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The quantization of the simplest supersymmetric quantum mechanical theory of a free 
fermion on a riemannian manifold requires the introduction of a complex structure on the tangent 
space. In 4 dimensions, the subgroup of the group of frame rotations that preserves the complex 
structure is SU(2) x U(1), and it is argued that this symmetry can be consistently interpreted to be 
an internal gauge symmetry for the analytically continued theory in Minkowski space. The states 
of the theory carry the quantum numbers of a generation of leptons in the Weinberg-Salam model. 
Examination of the geometry of spinors in four dimensions also provides a natural SU(3) 
symmetry and a very simple construction of a multiplet with the standard model quantum 
numbers. 

1. Introduction 

The an t icommut ing  c-number quantum mechanics [1-4] with world-line super- 
symmet ry  that  describes free fermions on a r iemannian manifold M (also known as 

the N = 1 supersymmetr ic  sigma model in 0 + 1 dimensions with target space M) 
has been used recently to prove the Atiyah-Singer index theorem [5,6]. In this 

application,  the index of  the Dirac operator  appears as the parti t ion function of  the 
theory  when periodic boundary  conditions are imposed on the fermionic variables. 

Wit ten  [7] has used this theory to show that the existence of  a spin structure on M is 
equivalent  to the orientability of  the loop space of  M. The connect ion between these 

two applicat ions of  the theory has been discussed by At iyah [8]. This theory can be 
extended to provide a path integral formalism for describing fermions coupled to 

gauge fields and in principle can thus reproduce the predictions of  the correspond- 
ing fermion field theory. 

Since the canonical  conjugates of  the fermionic variables are the variables 
themselves, the quantization of  the theory requires the introduct ion of  a complex 
structure which splits the fermionic variables into a set of  variables half  as big and 
their canonical  conjugates. The fermionic variables carry vector indices and thus 
t ransform under  the gauge group SO(4) of local frame rotations. A U(2) subgroup 
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of SO(4) preserves the complex structure, and we will argue that this can con- 
sistently be interpreted to be the internal symmetry group of the Weinberg-Salam 
model of leptons. Consideration of the geometry of spinors in 4 dimensions provides 
a natural SU(3) symmetry and thus one has the full gauge group of the standard 
model. Furthermore, we will see that there is a very simple geometrical construction 
which gives states transforming under these symmetries with the standard model 
quantum numbers. 

These arguments provide answers to the questions "Why SU(3) x SU(2)L x U(1)?" 
and "Why the standard model quantum numbers?" of a very different nature than 
those provided by other unification schemes. Such schemes typically involve assum- 
ing the existence of either a large compact group of symmetries containing the 
standard model symmetries as a subgroup (grand unification), or extra space-time 
dimensions of extremely small size (Kaluza-Klein theories). These models all involve 
a dramatic increase in the number of elementary degrees of freedom beyond the 
observed ones of the standard model, and they provide no explanation of why one 
Lie group rather than another is to be chosen, or why a certain number of compact 
dimensions should exist. Recently popular superstring models combine aspects of 
both Kaluza-Klein and grand unified theories. They give numerological explana- 
tions for a ten dimensional space-time and for the symmetry group being for 
instance either SO(32) or E 8 X E 8, but these models now provide no way of 
predicting how many dimensions will compactify and in what manner, or what the 
symmetry group of the resulting low energy theory will be. 

Since it was the first to be developed, the field theoretical approach to describing 
fermion dynamics has historically dominated the study of fundamental interactions. 
The path integral approach, while it has recently become widely used in rigorous 
work on scalar field theories, has not been fully developed in its application to 
fermions. One aim of this paper is to encourage further study of fermionic path 
integrals by pointing out that it is quite possible that a deeper understanding of the 
subject may lead to a unified theory of fundamental interactions. One is beginning 
with all the correct symmetries and they arise from the study of the frame bundle 
which makes not unreasonable the hope that gravity can also be quantized within 
this context. Furthermore the ideas involved are both relatively simple and at the 
core of modern geometry and should thus lead to fruitful interaction between 
mathematicians and physicists. 

This paper is organized as follows. It begins with a review of supersymmetric 
quantum mechanics of free particles on a background manifold M. The symmetries 
of this theory and how they are affected by quantization is then described. The 
transformation properties of the states under these symmetries are then calculated 
and one sees that they behave like a generation of leptons of the standard model. 
Sects. 2 and 3 of this paper review the geometry of spinors in four dimensions, a 
subject which is not as well known among physicists as it should be. The relation- 
ship between spinors in euclidean and Minkowski space is explored in some detail. 
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Sect. 4 expresses the states of the first section in terms of the spinor geometry and 
then shows that states with the quark quantum numbers naturally appear. Sect. 5 
makes a few comments about the Higgs field in this situation and the concluding 
section summarizes the argument of this paper. 

2. Supersymmetric quantum mechanics 

By supersymmetric quantum mechanics, we will mean the theory with lagrangian 

where 

f ~l~l Tt D,g'. ,  L = d r  1 2 ~ 2 ~  + 1 • a 

d 
D g, a = ~-~-, q~ + 2"~0~,,g "b . 

This theory will be defined with respect to a riemannian metric, assuming that 
analytic continuation to a Minkowski signature space takes place at the end of a 
calculation. The g,a are anticommuting c-number functions of • which transform 
under the group SO(4) of local frame rotations. Greek indices refer to local 
coordinates, latin indices to coordinates with respect to local frames (vierbeins). 
~0~,,, is usually taken to be the Levi-Civita connection determined by the metric, but 
we will leave it as an arbitrary SO(4) connection. The discussion of the quantization 
of this model normally begins (and ends) with the remark that the canonical 
anticommutation relations for the q'~'s are 

{ ,/,~, ,/,b} = 6~b 

and thus the g,a,s satisfy the same relations as generators of the Clifford algebra. 
The Clifford algebra has a representation on spinors, among others, and it is 
assumed that the states of the theory will thus be spinors. 

Within this sort of formalism one can also introduce anti-commuting c-numbers 
coupled to arbitrary gauge fields, and then use the rules of path integration for 
anticommuting variables to derive path integral expressions for the propagator and 
the closed loop amplitude in a background gauge field. This should give results 
equivalent to a proper-time formulation of the fermion field theory in the loop 
expansion. Functional integration over the gauge fields then gives the full inter- 
acting theory of fermions and gauge fields. Some of the details of this formalism 
have been worked out by Rajeev [9] for the case of U(1) gauge theory. 

Understanding the nature of the states of the theory requires dealing with a 
problem not encountered in the ordinary quantum mechanics. The lagrangian is 
first order in the time derivative and as a result the canonical momentum to '/'" is 
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proportional to g,a itself. Thus the space of the 't 'a 's  should be thought of as a 
phase space and the configuration space on which the states will be functions should 
be only half as big. This is normally accomplished by writing 

T] 1 = X~ 1 -]- i ' t l~2, 

7/2 = x/t3 4- i x / t 4  

and then demanding that the states be functions only of the ~'s and not of the ~'s. 
Since the ~'s are anticommuting variables a basis for the space of functions on them 
will be 

A(x)  1, A(x)  2, 

A2(x)5152 

What we have done is chosen a complex structure on the tangent space to the 
manifold at each point, this is what gives us a way of writing the four real variables 
q~a as two complex variables. A U(2) = SU(2) × U(1) /Z  2 subgroup of SO(4) leaves 
this complex structure invariant and the ~'s transform as the fundamental represen- 
tation of this U(2). Identifying the SU(2) with weak isospin and the U(1) with weak 
hypercharge, the states transform exactly as a generation of Weinberg-Salam 
leptons: a singlet (VR) which has no interactions, a hypercharge Y = - 1  isodoublet 
(PL, eL) and a hypercharge Y=  - 2  isosinglet (eR). 

What has happened to the spin degree of freedom? It turns out that it is hidden in 
the choice of complex structure. Understanding this and the other issues involved in 
making sense of the above explanation for the Weinberg-Salam multiplet structure 
will require developing the geometry of spinors in four dimensions in some detail, 
and this will be the subject of the next two sections. 

3. Projective geometry 

While physicists have become very familiar with riemannian geometry, they are 
less familiar with a simpler sort of geometry that is historically prior and in which 
the metric is not the central concept. This is projective geometry, a subject that 
dominated 19th century work on geometry and provided the context that Riemann's 
work grew out of. Furthermore, it was simple examples provided by projective 
geometry that led to the formulation of the general concept of a fiber bundle, a 
concept which is central to 20th century geometry and topology. Dirac has ex- 
plained [10] how it was considerations of projective geometry that led him to the 
discovery of spinors and the Dirac equation. The connection between spinors and 
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projective geometry was investigated by the mathematician Veblen [11] and later 
formed the basis for Penrose's work on twistors (see refs. [12] and [13] for reviews 

and references). While physicists have recently made much use of the geometry of 
gauge fields, the concepts of projective geometry that underly the geometry of 
spinors are less well known. This section aims to provide a basic introduction to the 

subject. 

There are three different types of projective spaces we will consider, correspond- 
ing to the three types of number fields, the real numbers R, the complex numbers C 

and the quaternions H. The projective spaces HP ~ will be defined explicitly, the 
other two cases RP n and CP" are defined in exactly the same way although the 

order of multiplication becomes irrelevant. 
A point in H P  n is an equivalence class of sets of n + 1 quaternions [q0, ql . . . .  qn] 

where two such sets are equivalent when they are equal up to multiplication by a 
constant quaternion q: 

[qo,ql  . . . .  q,,]-[q[~,q{ .... q',,] iff qi=qq{ for i = 0 , 1  . . . .  n. 

H P  n can be thought of as the space of "quaternionic" lines in the space H n+t of 
n + 1 quaternions. Away from the point q0 = 0, one can take as coordinates on HP  n 

the set of quaternions qi/qo for i = 1. . .  n. 
Associated to each projective space there is a so-called "tautological" bundle T. 

The fiber above each point in HP  n is the quaternionic line H that defines that point. 
More formally, the tautological bundle is the subbundle of the trivial bundle 
H P "  x H n+l given by T = {(I, p)  ~ HP"  X Hn+lip  E l}. One can also construct T*, 

the hyperplane bundle or dual bundle to T, by taking as fiber at the point q the 
space dual to the fiber of T above q. Finally one can construct the quotient bundle 
T ± by taking as fiber the H" orthogonal to the line l in H" + 1 that is the fiber of T 

at q. This involves a choice of metric on H n+l, a natural choice is given by 

identifying H n+l with R 4(~+1) and using the euclidean metric. This is called the 

quotient bundle because, if one wants to evade the use of the metric on H ~ + 1, one 

can define the fibers as being the quotient space H"+I/I. 
The tangent space to HP ~ at q is the set of quaternionic linear maps from the 

fiber of T to the fiber of T 1 at q. An infinitesimal change in q moves one to a 
slightly different fiber of T. The corresponding linear map will then be projection of 
this new fiber onto the fiber of T l at q. 

Corresponding to the vector bundles T and T ± are the bundles of orthonormal 
frames in each fiber. For the bundle T, since the fiber is H, the unit frames are just 
the unit length quaternions, which make up the group Sp(1) = SU(2). The fibers of 
T ± are H n, the orthonormal frames in H" make up the group Sp(n). The unit 
length vectors in H n+l make up a 4n + 3 dimensional sphere and can also be seen 

to be the set of unit vectors in the fibers of the tautological bundle. Taking the 
coordinates of such a vector in H "+1 to be the homogeneous coordinates of a point 



334 P. Woit / Supersymmetric quantum mechanics 

in HP” defines the Hopf fibration S4n+3 -+ HP”. The same construction in the real 

and complex cases gives the fibrations S” -+ RP” and S2n+1 + CP” respectively. 

The space HP” has an alternative description as a coset space. The group 

Sp(n + 1) acts transitively on the lines in H”+l and thus on HP”. A point q in HP” 

is left invariant under the subgroup Sp(1) X Sp(n) of Sp(1) transformations that 

leave the fiber of T invariant, and Sp(n) transformations that leave the fiber of T i 

invariant. Thus 

HP”= SP(~ + l)/(Sp(l) x Spb)) > 

so Sp(n + 1) is an Sp(1) x Sp(n) bundle over HP”. The notion of a projective space 

can be further generalized to that of a grassmannian. The grassmannian Gi,.+;(H) 

is the set of i-planes H’ through the origin of H”+‘. G,, .+,(H) is another name for 

HP”, G *, n+2(H) can be thought of as the set of lines in HP”+l. These spaces again 

have tautological bundles above them, a similar description of their tangent bundles 

and a coset space description 

Gi,.+i(H) = SP@ + ~)/(SP@) ~SP(+ 

For the complex projective spaces CP”, the symplectic groups are replaced by the 

unitary groups. As a coset space 

so SU(n + 1) is a U(n) bundle over CP”. The real projective spaces RP” are given 

by (since O(1) = Z,) 

RP” = 0( n + l)/(Z, X O(n)) = SO( n + l)/(Z, X SO( fl>) 

and geometrically can be realized as one half of an n-sphere, cut along the equator, 

with opposite points on the equator identified. 

The spaces RP’, CP’, and HP1, are especially simple since they can be identified 

with spheres by stereographic projection. RP’ = S’, CP’ = S2, and HP’ = S4. The 

bundle of orthonormal frames in the tautological bundles T above these spaces are 

well known: the Mobius strip for RP’, the Dirac monopole bundle for CP’ (the 

Hopf fibration S3 + S2) and the BPST instanton bundle for HP’ (the Hopf 

fibration S’ + S4). Note that these three bundles fit together, the fiber of one of 

them is the total space of the preceding one. 

4. Spinors and twistors 

The geometry of the spin bundle in 4 dimensions is simplest if one deals with the 

conformal compactification of flat space, which will be S4 in the euclidean case and 
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S 3 × S 1 in the Minkowski case. This compactification is physically irrelevant since 
these spaces are locally flat and one can make their size as big as one likes. We have 
no intention of saying anything about the global structure of space-time since our 
concern is with the properties of particles and their interactions and only in a very 
peculiar theory would these depend upon the structure of space-time infinity. 

Twistor theory [12-14] relies upon the observation that the conformal compactifi- 
cation of Minkowski space is a certain real slice of the 4 complex dimensional space 
G2,4(C), the grassmannian of complex 2-planes in C 4. The tautological bundle 
above this space will be called S +, it is the bundle of Weyl spinors. This formalism 
is inherently parity asymmetric, the tautological bundle is the bundle of spinors of 
one chirality, we will choose to call these the right-handed spinors, but this is a 
matter of convention. A point in Minkowski space corresponds to a C 2 in C 4, this 
C 2 is the space of right-handed Weyl spinors at that point and the C 4 is twistor 
space. The conformal compactification of euclidean space is S 4 and this is another 
real slice of G2,4(C), one that intersects Minkowski space on a constant time S 3. 
This identification of G2,4(C ) with the complexification of space-time has two 
advantages: it provides a clear way of understanding the analytic continuation 
between Minkowski and euclidean space that is an essential part of quantum field 
theory, and it provides a simple geometrical construction of the spinor bundle. 

It is perhaps easiest to study G2,4(C ) as the space of complex projective lines 
(CP l's) on CP 3. There is a natural metric on this space with the property that for 
any two points x~ and x 2 the distance between them satisfies Ix~ - x2l 2 = 0 if and 
only if the corresponding lines in CP 3 intersect. On the Minkowski slice this 
corresponds to the Minkowski metric, on the S 4 slice it gives the standard positive 
definite metric. This latter property is a reflection of the fact that CP 3 has a 
fibration by a family of non-intersecting CP ~'s parametrized by S 4. 

The fibration of CP 3 by CP a's is given by choosing an arbitrary identification of 
the twistor space C 4 with H 2, and associating to each complex line through the 
origin in C 4 the quaternionic line through the origin in H 2 that it generates. As an 
example, consider the identification of C 4 with H 2 given by 

(zl ,  z2, z3, z4) ~ (z a + Z z j ,  z3 + z 4 j  ) . 

Taking these to be homogeneous coordinates on CP 3 and HP 1 respectively this 
provides a map 

~r: CP 3 ~ HP  1 

which is given in terms of homogeneous coordinates by associating to any non-zero 
point in C 4 the corresponding point in H 2 and then taking the quaternionic line 
through zero generated by this point. This map is a fibration with fiber CP 1 since a 
point in H P  1 is a quaternionic line, thus a copy of C 2 and the set of complex lines 
lying in this C 2 is a copy of CP a. 
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Furthermore, each point in the fiber CP ~ above a point in HP 1 = S 4 provides an 
identification of the 4-dimensional tangent space to S 4 with C 2. This occurs because 
for each point x in CP 3 there is a distinguished complex line L x passing through it 
given by the fibration. In terms of the map ~r 

L x = ~ - l ~ ( x ) .  

The tangent space T~CP 3 can be used to construct the quotient space TxCP3/Lx 
which naturally has a complex structure and furthermore is naturally identified by 
the map ~r with the tangent space to S 4 at the point ~r(x). Although we restrict our 
attention to the case of S 4 we should point out that this sort of fiber bundle exists in 
general and is of great importance in the study of 4-dimensional riemannian 
geometry. Atiyah, Hitchin and Singer [15] have studied solutions to the Yang-Mills 
equations over arbitrary 4-dimensional riemannian manifolds by looking at the 
generalized twistor space of all complex structures on the tangent spaces for each 
point. This gives a bundle over the 4-manifold, which for self-dual 4-manifolds is 
actually a complex manifold (the analogue of CP 3 in our case). 

The tangent space to G2,4(C ) is given by complex linear maps from S + to S- ,  
equivalently by elements in the tensor product S +* ® S , where S + is the tautologi- 
cal bundle above G2,4(C), (right-handed spin bundle), S is the quotient subbundle 
(left-handed spin bundle) and S +* is the dual bundle to S +. Once we have chosen 
coordinates on the fibers of S + and S- ,  a point in the tangent space will be given by 
an arbitrary 2 × 2 complex matrix M: 

[ Zo + z3 zl + iz21 
M =  i t  zl + iz2 Z o -  z3 ) " 

The metric function on the tangent space of G2,4(C ) is given by the determinant of 
this matrix: 

d e t M =  - Z2o + zZ + z2 + z2. 

It is invariant under the group SO(4, C ) =  SL(2, C)L × SL(2, C ) R ~ Z  2 which acts on 
M by 

M ~ A M B ,  

where A and B are SL(2, C) matrices (the Z 2 arises because (A, B) = ( - 1 ,  - 1 )  has 
the same effect as (A, B ) =  (1,1)). The Minkowski slice (z 0, zl, z 2, z 3 real) of the 
tangent space is left invariant by the diagonal SL(2, C) subgroup (B = At), this is 
the Lorentz group. The euclidean slice (z 0 imaginary, z 1, z2, z 3 real) is left invariant 
by the compact subgroup SU(2)L × SU(2)~JZ 2 (A, B ~ SU(2)), this is the euclidean 
rotation group SO(4). It is double covered by the group Spin(4) = SU(2)L × SU(2)R" 
The diagonal SU(2) (A = B -1) gives the spatial rotations and acts on both the 
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euclidean and Minkowski slices. The boosts in the Lorentz SL(2, C) take points in 
euclidean space out of the euclidean slice, and the other "anti-diagonal" SU(2) in 
Spin(4) (A = B) similarly does not take Minkowski space-time points to Minkowski 
space points. 

Quantum field theories, even those for scalars, are not well defined in Minkowski 
space and the same problems will plague any equivalent path integral form of the 
theory. Perturbatively this shows up in ambiguities in the definition of the free 
propagator. Non-perturbatively, functional integrals are not convergent in Minkow- 
ski space even for a regularized theory. These problems disappear when one 
formulates the theory in euclidean space, where functional integrals are convergent 
in the regularized theory and propagators are unambiguously defined. Once the 
theory has been defined in euclidean space, the Minkowski space Green functions 
are defined to be the analytic continuation of the euclidean space Green functions. 

For  spinor field theories the difficulties in understanding the relationship between 
the theory written in Minkowski and in euclidean space are well-known. While 
technical solutions to these problems have been found allowing the performance of 
calculations in euclidean space, our point of view is that these difficulties are a 
symptom that one is misinterpreting the situation. We believe that some of the 
euclidean space rotational symmetries should be thought of as internal symmetries 
of the Minkowski space theory. This analytic continuation deserves a much more 
careful analysis and the natural context for this is in the twistor formalism. While 
we have not fully carried this out, we will make a few comments on the problem. 

The right-handed spin bundle S + over G2,4(C) is a holomorphic vector bundle 
(its transition functions can be chosen to be holomorphic functions). Since right- 
handed spinor fields are sections of this bundle, the notion of analytic continuation 
of spinor fields between the Minkowski and euclidean slices of G2,4(C ) will make 
sense provided we take these spinor fields to be holomorphic sections. An arbitrary 
bundle over G2,4(C ) will not necessarily be holomorphic and in such a case there 
would be no gauge invariant way of making sense of the notion of analytic 
continuation of the fields from one slice to another. This is the case because only if 
the transition functions can be chosen to be holomorphic can the gauge transforma- 
tions also be chosen to be holomorphic. 

Under  this notion of analytic continuation of the spinor fields, while the value of 
the field at a Minkowski point is determined in terms of its value at a euclidean 
point, the transformations of the field under the Minkowski boosts and under the 
anti-diagonal SU(2) in SO(4) can be performed completely independently. The 
analytic continuation does not relate this SU(2) to the boosts of the Lorentz group, 
so it behaves like an internal symmetry not a space-time symmetry. The prejudice 
that the analytic continuation of the fields should relate the euclidean SO(4) 
rotation group and the Minkowski SL(2, C) Lorentz group is based upon the fact 
that these groups share the same complexification, SO(4, C), and thus an analytic 
continuation in the group parameters from one group to the other can be estab- 
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lished. In flat space, using global symmetry transformations, one can use the 
existence of this complexification to relate Minkowski and euclidean space Green 
functions. However this is not possible in a curved space and if one considers SO(4) 
and SL(2, C) purely in their role as local frame transformations there is no reason to 
believe that this analytic continuation in SO(4, C) has anything to do with the 
analytic continuation in the space-time variables. 

Gauging the group of space-like rotations would be a mistake because one would 
then have a gauge field that coupled to particles through their spin, something 
which is not observed. We are only gauging a U(1) subgroup of this group, the 
subgroup of transformations which is indistinguishable from an overall U(1) phase 
transformation on the spinor field at a point. 

5. The states of S S Q M  and the standard model 

In the first section of this paper we argued that the quantization of SSQM 
required the introduction of a complex structure on the tangent space at each point 
x. The last section showed that this is equivalent to picking a point in the fiber 
above x in the fibration 

er: CP 3 ---> HP  1 . 

In order to avoid breaking the rotational invariance of the theory, we should 
integrate over all choices of complex structure. This suggests that we should be 
defining the theory by integrating over paths in CP 3 rather than paths in S 4. The 
action will remain the same, it is independent of the complex structure so it only 
depends on the projection of the path onto S 4. The introduction of the complex 
structure is necessary only to define the space of states of the theory. 

A basis for the states is given by the complex exterior algebra and we have seen 
how this basis transforms under the U(2) subgroup of SO(4) that preserves the 
complex structure. We begin by identifying this U(2) in terms of the spinor 
geometry of the last section. Since vectors in the tangent space at a point of S 4 
correspond to maps from the fiber of S ÷ at the point to the fiber of S- ,  the group 
SO(4) of transformations preserving the metric on the tangent space becomes the 
group SU(2) L x SU(2)pfZ 2 of independent SU(2) transformations preserving the 
hermitian metrics on the fibers of S ÷ and S- .  The complex structures above a point 
correspond to the complex lines in the corresponding fiber of the right-handed spin 
bundle S +. A U(1) subgroup of the group SU(2)a leaves this complex line invariant, 
just multiplying vectors in it by a phase. The group SU(2)L also clearly leaves this 
line invariant, so we have the full SU(2)L × U(1) subgroup of SU(2) L x SU(2)R that 
leaves the complex structure invariant. 

In order to make this more explicit, choose coordinates on the fibers of the spin 
bundles and fix the complex structure by choosing the line generated by [1, 0] in the 
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right-handed spin bundle. Then the U(1) acts on the right-handed spinors as 
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O R ~ eig'O'r3/2OR 

( g '  will be the weak hypercharge coupling constant) and the SU(2)L leaves them 
invariant. In other words, the vector bundle S + splits into two line bundles, which 
transform under the U(1) with hypercharges Y =  +1  and Y = - 1 ,  where by 
definition a state with hypercharge Y will transform under the U(1) as 

U ~ eig 'YO/2u.  

The SU(2)I. acts on the left-handed spinors as 

0 L ~ eigOkfk/2OL 

(where g will be the weak isospin coupling constant) and the U(1) leaves them 
invariant. 

Just as vectors on S 4 are sections of the bundle S +* ® S -  over S 4, we should 
think of elements of the complex exterior algebra as sections of a bundle over CP 3, 
since we have to specify a complex structure as well as a point on S 4. The 
appropriate  bundle will be: 

T* ® ( ~ * S + ~  ~r*S-) ~ CP 3 , 

where T* is the dual of the tautological bundle over CP 3. Here ~r* means pullback 
by the projection mapping 7r, and T is the bundle whose fiber above a point is just 
the complex line that determines that point. Thus sections of T will transform under 
the U(1) with Y = + 1 and sections of T* will carry Y = - 1. 

Looking first at the even elements of the basis of the exterior algebra (1 and 
~1~2), they correspond to T * ®  7r*S + since they carry Y =  0 and Y =  - 2  and are 
SU(2) singlets. The odd elements (~1, ~2) correspond to T* ® ~r*S which carry 
Y = - 1  and are an SU(2) doublet. 

Now that we have identified the basis elements of the complex exterior algebra in 
terms of the spin bundles twisted by the tautological bundle over CP 3 we find it 
irresistible to wonder what happens if one twists the spin bundles by the other 
natural  bundle over CP 3, the quotient bundle T i .  Thinking of CP 3 as the coset 
space U ( 4 ) / ( U ( 3 ) x  U(1)), U(4) is the bundle over CP 3 whose fibers U(3 )×  U(1) 
are the frames in the associated vector bundles T l and T. The fibers of T "  
t ransform as the fundamental representation of SU(3) c U(3). There are now two 
U(1) groups to be considered. One corresponds to the U(1) = U(4) that acts on C 4 
a s  

Z i ~ e i ° z i .  

This overall U(1) symmetry presumably corresponds to fermion number conserva- 
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tion in the theory, it is the other U(1) that is interesting, the one that is left if one 
describes CP 3 as SU(4)/U(3).  This U(1) is a subgroup of SU(4) which acts both on 
T and on T ±. If we identify it with the hypercharge U(1) on T it will act as e ig'°/2 
on the fibers of T. Since it is a subgroup of SU(4) it must act on T ± as e ig'0/6. 

This shows that sections of 

T ±* ® ( ~ * S + ~  ~ '*S-)  ~ CP 3 

will t ransform in the same way as a generation of leptons except that they will be 
SU(3) triplets and will have their hypercharges shifted by Y ~ Y -  4 3- These are 
exactly the transformation properties of a generation of quarks in the standard 
model. We have shown that a generation of fermions in the standard model 
transforms as sections of the bundle 

(T* <9 T -L*) ® (~z*S+~ r r*S-)  + CP 3 . 

This simplifies since T* ~ T ± * is just the trivial C 4 bundle over  C P  3. In a sense the 
topological twisting of the lepton fields coming from the tautological bundle is 
undone by the twisting of the quark fields, which is quite reminiscent of the way in 
which the gauge anomaly of a lepton generation is cancelled by the quarks. 

6. The Higgs field 

The supersymmetric quantum mechanics that we began by considering describes 
massless fermions and we have now seen that it has an internal U(2) symmetry. If 
we wish to understand the connection to the standard model, we have to understand 
how spontaneous symmetry breaking of U(2) to U(1) can occur in this sort of 
model. This problem is under investigation, but there is one simple remark that can 
be made about  it. As we shall see, it turns out that there is a very natural 
geometrical object which transforms as the Higgs field in the standard model. 

For  simplicity we will use a non-linear sigma model description of the Higgs in 
which it takes values in S 3 = SU(2) = Sp(1), the unit quaternions. It is well known 
that the Higgs sector of the standard model by itself is SO(4) invariant, with the 
Higgs field transforming as a 4-vector. At each point x in H P  t, the tangent space is 
the space of quaternions. Just as there is a SO(4)/U(2) = CP 1 worth of inequivalent 
ways of identifying C 2 and R 4, there is a SO(4)/Sp(1) = $3/Z2 worth of inequiv- 
alent ways of identifying H with R 4. One way of seeing this is to note that the real 
unit vector 1 is distinguished from all other unit vectors in H as defining the real 
axis and thus is the only unit vector invariant under conjugation. We will identify 
this distinguished unit vector with the Higgs degree of freedom. It is left invariant 
by the diagonal SU(2) in the SO(4) of frame rotations. Since these will be the 
spacelike rotations, this distinguished vector corresponds to the time direction 
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relative to the given frame. While it is a scalar under spatial rotations, it transforms 

as an isodoublet under SU(2), and thus has the correct transformation properties to 

behave like a Higgs field and break the weak isospin symmetry. 

To make the above considerations more explicit, consider the standard identifica- 

tion of R4 and H: 

x”++q=x%“a”, 

where o” = il SO(4) acts on this by q + aqb with a, b E SU(2). The purely spatial 

rotations correspond to the SU(2) subgroup a = bE’; they leave invariant the time 

coordinate, which is given by Tr(q)/2i. The subgroup a = b changes the trace and 

thus the time coordinate. It acts transitively on the space of all possible time axes 

(equivalently, all identifications of R4 with H) rotating any one into any other. 

7. Conclusion 

The goal of this work has been to at least raise the possibility of the existence of a 

very different sort of unified theory of particle interactions, one based upon 

considering the simplest supersymmetric non-linear sigma model and the geometry 

of four dimensional spinors. The argument for this is quite simple. Quantization 

implies that the states of the model transform under a U(2) with the transformation 

properties of a generation of leptons, and expressing these states in terms of spinor 

geometry leads one to a simple way of introducing quarks, which are presumably 

necessary for the consistency of the theory once it is coupled to gauge fields. 

This provides a remarkable set of answers to the questions “Why SU(3) x SU(2) L 

x U(l)?” and “Why this particular set of transformation properties for a genera- 

tion?“. The supersymmetric model considered is of great independent interest, it has 

provided a proof of the Atiyah-Singer index theorem for the Dirac operator, and 

work of Witten has shown that it gives a measure on the space of paths on a 

manifold, a measure different from Wiener measure. The fact that spinor and 

twistor geometry may be involved in understanding the internal symmetries should 

help bring the beautiful subject of twistor theory into the mainstream of particle 

physics. Furthermore, the fact that the internal symmetries may be understood as 

properties of spinors and the frame bundle promises the possibility of new ap- 

proaches to unifying gravity with the other interactions. 

This work raises many more questions than it answers, one of the most important 

is understanding how spontaneous symmetry breaking occurs and thus where the 

fermion mass matrix comes from. While it seems likely that most of the successful 

field theoretical results of the standard model can be derived in a path integral 

rather than functional integral context by use of this model, this project has never 

been fully worked out. This now seems a much more interesting problem than it was 

before, because a reformulation of the field theory in terms of paths may be 
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necessary in order to make progress on the question of unification. Perhaps 

quantities that are inherently not calculable in the field theory formalism may be 

calculable in some sort of path integral formalism. 

One important difference between the geometric picture suggested here and the 

standard one is that the SU(3) and U(1) gauge fields will be defined over the twistor 

space CP3 rather than over S4. This allows one a new freedom in defining the 

dynamics of the theory which may have interesting consequences. 
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