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ABSTRACT: We discuss the relationship between path integrals, geometric quan-
tization and representation theory for a simple quantum theory whose Hilbert space
is a group representation. The path integrals involved have interesting cohomological
significance and can be evaluated in terms of fixed point formulas to give the Kirillov
and Weyl character formulas. The relation to recent work of Witten on Chern-Simons
gauge theory is also discussed.

INTRODUCTION

In recent years certain quantum theories have been discovered that have an es-
sentially geometrical or topological nature. These theories have deep connections to
index theory and to other areas of active interest in geometry and topology. In this
talk we will begin by discussing a simple class of such theories. The physical content
of the simplest of these theories is a description of a quantum spin. The mathemati-
cal content is that of the representation theory of compact Lie groups. These rather
simple quantum systems have a very rich geometrical structure and a proper under-
standing of this is essential for understanding both the quantization of spin and the
more complicated topological quantum theories{1]| that have excited recent interest.
In the final part of this talk we will see to what extent the simple quantum mechani-
cal systems discussed earlier shed light on Witten’s[2] Chern-Simons quantum gauge
theory.

The quantum theories that we will be considering are topological quantum theories
in the sense that with appropriate choice of boundary conditions their partition func-
tions are indices of elliptic operators. However we wish to correct the wide-spread
belief that such quantum theories contain only topological information and no physical
degrees of freedom. One of these theories is the supersymmetric quantum mechanics
of a Dirac particle coupled to a background electromagnetic field. For a particular
choice of boundary conditions all contributions to the partition function except those
from the zero modes of the Dirac operator cancel. This does not change the fact that
this is a non-trivial theory of great physical importance.

Even when one restricts one’s attention to the zero modes of the Dirac operator
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one may find that they carry more structure than just a dimension. In particular
they may transform under a group and it is this aspect that will interest us in this
paper. The path integral quantization of a quantum spin has often been considered
in the physics literature, for references see [3] and the paper [4]. Recently, Stone[3]
has considered the quantization of spin from a point of view similar to ours.

QUANTUM MECHANICS AND GROUP REPRESENTATION THEORY

Let us consider what is perhaps the simplest mathematical structure that deserves
to be called a quantum theory. The Hilbert space H = Vg will be the finite dimen-
sional complex vector space corresponding to a unitary representation R of a compact,
connected Lie group G. A state of the quantum system will be a vector in H written

|¥(7) >

that depends on the parameter 7, which will have the physical interpretation of time.

The simplest example that we will consider will be for G=SU(2), which has irre-
ducible unitary representations of dimension n + 1 for every non-negative integer n.
Such a representation is said to have “spin” 7 and will describe the dynamics of the
spin degrees of freedom of a particle of that spin coupled to a time-varying magnetic
field.

The Hamiltonian for this system will be a time dependent Lie algebra element H ()
describing the magnetic field acting on the particle and the dynamics of the theory is

described by the Schrédinger equation
—|¥ = H(7)[¥(r) >
drl (r) >=1H(7)[¥(7)

This equation describes the unitary time evolution of a vector in H and given an
initial condition [¥(0) > its solution can be written

() >=U(7)|¥(0) >

where U(7) is, for each value of 7, an element of G acting in the representation H.
U(7) is often written as the “path-ordered exponential of H(7)”

U(r) = Pe.'fo' H(s)ds

If we consider this theory on a fixed time interval T we can define the “partition
function” of the theory to be
Z =Trr(U(T))

Z ia a character of G and is the simplest physically relevant quantity in the theory
since it is independent of the choice of basis of .

Solving the quantum theory just requires finding U(r), we will try and do this
by expressing U(7) as a Feynman path integral. This theory is so simple that path
integral techniques are clearly not the most efficient way of solving the theory, but
the apparatus we will develop generalizes easily to more interesting theories where the
Schrodinger formulation is not very useful. Furthermore this is the simplest system
in which the notion of geometric quantization works nicely and we will thus be able
to explore the relationship between path integral and geometric quantization.
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The classical phase space corresponding to this quantum theory will be the orbit
under the action of G of the ray corresponding to a highest weight vector in the
complex projective space (V). The highest weight that defines V will be denoted Ay.
The state vectors corresponding to rays in this orbit are often called “coherent states”.
Any element of V can be written as a linear combination of these state vectors. This
orbit in P(V) is diffeomorphic to G/G1, where G, is the subgroup of G that acts
on the highest weight vector by a phase. For a “generic” representation this subgroup
will be the maximal torus, denoted T. In what follow we will refer to these orbits as
G/T, although for certain representations V what we actually mean is G/G),, .

These orbit spaces, which also are often called flag manifolds or co-adjoint orbits
(corresponding to two alternate ways of defining them) are Kahler manifolds. Even
better, they are projective algebraic varieties with an explicitly given embedding in
P (V). The tautological line bundle L over P{V) is the complex line bundle whose fiber
above a point p in P(V) is the corresponding complex line. Its restriction to G/T
will be denoted L, , it is a holomorphic line bundle and will be of great importance
in what follows.

COHERENT STATE PATH INTEGRALS

The most common Feynman path integral is an integral over paths in a configuration
space X and is used to construct a quantum theory with Hilbert space L?(X). This
corresponds to a theory with classical mechanical phase space 7*X. In the quantum
theory that interests us, the classical phase space M=G/T does not have the structure
of a cotangent bundle so the standard sort of path integral does not apply (however see
(6] for a discussion of the path integral quantization of spin using a real polarization
as in the T*X case). Various efforts have been made to construct path integrals as
integrals over the phase space, and in this case such path integrals go under the name
of coherent state path integrals.

Defining a path integral over paths in M seems bound to lead to trouble with the
Heisenberg uncertainty principle since one is attempting to specify at each value of
time values of both conjugate variables. In this section we will review the standard
formalism of coherent state path integrals and see what problems arise. We will
deal with the simplest coherent state path integral, that corresponding to the case
H(t)=0.

The standard treatment of the coherent state path integral is based upon the so-
called “resolution of the identity” which expresses the identity operator on the repre-
sentation space V as

1

=T Gig‘zo><g'zo|

where |z > is a highest weight vector, [, denotes Haar measure on G and

P:/]<g~zolzo>l2
G

1s a normalization constant.
This can also be thought of as an integral over M of projection operators

1
1=F/V|z><z|
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Here z labels points in M, there is a phase ambiguity in the definition of |z > but this
cancels the phase ambiguity in < z|. [' is a normalization constant, and the integral
over M is defined using the symplectic measure on M. '

This identity is used to express the inner product between two highest weight
vectors |z > and |z" > inV as

1
< I3[ lor- 2 >< g -20Dls" >

or
1
n ’
<z I,.I _I"(/ jzr >< z¢ )iz’ >

where 7 is a variable parametrizing the projection operators which takes a finite
number of values. One can for instance define 7 to be the finite set

T = {0,A7,2AT1,3A7,...,1}

where
A = l/AV

for some integer N. The coherent state path integral representation of this inner
product is formally the limit as N — oo of this expression.

Clearly this limit exists, since it is independent of N anyway. However the standard
interpretation of this product as an integral over paths in M joining the ray defining
|z' > to that defining |z > is problem=tic. There is no sense in which

2, R ZrgAar

as A7 — 0 and yet this continuity assumption is often invoked in manipulations of
these integrals.

Let us however proceed under the assumption that we are dealing with continuous
paths and see how the standard formalism is developed. Also, assume that we are
dealing with a representation V such that the orbit of a highest weight vector is the full
flag manifold G/T rather than something smaller. Then the “naive” limit as AT — 0
of the path integral expression for the inner product between |z’ >= |go - 20 > and
|z >=|g; - zo > will be of the form

1 Py
K(g1,90) =< 91 - 20|90 - 20 >= Fl,-;/ ef“ drlwion
go—ag

This is meant to be interpreted as follows. One is integrating over all paths in G
from go to g; but what is relevant is their projection onto the orbit of the highest
weight vector |z >. @ is a left-invariant 1-form on G, it is the canonical connection
1-form for the tautological line bundle L over the orbit in P(V). w = g—: is the lift to
G of the standard symplectic 2-form on P(V).

The first factor in the integrand is

ef«a“':[]ew:H‘“g

it is meant to be formally interpreted as an infinite product of symplectic volume
forms, one for each value of 7, providing a volume form for the loop space. The
second factor is

RO
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It is just the phase corresponding tc parallel transport with respect to the connection
6.
The simplest quantity that one would like to calculate is the partition function

Z =Try(1) = / K(g.g)=dimV = [ efdrletioGeo)
G QG

The integrand is conceptually quite simple, especially when considered in terms of
loops on M. Then one is just integrating the holonomy around a loop against the

(unfortunately still ill-defined) measure on QM that is just the infinite product of the
symplectic measures for each 7. The holonomy is

hoI(C) = 32’"' fs:as-c w

where the exponent here is 2= times the “action”, which is well-defined up to an
integer ambiguity.

This sort of path integral has several related problems that prevent one from giving
it any well-defined meaning. The first is that the illegitimate assumption of the con-
tinuity of paths prevents one from keeping track of the normalization of the integral.
In Feynman’s configuration space version of path integration one has a term

3 f1zl

in the integrand which damps out discontinucus paths. This sort of term is absent
here.

A second problem is in how one has taken the trace. One can think of this path
integral as a normal Feynman-type integral over a configuration space G (without
the necessary damping term) with an integrand that acts as a projection from the
full Hilbert space of complex-valued functions L?(G) to a subspace of equivariant
functions, those that are sections of the line bundle Ly, . One is thus evaluating the
trace on the full infinite dimensional induced representation of G on I'(Ly, ). The
representation whose trace we wish to calculate is a finite dimensional subspace of
I'(La, ). Thus one is evaluating the wrong path integral and one has to figure out
some way of removing the unwanted representations from the trace. This is generally
done by trying to push the unwanted representations to infinite energy, for instance
by adding a factor

e f1El

and taking the limit a — oo.

We will see that index theory provides a natural way of cancelling contributions of
all but the correct finite dimensional subspace of I'(Ly, ). Thus we will be looking
for a supersymmetric quantum mechanical model with a fermionic path integral that
will give the necessary cancellations.

GEOMETRIC QUANTIZATION, BOREL-WEIL-BOTT AND INDEX THEORY

Geometric quantization is a general program for producing a quantum theory as-
sociated to a given classical system. The quantization of the flag manifold G/T was
one of the inspirations for the geometric quantization program(7] and not surprisingly
this is the case where it works most simply. In this case geometric quantization es-
sentially coincides with the Borel-Weil-Bott theorem[89]. This theorem states that
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the representation of G with highest weight A can be identified with the space of
holomorphic sections of a holomorphic line bundle Ly. Recalling that G is a principal
T bundle over G/T and that the weight A gives a representation of T on C, L, is the
associated line bundle over G/T given by this representation. Note that the condition
of a section being holomorphic picks out a finite dimensional subspace I'soi(Ly) of
the infinite dimensional space of sections I'( Ly ).

We wish to work here not in the very general context of the theory of geometric
quantization, but in the context of index theory which will turn out to be an equivalent
point of view[10,11]. What the Borel-Weil-Bott theorem does is construct a map

R(T) — R(G)

from the representation ring of T to the representation ring of G. The highest weight
Av gives a representation of T and thus an element of R(T) and the Borel-Weil-Bott
theorem gives a construction of V' € R(G).

From the point of view of index theory the natural framework for our discussion
is that of equivariant K-theory. The definition of the cohomology classes H*(M)
of a manifold is well known to physicists. When a group G acts on M one can
define equivariant cohomology classes H5{M), if the action of G is free these reduce
to H*(M/G). The group K(M) is defined in terms of equivalence classes of vector
bundles over M and has similar properties to a cohomology group. When G acts on M
one can define (M), the equivariant K-theory of M, in terms of equivariant vector
bundles on M (see for instance [12]).

In equivariant K-theory we have

Ko(pt.) = R(G)
and
Kr{pt.) = Ko(G/T) = R(T)

Just as for a map
7m: M — pt.

there is a push-forward or integration map . in cohomology or in equivariant coho-
mology, there is an integration map

m : Kg(M) — Kg(pt.) = R(G)

in equivariant K-theory. If we take M=G/T, this is precisely the map that appears in
the Borel-Weil-Bott version of representation theory. It is best described concretely
in terms of the index of the Dirac operator on G/T.

If E is a vector bundle representing the class ag in K(M), then

m(ag) = indexDg = dim kerDg — dim cokerDg

where Dpg is the Dirac operator on spinors twisted by E. In the equivariant case
ag € I{g(M) the kernel and cokernel of the Dirac operator are representation spaces

for G and their'difference is in R(G). Then
m(a) = [kerDg] — [cokerD,] € R(G)

We want to understand the Borel-Weil-Bott construction of the representation V
in these K-theoretic terms. We have seen that V is isomorphic to the space T'zoi( L2, )
of holomorphic sections of the line bundle Ly, . In other words

V = HYG/T; Ly,)
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One can show that for ¢ > 0
H%G/T;Ly,)=0
Together these facts imply that for the Dolbéault operator
0+ 9" :T(Ly, @ A®*) = T(Lx, @ A”")

we have

V = indez(8+ 8") = ker(8 + 8") — coker(3 + 0%)

Since G/T is a Kihler manifold, this Dolbeault operator operating on I'(Ly, ® A”*)
is identical to the Dirac operator acting on I'(Lx, @ S@(A%")/2) where S is the spinor
bundle and (A%")!/2 is a square root of the canonical bundle. On G/T, (A%™)!/? = L;
(where § is half the sum of the positive roots) and the Dirac operator acts as

Dixy+8) : T(S @ Liay+6) = T(S @ Lay+5)
Finally we see that we have the isomorphism
V =index(Dx, +5)

What we have done is shown that the Borel-Weil-Bott construction of a represen-
tation of G from a highest weight representation of T is just the integration map

= : Kg(G/T) = R(T) — Ka(pt.) = R(G)

for the map
7:G/T — pt.

An important example of how this works out is that of V=1, the trivial represen-
tation. Here the Atiyah-Singer index theorem tells us

dimV = Try(1) = indez(Dj)
= A A ch(L5)[G/T)
— T[G/T] =1

where 7 is the Todd class. Note that here even the trivial representation involves a
non-trivial calculation, and this will be reflected in our path integral calculations by
a non-trivial path integral that corresponds to this representation.

We have seen that for a phase space M=G/T quantization is equivalent to inte-
gration in K-theory. It turns out that this is also true in other less trivial contexts.
While the geometric quantization program has tried with partial success to provide
a geometric description of quantization for general symplectic manifolds, thinking of
quantization as integration in K-theory gives a conceptually simpler picture when it
is applicable.

As another example of this general principle consider the quantization of the har-
monic oscillator with phase space M=C. This is different than the M=G/T case since
C is not compact. There is a well-known description of the Hilbert space of the har-
monic oscillator in terms of holomorphic sections of the trivial bundle over C. The
group C* of non-zero complex numbers acts on this line bundle and the infinite di-
mensional Hilbert space decomposes as a sum of one-dimensional representations of
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C*. Thus the Hilbert space of the harmonic oscillator can be thought of as a sum
of finite-dimensional spaces of zero modes of a Dirac operator. Note that the % that
occurs as the ground state energy of the harmonic oscilator has the same origin as
the term &, half the sum of the positive roots, in the G/T case.

The harmonic oscillator thus corresponds to the quantization of C*, the complex-
ification of U(1). One can also consider the quantization of GL(n,C), the complex-
ification of U(n). Here the Hilbert space is L*(U(n)) which could be thought of as
the space of holomorphic sections of a certain trivial line bundle over GL(n,C). By
the Peter-Weyl theorem this Hilbert space contains all the irreducible unitary repre-
sentations of U(n). In our earlier discussion we restricted attention to one irreducible
representation V by looking at not all of L?(G) but at '(L,,, ), which is a subspace of
this space satisfying a certain equivariance property. The passage from the complexi-
fication of G to G/T is an example of Marsden-Weinstein[13] reduction in symplectic
geometry.

We will see later that the principle of quantization as integration in K-theory also
seems to apply in the very non-trivial cases of Wess-Zumino-Witten models in con-
formal field theory and in Witten’s Chern-Simons gauge theory. Undoubtedly there
are other examples where this principle is valid, the full range of its validity has not
yet been investigated.

INDEX THEORY AND SUPERSYMMETRIC QUANTUM MECHANICS

The Atiyah-Singer index theorem tells us that the index of the Dirac operator on
M coupled to a vector bundle E is given by m(ag). This push-forward map was
defined by Atiyah and Singer in terms of embedding M in S?V for some large N and
using the Thom isomorphism, for the normal bundle of M to construct an element in
K(S5%N) from the class ag € K(M). Bott periodicity implies that K(S?¥) = Z and
this integer will be the index.

Remarkably, it turns out that there is an alternate formulation of this topological
index map in terms of a certain supersymmetrical quantum mechanical system. The
essential idea is that at least formally one can identify K(M) with Kgi(LM) the
equivariant K-theory of the free loop space LM of parametrized loops in M with
respect to the circle action given by rotation of the loop. The calculation of the index
is reformulated in terms of an integration map in the S! equivariant cohomology of
the loop space. This abstract concept when carried out using differential forms on
the loop space is equivalent to the calculation of the partition function in a simple
supersymmetrical quantum mechanical system [14].

Following Atiyah’s exposition of an idea originally due to Witten[15], the index of
the Dirac operator can be expressed as an mtegral over the loop space QM of the
equivariantly closed form

p= ei(d—ix)a

Here X is the vector field on LM that generates rotations around the loops, a is the
1-form dual to this vector field (we are assuming that M has a metric and using the
induced metric on LM), and iy is contraction with the vector field X.

For a finite 2n-dimensional manifold M with an S* action generated by the vector
field X there is a localization formulaf{16,17] which expresses the integral of an equiv-
ariantly closed form in terms of an integral over the submanifold F left fixed by the
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S! action. For a form p on M such that (d —ix)u =0,

/aa /p x(;lFN)

In this formula x(X, N) is an equivariant Euler characteristic defined as
X,N)=det(Jx — ﬁ)
XX, N) = det(Jx = o7

where N is the normal bundle to F in M, Jx € I'(EndN) is the infinitesimal action of
Xin N and Q € A2T*M,® EndN is the curvature of an S! invariant linear connection
on N.

For the special case of M a symplectic manifold and

_HU"

B=e

this formula is due to Duistermaat and Heckman[18]. In this context it states that
the stationary phase approximation for [y u is exact.

If we assume that a suitably regularized version of this formula applies to our infinite
dimensional case of M = QM, Atiyah has shown that one finds

index D = / u = A(M)
QM

giving the standard result for the index of the Dirac operator. In this case the fixed
point set is the manifold M itself, and Fourier expansion of vectors in the tangent
space to a point loop gives the normal bundie as the infinite direct sum

N=(T®C)L&(T®C). ...

where (T'® C), is the complexified tangent bundle of M with S! acting with rotation
number p.

The integrand that occurs here is identical with the integrand in the path integral
form of the simple supersymmetric quantum mechanics system where the Lagrangian
1s written

L= /d (= T R

In SSQM the partition function is evaluated as

= f [dz][dy]eE

which can be understood as a way of rewriting the integral expressed through differ-
ential forms on loop space in terms of the Riemannian volume form on loop space
and a fermionic integration. In the physics literature[14] this integral is evaluated in
the stationary phase approximation, which we have seen is exact in this situation.

We will actually need the generalization of this to the case of the Dirac operator
coupled to a line bundle L. If A is a connection 1-form for this line bundle then one
can formally define a 1-form on LM by

oy =2 ?{drA(J:(T))
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(the way we have written the connection assumes a choice of section of L, but the
final result will be independent of this choice).

The coupling to L simply has the effect of adding «; to the l-form a and the
integrand that gives the index in this case will be

= ei{d—ix)(ata)
Of the two new terms in the exponent, one just gives the holonomy around the loop,
the other involves the curvature and is the standard term familiar in QED that couples
the spin to the magnetic field. Formally applying the localization formula gives the
standard cohomological form of the index theorem. At the fixed point set only the
curvature term survives and the equivariant Euler characteristic of the normal bundle
1s unchanged from the untwisted case.

Given the above, the main point that we would like to make is quite simple. In-
stead of the standard coherent state path integral and its attendant problems, the
appropriate path integral quantization of G/T is given by the SSQM path integral for
the index of the Dirac operator twisted by a certain line bundle. Notice that this path
integral contains the holonomy term that appears in the coherent state path integral,
but it also contains a term

et 1

as well as fermionic variables. The effect of the fermionic variables is to provide
for a cancellation of the contribution to the partition function of all states except
those corresponding to the zero modes of the Dirac operator. Thus this path integral
resolves the problem with the coherent state path integral that we noted before.

In order to avoid problems about exactly how to normalize these integrals (equiv-
alently, how to define the equivariant Euler characteristic of the normal bundle to
the point loops in LM), we can compute ratios of path integrals, taking the ratio of
the path integral for the representation we want to study with that for the trivial
representation. Thus we get the formula for the dimension of a representation

fc)(,\v +5) e
Jows e
Here O(Av +6) and O(§) are the flag manifolds determined by the highest weight Ay

and the weight 8, and w and w’ are the standard symplectic 2-forms on the two orbits.
This orbital integral formula for the dimension of a representation is well known

dimV = tr(1) =

CHARACTER FORMULAS

We have so far just been discussing the formula for the dimension of the representa-
tion, which is an integer index. The equivariant index theorem gives the character of
the representation, and our integration formula in this case is a trace formula (see [19]
for further discussion of the relation between index theory and the Kirillov formula).
The modification that needs to be made is simply that of changing the vector field
X on L(G/T) by adding a constant vector field proportional to the vector field on
G/T that corresponds to the action of the group element g whose trace we wish to
calculate. One gets the formula

J‘ eif(X)-H.:
X) — O(Av+8)

tr(e .
X g’
Jom €70
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Here f(X) is the moment map corresponding to the action of eX on G/T. Further
applying the fixed-point localization formula to the denominator gives

edX _ —ad% .
tr(ex) — det_%(e_z_e_z)‘/ e'f(x)""i';
adX Oy +5)

which is the Kirillov character formula. Yet another application of the fixed point
formula to the numerator gives a version of the Weyl character formula.

LOOP GROUPS

The representation theory for positive energy unitary representations of the loop
group LG can be developed in much the same way as the Borel-Weil-Bott represen-
tation theory for G[20]. Here LG/T is an infinite dimensional K&hler manifold that
plays the role of G/T in the finite-dimensional case. Actually there is a fibration
LG/T — LG/G of Kahler manifolds with fiber G/T. Restricting attention to a fiber
gives back the finite-dimensional picture.

The corresponding quantum theory here is the Wess-Zumino-Witten[21] model of
conformal field theory which has received much attention from physicists in recent
vears. This theory is the simplest example of a field theoretical model that can be
most simply understood in terms of the equivariant K-theory framework we have
developed.

WITTEN’S CHERN-SIMONS THEORY

Last summer, in a striking paper|2], Witten defined new invariants for links in 3-
manifolds using a quantum gauge field theory with action given by the Chern-Simons
functional. Witten writes his invariants in terms of a functional integral as

Z(C,R,k,N) = /[dA]WR(C)ezzrsCS[A]

where C is a link in a 3-manifold M3, k and N are integers, A is a connection on a
the trivial principal SU(N) bundle over M3, [dA] is the standard physicist’s notion
of a formal measure on the space of such connections and Wr(C) is the trace of
the holonomy around the curve C with respect to the connection A in the SU(N)
representation R. CS[A] the Chern-Simons functional of the connection A.

The functionals Wgr(C') are well-known to physicists as Wilson loops, they are
exactly the sort of objects that appeared as the partition functions for the simple
quantum system of the first part of this paper. Thus we have secen that there is a
supersymmetric quantum mechanics path integral expression for these quantities.

Restricting attention to the case C = @, we get invariants of the 3-manifold itself
and the functional integral over gauge fields Witten uses is very much analogous to
the coherent state path integral we discussed at the beginning of this talk. It has
similar problems and Witten performs most of his calculations using the associated
geometric quantization of the theory rather than the functional integral.

The analogy we wish to point out is most clearly seen if we specialize to the case of
a three manifold of the form M? = ¥ x S, where T is a Riemann surface. The space
of connections A on a principal G bundle over I is an infinite dimensional symplectic
manifold, given a complex structure on ¥ it is Kahler[22]. The group G of gauge
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transformations acts on A and symplectic reduction with respect to this symmetry
gives as reduced phase space the moduli space M of flat connections on X. This
moduli space is again a Kahler manifold and there is a holomorphic line bundle L
over it whose first Chern class is the Kahler 2-form.

A loop in M corresponds to a connection on M*® and the Chern-Simons functional
of this connection is the holonomy around the loop in the line bundle L. Witten’s
path integral for this theory is just an integral over loops in M weighted by the
holonomy, exactly as in the G/T coherent state path integral but with G/T replaced
by M. Witten points out that his invariant in this case is the dimension of the space
of holomorphic sections of the line bundie L.

Thus Witten’s invariant can be thought of in this case as an integration in K-theory,
in particular

Z(k,N) = m(L*)

where
m: M — pt.

and it should have an expression as a supersymmetric quantum field theory.

The functional integral that Witten writes down suffers from the same problems as
the coherent state path integral for G/T. It is a trace over all sections of L*, not just
the holomorphic ones. In a recent preprint{23], Ramadas, Singer and Weitsman deal
with this problem by inserting a term

cTlir

into the functional integral and taking the limit 7' — oco. It would seem to be prefer-
able to reformulate Witten’s functional integral with fermionic variables that would
cancel all but the holomorphic sections from the partition function.

Further evidence for the desirability of an index-theory reformulation of Witten’s
functional integral lies in the problems associated with framings. Witten finds that
to get a well defined semi-classical approximation he must add a term involving n
invariants to his Chern-Simons action. The effect of this term is to change k — k+ N
in the results of his calculations. An index theory reformulation of Witten’s invariant
leads to this in a natural way since N plays the same role in this case as § (half the
sum of the positive roots) plays in the G/T case. The analogy can most clearly be
seen by working through the connection between Witten’s invariants and the Wess-
Zumino-Witten quantum theory version of loop group representation theory. In the
loop group case one finds that one should think of N as half the first Chern class
of the tangent bundle of LG/G, just as § is half the first Chern class of the tangent
bundle of G/T.

CONCLUSIONS

In this talk we have tried to explain a new conceptual approach to the problem
of quantization through its application to a simple quantum system. This approach
seems also the best way to understand the various topological quantum theories that
have excited recent interest. These topological quantum theories contain a great deal
of structure of physical as well as of mathematical interest. A more detailed exposition
of these ideas and their applications is in preparation.
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