found in the struc-
ture of real Clifford algebras (and in the KO version of K-theory). The real
Clifford algebras are given by a somewhat complicated pattern of different ma-
trix algebras over R,C,H, which become isomorphic after complexification:

Cliff(r, s,R)⊗R C =

{
M(2n,C) for r + s = 2n

M(2n,C)⊕M(2n,C) for r + s = 2n+ 1

For details of this story, see [3].

6.2 Canonical quantization, quaternions and arithmetic

For one degree of freedom, canonical quantization starts with a position space
R with coordinate q and a dual momentum space R∗ with coordinate p. It gives
operators Q,P on a space of functions of q, which we can take to be the Schwarz
space S(R). These operators satisfy the Heisenberg commutation relations

[Q,P ] = i1

(we are setting ~ = 1) so provide an irreducible unitary representation of the
Heisenberg Lie algebra h3 = R⊕R∗⊕R on the state space H = S(R). This ex-
ponentiates to a representation of the Heisenberg Lie group H3, which is unique
up to unitary equivalence (by the Stone-von Neumann theorem). The symplec-
tic group Sp(2,R) = SL(2,R) acts by automorphisms on the Heisenberg group,
and this implies that the irreducible representation of H3 provides a projective
unitary representation of SL(2,R). This is known by various names, for conci-
sion we’ll refer to it as the Weil representation. For a detailed explanation of
all this, including the generalization to any finite number of degrees of freedom,
see [20].
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One can replace the field F = R used here by more general local fields, for
instance F = Qp. The Weil representation in all these cases becomes a true (not
just projective) representation of a non-trivial double cover of the symplectic
group, called the metaplectic group. In [16], Weil studied these representations
and the ±1-valued cocycle which determines the double cover. He also noted
that, given a vector space V over F of dimension d with a quadratic form Q,
one could replace the symplectic vector space F ⊕ F ∗ by the symplectic vector
space W = (F ⊕F ∗)⊗V and again construct a Weil representation, which now
will be an irreducible projective representation of Sp(2d, F ). If one takes V to

be a quaternion algebra
(
a,b
F

)
and writes

Wa,b = (F ⊕ F ∗)⊗
(
a, b

F

)
then Weil showed that the Brauer class[(

a, b

F

)]
∈ Z/2Z

determines whether the Weil representation constructed using Wa,b is a true or
projective (up to a factor ±1) representation of the symplectic group.

The construction of the metaplectic extension of the symplectic group is
a rather intricate story, even for the local field R, see for example [10]. The
extension can be constructed using the Maslov index, which takes values in the
Witt group of a quadratic form. The metaplectic extension just depends on
I2/I3, the piece of this given by two-torsion in the Brauer group.

It is rather striking that one gets in this way a generalization to the arith-
metic context of a theory which for F = R is canonical quantization for the
case of configuration space H, which is just the case of quantization relevant
to wave-functions on the usual four-dimensional space-time. The author is not
aware of this being previously considered from any physical viewpoint, but it
clearly deserves further study.

So far we have just been considering the local fields Qp and R, but one can
use these to study the global field Q. If one takes a, b invertible elements in
Q, one finds that the Hilbert symbols of the corresponding a, b for the various
primes satisfy ∏

p

(a, b)p = 1

where the product is over the finite primes (for which (a, b)p = (a, b)Qp
) and

the infinite prime (for which (a, b)∞ = (a, b)R). This is known as the Hilbert
reciprocity law, and from it one can easily derive Gauss’s quadratic reciprocity
law.

In [16] Weil shows that one can construct Heisenberg and metaplectic groups,
as well as the Weil representation, not just for the local fields F = Qp,R, but
also for the adèle group AQ which puts all the local fields together. If one
does this for Wa,b, replacing F by AQ, one can show that this adèlic Weil
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representation is a true (rather than projective) representation of the diagonal
Sp(Wa,b,Q) subgroup of the corresponding adelic symplectic group and that
this fact is equivalent to Hilbert reciprocity.

For more about this, besides [16], see [8] and [5]. Howe showed that in
general one can get a lot of mileage out of forming the symplectic vector space
W = U ⊗ V for U a symplectic vector space and V an orthogonal vector space,
taking the Weil representation for W , then restricting this to the subgroup
Sp(U) × O(V ). One gets in this way (“Howe duality”) a matching between
irreducible representations of Sp(U) and of O(V ) and in the adèlic context a
“theta correspondence” between automorphic forms. Jacquet and Langlands
used the case considered above of U = F ⊕ F ∗ and V a quaternion algebra in
their demonstration of an example of Langlands functoriality.

Witten in [17] and [18] (see also [1]) discussed a formulation of holomorphic
conformal field theories such as the theory of a free fermion on a Riemann
surface in terms of a function field (rather than number field) analog of the
above. Instead of the Hilbert symbol, one has an analogous symbol due to Weil,
and there’s an analogous reciprocity law.

6.3 The Fargues-Fontaine curve and the twistor P1

The twistor P1 turns out to be the analog at the infinite prime of a more sophis-
ticated arithmetic geometry version of a curve (called the “Fargues-Fontaine
curve”) which can be defined for each prime p. The Fargues-Fontaine curve
provides a geometrical interpretation of some of the structure of p-adic Hodge
theory. It has recently been used by Fargues and Scholze[4] to recast the arith-
metic local Langlands conjecture in terms of a geometric Langlands conjecture
on the curve.

Warning:this section is about an analogy between two different things, but
I only actually understand one of them. To limit my embarassment I’m just
giving a comparison table. The reader should pay minimal attention to what is
here, and instead consult the following sources explaining this material, written
by people who understand both sides of the analogy.

• Overview of the Fargues-Fontaine curve by Jacob Lurie:

https://www.math.ias.edu/~lurie/ffcurve/Lecture1-Overview.pdf

• Lectures by Laurent Fargues at Salt Lake City

https://webusers.imj-prg.fr/~laurent.fargues/SaltLake.pdf

and Beijing

https://webusers.imj-prg.fr/~laurent.fargues/Course%20Shenxing.

pdf

as well as seminars at Columbia

https://webusers.imj-prg.fr/~laurent.fargues/padic_Twistors.pdf

and Jussieu
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https://webusers.imj-prg.fr/~laurent.fargues/Twisteurs_p_adiques.

pdf

• Peter Scholze’s 2018 ICM talk on p-adic geometry [13]

https://arxiv.org/abs/1712.03708

See in particular section 6 and the top of Figure 3.

finite p infinite p

Qp R

Cp, completion of Qp C

Fargues-Fontaine curve FFp P1
tw

pt. at ∞ given by i : Spec Cp →
FFp

0,∞ ∈ CP1, ∞ ∈ P1
tw

Gal(Qp/Qp) action on FFp U(1) action on P1
tw

vector bundles on FFp vector bundles on P1
tw

vector bundles classified by fractions vector bundles classified by half-
integers

Gal(Qp/Qp)-equivariant vector bun-
dles on FFp

U(1)-equivariant vector bundles on
P1
tw

p-adic Hodge structure Hodge structure

Fontaine ring B+
dR = ÔFFp,∞ Power series ring C[[λ]] = ÔP1

tw,∞

Ẑ-cover of FFp CP1 is Z/2Z-cover of P1
tw

7 Speculations

The significance of the occurrence of the same twistor P1 as a fundamental de-
scription of a point in space-time physics and in number theory remains obscure.
David Ben-Zvi has emphasized (see for instance here [2]) that one can take a
four-dimensional topological quantum field theory point of view on number the-
ory, in the context of well-known analogies relating number fields to 3-manifolds
and primes to knots [11]. Kapustin-Witten [9] realize the geometric Langlands
program duality in terms of electro-magnetic duality in such a 4d quantum field
theory. In this quantum field theory, the self-duality equations play a central
role, and the Penrose-Ward transform indicates that twistor theory is the geo-
metric framework for understanding the significance of these equations.

It may very well be that the appearance of the twistor P1 in physics and in
number theory is of no fundamental significance, but it also seems quite possible
that it is pointing towards some insight relating the two subjects yet to be found.
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