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Topological Charge in Lattice Gauge Theory
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A useful definition of the topological charge of a lattice gauge-field configuration is
given. This definition is used to calculate the topological susceptibility y &

——(Q )/& in
SU(2) lattice gauge theory by means of a Monte Carlo simulation. y ~

= (170+25 MeV)4
is obtained, in good agreement with the current algebra prediction. Other possible uses
of this operator are suggested,

PACS numbers: 11.15.Ha

Non-Abelian SU(N) gauge-field configurations
on a compact four-dimensional space can be clas-
sified topologically by an integer Q, given by'

Q = (g'/82rr') Jd'x Tr [ZP (x)].
The physical consequences of this are of some in-
terest; they include the resolution, of the U(1)
problem, the existence of 0 vacua, and a possible
mechanism for chiral symmetry breaking. ' In
this paper I will suggest a definition of the topo-
logical charge Q in the context of lattice gauge the-
ory, ' and use it to compute the topological sus-
ceptibility g, = (Q')/V in the SU(2) lattice gauge
theory.

Witten has shown, 4 using large-N-approxima-
tion arguments, that this quantity is related to
the mass of the g'. An extended current algebra
using these ideas has been developed, in which
the relation

g, = (f,'/2N&)(m„'+ m„' —2m~') = (180 MeV)'

can be derived. ' Calculation of this quantity in
lattice gauge theory was first attempted in Ref. 6,
with use of a definition of Q which is unsatisfac-
tory, since it is not a total divergence and thus
does not give a topological invariant. Berg and
Luscher have given a definition of Q for the non-
linear o model which is geometrically more sat-
isfactory, but the gauge-theory case is consider-
ably more subtle.

I will first give a heuristic discussion of the
way in which topological nontriviality arises in
continuum gauge field theory, as a preliminary
step in dealing with the lattice case. Gauge-in-
variant quantities such as Wilson loops are phys-
ically observable and in an asymptotically free
theory such as QCD we expect these quantities
to be nonsingular at the scale of the cutoff through-
out space-time except at the positions of charged
particles or monopoles. The vector potential,
which is what appears in the functional integral
quantization, has no physical reason to be non-
singular, and so we must integrate over singular

as well as nonsingular vector potentials. A gauge-
field configuration that is given by a nonsingular
vector potential everywhere on a compact mani-
fold M will be topologically trivial, since
Tr[EJ(x)] is a total derivative.

The topological significance of the gauge-de-
pendent singularities in the vector potential can
be seen as follows: Consider a neighborhood N
containing a point where the vector potential is
singular. Now make a gauge transformation 4(x)
on the fields in N that removes the singularity.
Our initial singular field configuration on M is
now described by a field configuration that is non-
singular, but is in different gauges in N and in
the rest of M. The description of the configura-
tion is completed by giving the transition function
on ~A' which tells how to transform between the
two different gauges. This transition function
gives a nonsingular mapping from BiV into the
group C' and now carries all the information about
the topology of the configuration. For an n-di-
mensional manifold M, ~N is topologically an
(n -1)-sphere S" '. The maps S" '- G are topol-
ogically classified by the homotopy groups 7r„,(G)
In the case of interest to us, the relevant homo-
topy group is 7r, (SU(N)) = Z, and so our configur-
ations will be classified by an integer. Thus, to
determine the topological charge of a gauge field
configuration we must locate the gauge singular-
ities, locally gauge transform them away using
different gauges, and measure the degrees of the
maps relating the different gauges. The sum of
these degrees will be a topological invariant, the
topological charge.

A lattice gauge-field configuration is given by
a set of group elements, U„(n), one for each link
connecting neighboring sites on the lattice. When
considering the question of what topological sig-
nificance can be assigned to a lattice gauge-field
configuration, one is tempted to conclude that lat-
tice gauge fields cannot be assigned a definite
topological charge, since the limited amount of
information about the corresponding continuum
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configuration that is coded in the link variables
is not enough to fix the topology. Different in-
terpolations constructed from the given informa-
tion about the vector potential on the links would
give different topological charges. In particular,
it seems that we should be able to view the lattice
configuration as corresponding to a smooth con-
tinuum configuration, and this would always be
topological1y trivial.

In the case of a lattice theory near the continu-
um limit, the coupling g(a) is small so that the
fluctuations in the Wilson loops at the scale of a
lattice spacing are small and there are no fluctua-
tions on scales smaller than a lattice spacing.
The constraint that the Wilson loops be near the
identity at and below the scale of a lattice spacing
is what allows us to assign a topological charge
to a lattice field configuration. A smooth interpo-
lation of the vector potential between the lattice
1inks may introduce values for some small Wilson
loops which are far from the identity in the group.
In order to avoid this we are forced into the in-
troduction of singular interpolating vector poten-
tials.

The above considerations lead us to a natural
definition of the topological charge in the four-
dimensional case. For each hypercube in the lat-
tice, interpolate the gauge fields from the links
throughout the hypercube in such a way as to
keep all Wilson loops near the identity. This
will always be possible if the plaquette variables
of the original configuration are close to the
identity. Now gauge transform this interpolated
configuration to a gauge where the vector poten-
tial is small everywhere. The contribution of the
hypercube to the topological charge will be just
the degree of this gauge transformation on the
boundary of the hypercube.

This definition is geometrically straightfor-
ward but, like the one proposed by Luseher, '
complicated and time consuming to carry out in
practice, since the gauge function must be con-
structed on a rather fine grid on the boundary of
each hypereube. A more tractable method for
computing the topological charge will now be de-
scribed, based on the idea of defining different
gauges in regions of the lattice larger than a sin-
gle hypereube, in order to express the topologi-
cal charge in terms of the degrees of more well-
behaved mappings. This method is only one of a
general class of similar methods and, while it
does not properly reconstruct the topological
charge for all configurations, it seems to be
satisfactory for measuring the topological sus-

ceptibility in the scaling region 0 =2.2 to 2.4.
The basic idea is that if one locally makes links

small by means of a gauge transformation @g),
@' will not be a smooth mapping, but

the transition function between two neighboring
coordinate patches indexed by i and i', will tend
to be smooth. Thus we would like to reexpress
the topological charge in terms of these quanti-

tiess.

The lattice is broken up into time slices" I';,
defined by

which overlap along a constant-time three-torus.
The topological charge in this situation will be

Q =Q degree[6, ,„(x)j.
1

The prescription that I have used for determining
the gauge within each 1'; is the following: Choose
C', (r) in T; such that (a) the spacelike gauge-
transformed links at t =i, U„'(n), satisfy

0 =Q„„(l—TrU„') is a minimum;

(b) U, (n) =1. Condition (a) is implemented itera-
tively starting with some random @;(x), and step-
ping through the lattice, choosing a new 4', g) at
each site in such a way as to minimize a.

Now that 4';g) has been determined at t =i,
condition (b) is implemented by the choice

4';(z, i +1) =4';(z, i)U, (z, i).
4';g) is now defined at each lattice site and the
0;;„are determined by

e, ,„(x,t =i + 1) = C, Q, t =i + 1)4;„'Q, t =i + 1).

With a little thought one can see that if the gauge-
transformed link between x and x+ p is near the
identity at t =i and t =i + 1, and the plaquette angle
for the timelike plaquette involving these two
links is also small, then the angle between the

at the nei ghboring sites that share the li nk

will again be small. In this case the degree of
the mapping defined by ~;,„can be unambiguous-
ly determined.

The weak point of this definition is that, in gen-
eral, it may not be true that all the gauge-trans-
formed spacelike links are sufficiently close to
the identity to define the transition function un-
ambiguously. However, the numerical evidence
from use of this algorithm in the scaling region
is that typically all but a very small number of
links will be close to the identity, and that those
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FIG. 1. Topological susceptibility for SU(2) lattice
gauge theory on a 6 lattice.

that are not do not often conspire to produce an
incorrect value for the topological charge.

The degree of a continuous mapping from some
three-dimensional compact space into S' is just
the number of times S' is swept out by the map-
ping. Equivalently, the degree is the volume
swept out by the mapping divided by the total
volume of the three sphere. If the ~;;„atneigh-
boring sites are close together in S', there is an
obvious notion of the volume swept out by 0,. ;„.

The ~; ~„are defined at the sites given by a
cubical decomposition of the three-torus consist-
ing of the lattice at constant time t =i. Each of
these cubes can be decomposed into six tetrahe-
dra. Each such tetrahedron is mapped by ~ into
a spherical tetrahedron in S'. Except for a set
of degenerate configurations of measure zero in-
volving large angles between neighboring ~;;„,
the volume of such a spherical tetrahedron is
uniquely defined. Summation over the volumes of
these tetrahedra will give an integer times the
volume of 8', this integer is the degree.

It turns out that there is a simple trick which
can be used to compute the degree when the value
of the contribution from each individual tetrahe-
dron is not needed. Pick an arbitrary point on 8',
and for each of the tetrahedra in S' decide wheth-
er the point is inside or outside the tetrahedron.
If it is inside, add +1 to the expression for the de-
gree if the mapping preserves the orientation of
the tetrahedron, —1 if it reverses the orientation.
This sum over all the tetrahedra will give the
same answer for the degree as the sum over all
the volumes, but it is much easier to calculate
numerically, involving only the calculation of a

few small determinants for each tetrahedron.
A Monte Carlo calculation of (Q2)/V was per-

formed for SU(2) lattice gauge theory on a, 6' lat-
tice, using a program based on that of Bhanot,
Lang, and Bebbi. ' The results are plotted in
Fig. 1. Each datum point in the scaling region
corresponds to 300 measurements of the topologi-
cal charge on configurations derived from six
different runs beginning with different initial con-
figurations.

Benormalization-group arguments demand that
the lattice spacing vary with the coupling as

Thus we expect g, to scale as

(Q') (Q')
x y g4a4

4(Q2) 62 2 204/121 122 2

=hr4 11t' P ll I'

The Monte Carlo data for (Q') /Ã4 behave exactly
as predicted, giving

y, = [(31.5 + 2.5)A~ ]4 = [(1.59 + 0.11)A M-s]4

(using Ref. 10), which implies

AMS =113+8 MeV.

Comparison with Creutz's result" for the string
tension gives

y, = [(0.4 +0.06)v'v]'

and, use of

4o =420 MeV

gives

y, =(170+ 25 MeV)',

consistent with the experimental value.
One expects to observe a suppression of the

topological charge at large P for small lattices;
that this is not observed indicates that the method
used here for measuring the topological charge is
not entirely satisfactory. If the algorithm mis-
identifies the topological charge a small fraction
of the time, this will make little difference until
P is greater than around 2.4, where, since the
real topological charge is essentially always zero,
the small fraction of errors becomes the domi-
nant contribution to (Q'). In a future paper, I
will report on an improved algorithm which deals
with this problem, but I believe that this is ir-
relevant to the result for the topological suscepti-

640



VOLUME 51, NUMBER 8 PHYSICAL REVIEW LETTERS 22 AU&;USZ 1983

bility. Note that at P =2.5, where presumably all
topological charge has been suppressed by the fi-
nite size of the lattice, the algorithm gives @=0
90% of the time, which perhaps gives some idea
of the error rate in the scaling region.

There are quite a few other interesting calcula-
tions that are made possible by this work, includ-
ing the following:

(i) Extension of the calculation to the case of
sv(3).

(ii) Vse of this method to check the reliability
of semiclassical approximations, including the
picture of the QCD developed by Callan, Dashen,
and Gross."

(iii) Calculation of & vacuum expectation values
for various operators. One could try to deter-
mine the phase structure of QCD as a function of
L9, and see if the picture of

'
oblique confinement"

is realized as suggested by 't Hooft."
(iv) Measurement of the topological charge in

fermion Monte Carlo calculations. This could
lead to a better understanding of the role played
by fermion zero modes in chiral-symmetry break-
ing.
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