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Preface

This book began as course notes prepared for a class taught at Columbia Uni-
versity during the 2012-13 academic year. The intent was to cover the basics of
quantum mechanics, up to and including relativistic quantum field theory of free
fields, from a point of view emphasizing the role of unitary representations of
Lie groups in the foundations of the subject. The notes were later significantly
rewritten and extended, partially based upon experience teaching the same ma-
terial during 2014-15, and published by Springer in 2017. The current version
is under revision as I teach the course again during the 2020-21 academic year.

The approach to this material is simultaneously rather advanced, using cru-
cially some fundamental mathematical structures discussed, if at all, only in
graduate mathematics courses, while at the same time trying to do this in as
elementary terms as possible. The Lie groups needed are (with one crucial
exception) ones that can be described simply in terms of matrices. Much of
the representation theory will also just use standard manipulations of matrices.
The only prerequisite for the course as taught was linear algebra and multi-
variable calculus (while a full appreciation of the topics covered would benefit
from quite a bit more than this). My hope is that this level of presentation will
simultaneously be useful to mathematics students trying to learn something
about both quantum mechanics and Lie groups and their representations, as
well as to physics students who already have seen some quantum mechanics,
but would like to know more about the mathematics underlying the subject,
especially that relevant to exploiting symmetry principles.

The topics covered emphasize the mathematical structure of the subject, and
often intentionally avoid overlap with the material of standard physics courses
in quantum mechanics and quantum field theory, for which many excellent text-
books are available. This document is best read in conjunction with such a text.
In particular, some experience with the details of the physics not covered here
is needed to truly appreciate the subject. Some of the main differences with
standard physics presentations include:

e The role of Lie groups, Lie algebras, and their unitary representations is
systematically emphasized, including not just the standard use of these to
derive consequences for the theory of a “symmetry” generated by operators
commuting with the Hamiltonian.

e Symplectic geometry and the role of the Lie algebra of functions on phase
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space in the classical theory of Hamiltonian mechanics is emphasized.
“Quantization” is then the passage to a unitary representation (unique
by the Stone-von Neumann theorem) of a subalgebra of this Lie algebra.

The role of the metaplectic representation and the subtleties of the pro-
jective factor involved are described in detail. This includes phenomena
depending on the choice of a complex structure, a topic known to physi-
cists as “Bogoliubov transformations”.

The closely parallel story of the Clifford algebra and spinor representa-
tion is extensively investigated. These are related to the Heisenberg Lie
algebra and the metaplectic representation by interchanging commutative
(“bosonic”) and anticommutative (“fermionic”) generators, introducing
the notion of a “Lie superalgebra” generalizing that of a Lie algebra.

Many topics usually first encountered in physics texts in the context of
relativistic quantum field theory are instead first developed in simpler
non-relativistic or finite dimensional contexts. Non-relativistic quantum
field theory based on the Schrodinger equation is described in detail before
moving on to the relativistic case. The topic of irreducible representations
of space-time symmetry groups is first addressed with the case of the
Euclidean group, where the implications for the non-relativistic theory
are explained. The analogous problem for the relativistic case, that of the
irreducible representations of the Poincaré group, is then worked out later
on.

The emphasis is on the Hamiltonian formalism and its representation-
theoretical implications, with the Lagrangian formalism (the basis of most
quantum field theory textbooks) de-emphasized. In particular, the opera-
tors generating symmetry transformations are derived using the moment
map for the action of such transformations on phase space, not by invoking
Noether’s theorem for transformations that leave invariant a Lagrangian.

Care is taken to keep track of the distinction between vector spaces and
their duals. It is the dual of phase space (linear coordinates on phase
space) that appears in the Heisenberg Lie algebra, with quantization a
representation of this Lie algebra by linear operators.

The distinction between real and complex vector spaces, along with the
role of complexification and choice of a complex structure, is systemati-
cally emphasized. A choice of complex structure plays a crucial part in
quantization using annihilation and creation operator methods, especially
in relativistic quantum field theory, where a different sort of choice than
in the non-relativistic case is responsible for the existence of antiparticles.

Some differences with other mathematics treatments of this material are:

e A fully rigorous treatment of the subject is not attempted. At the same
time an effort is made to indicate where significant issues arise should one
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pursue such a treatment, and to provide references to rigorous discussions
of these issues. An attempt is also made to make clear the difference
between where a rigorous treatment could be pursued relatively straight-
forwardly, and where there are serious problems of principle making a
rigorous treatment hard to achieve.

e The discussion of Lie groups and their representations is focused on spe-
cific examples, not the general theory. For compact Lie groups, emphasis
is on the groups U(1),S0(3),SU(2) and their finite dimensional repre-
sentations. Central to the basic structure of quantum mechanics are the
Heisenberg group, the symplectic groups Sp(2n,R) and the metaplectic
representation, as well as the spinor groups and the spin representation.
The geometry of space-time leads to the study of Euclidean groups in two
and three dimensions, and the Lorentz (SO(3,1)) and Poincaré groups,
together with their representations. These examples of non-compact Lie
groups are a fundamental feature of quantum mechanics, but not a con-
ventional topic in the mathematics curriculum.

e A central example studied thoroughly and in some generality is that of the
metaplectic representation of the double cover of Sp(2n,R) (in the com-
mutative case), or spin representation of the double cover of SO(2n,R)
(anticommutative case). This specific example of a representation provides
the foundation of quantum theory, with quantum field theory involving a
generalization to the case of n infinite.

e No attempt is made to pursue a general notion of quantization, despite
the great mathematical interest of such generalizations. In particular, at-
tention is restricted to the case of quantization of linear symplectic man-
ifolds. The linear structure plays a crucial role, with quantization given
by a representation of a Heisenberg algebra in the commutative case, a
Clifford algebra in the anticommutative case. The very explicit meth-
ods used (staying close to the physics formalism) mostly do not apply to
more general conceptions of quantization (e.g., geometric quantization) of
mathematical interest for their applications in representation theory.

The scope of material covered in later sections of the book is governed by
a desire to give some explanation of what the central mathematical objects are
that occur in the Standard Model of particle physics, while staying within the
bounds of a one-year course. The Standard Model embodies our best current
understanding of the fundamental nature of reality, making a better understand-
ing of its mathematical nature a central problem for anyone who believes that
mathematics and physics are intimately connected at their deepest levels. The
author hopes that the treatment of this subject here will be helpful to anyone
interested in pursuing a better understanding of this connection.
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Chapter 1

Introduction and Overview

1.1 Introduction

A famous quote from Richard Feynman goes “I think it is safe to say that no one
understands quantum mechanics.” [22]. In this book we’ll pursue one possible
route to such an understanding, emphasizing the deep connections of quan-
tum mechanics to fundamental ideas of modern mathematics. The strangeness
inherent in quantum theory that Feynman was referring to has two rather dif-
ferent sources. One of them is the striking disjunction and incommensurability
between the conceptual framework of the classical physics which governs our
everyday experience of the physical world, and the very different framework
which governs physical reality at the atomic scale. Familiarity with the pow-
erful formalisms of classical mechanics and electromagnetism provides deep un-
derstanding of the world at the distance scales familiar to us. Supplementing
these with the more modern (but still “classical” in the sense of “not quantum”)
subjects of special and general relativity extends our understanding into other
much less familiar regimes, while still leaving atomic physics a mystery.

Read in context though, Feynman was pointing to a second source of diffi-
culty, contrasting the mathematical formalism of quantum mechanics with that
of the theory of general relativity, a supposedly equally hard to understand
subject. General relativity can be a difficult subject to master, but its mathe-
matical and conceptual structure involves a fairly straightforward extension of
structures that characterize 19th century physics. The fundamental physical
laws (Einstein’s equations for general relativity) are expressed as partial dif-
ferential equations, a familiar if difficult mathematical subject. The state of a
system is determined by a set of fields satisfying these equations, and observable
quantities are functionals of these fields. The mathematics is largely that of the
usual calculus: differential equations and their real-valued solutions.

In quantum mechanics, the state of a system is best thought of as a different
sort of mathematical object: a vector in a complex vector space with a Hermitian
inner product, the so-called state space. Such a state space will sometimes be a



space of functions known as wavefunctions. While these may, like classical fields,
satisfy a differential equation, one non-classical feature is that wavefunctions are
complex-valued. What’s completely different about quantum mechanics is the
treatment of observable quantities, which correspond to self-adjoint linear op-
erators on the state space. When such operators don’t commute, our intuitions
about how physics should work are violated, as we can no longer simultaneously
assign numerical values to the corresponding observables.

During the earliest days of quantum mechanics, the mathematician Hermann
Weyl quickly recognized that the mathematical structures being used were ones
he was quite familiar with from his work in the field of representation theory.
From the point of view that takes representation theory as a central theme
in mathematics, the framework of quantum mechanics looks perfectly natural.
Weyl soon wrote a book expounding such ideas [I01], but this got a mixed reac-
tion from physicists unhappy with the penetration of unfamiliar mathematical
structures into their subject (with some of them characterizing the situation as
the “Gruppenpest”, the group theory plague). One goal of this book will be to
try and make some of this mathematics as accessible as possible, boiling down
part of Weyl’s exposition to its essentials while updating it in the light of many
decades of progress towards better understanding of the subject.

Weyl’s insight that quantization of a classical system crucially involves un-
derstanding the Lie groups that act on the classical phase space and the uni-
tary representations of these groups has been vindicated by later developments
which dramatically expanded the scope of these ideas. The use of representa-
tion theory to exploit the symmetries of a problem has become a powerful tool
that has found uses in many areas of science, not just quantum mechanics. 1
hope that readers whose main interest is physics will learn to appreciate some
of such mathematical structures that lie behind the calculations of standard
textbooks, helping them understand how to effectively exploit them in other
contexts. Those whose main interest is mathematics will hopefully gain some
understanding of fundamental physics, at the same time as seeing some crucial
examples of groups and representations. These should provide a good ground-
ing for appreciating more abstract presentations of the subject that are part
of the standard mathematical curriculum. Anyone curious about the relation
of fundamental physics to mathematics, and what Eugene Wigner described as
“The Unreasonable Effectiveness of Mathematics in the Natural Sciences” [102]
should benefit from an exposure to this remarkable story at the intersection of
the two subjects.

The following sections give an overview of the fundamental ideas behind
much of the material to follow. In this sketchy and abstract form they will
likely seem rather mystifying to those meeting them for the first time. As we
work through basic examples in coming chapters, a better understanding of the
overall picture described here should start to emerge.



1.2 Basic principles of quantum mechanics

We'll divide the conventional list of basic principles of quantum mechanics into
two parts, with the first covering the fundamental mathematics structures.

1.2.1 Fundamental axioms of quantum mechanics

In classical physics, the state of a system is given by a point in a “phase space”,
which can be thought of equivalently as the space of solutions of an equation
of motion, or as (parametrizing solutions by initial value data) the space of
coordinates and momenta. Observable quantities are just functions on this space
(e.g., functions of the coordinates and momenta). There is one distinguished
observable, the energy or Hamiltonian, and it determines how states evolve in
time through Hamilton’s equations.

The basic structure of quantum mechanics is quite different, with the for-
malism built on the following simple axioms:

Axiom (States). The state of a quantum mechanical system is given by a non-
zero vector in a complex vector space H with Hermitian inner product (-,-).

We'll review in chapter [4 some linear algebra, including the properties of in-
ner products on complex vector spaces. H may be finite or infinite dimensional,
with further restrictions required in the infinite dimensional case (e.g., we may
want to require H to be a Hilbert space). Note two very important differences
with classical mechanical states:

e The state space is always linear: a linear combination of states is also a
state.

e The state space is a complex vector space: these linear combinations can
and do crucially involve complex numbers, in an inescapable way. In the
classical case only real numbers appear, with complex numbers used only
as an inessential calculational tool.

We will sometimes use the notation introduced by Dirac for vectors in the state
space H: such a vector with a label v is denoted

¥)

Axiom (Quantum observables). The observables of a quantum mechanical sys-
tem are given by self-adjoint linear operators on H.

We'll review the definition of self-adjointness for H finite dimensional in
chapter[d For H infinite dimensional, the definition becomes much more subtle,
and we will not enter into the analysis needed.

Axiom (Dynamics). There is a distinguished quantum observable, the Hamil-
tonian H. Time evolution of states |1(t)) € H is given by the Schrédinger
equation

. d
= (1)) = HIp(?)) (1.1)
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The operator H has eigenvalues that are bounded below.

The Hamiltonian observable H will have a physical interpretation in terms of en-
ergy, with the boundedness condition necessary in order to assure the existence
of a stable lowest energy state.

h is a dimensional constant, called Planck’s constant, the value of which
depends on what units one uses for time and for energy. It has the dimensions
[energy] - [time] and its experimental values are

1.054571726(47) x 10~**Joule - seconds = 6.58211928(15) x 109V - seconds

(eV is the unit of “electron-Volt”, the energy acquired by an electron moving
through a one-Volt electric potential). The most natural units to use for quan-
tum mechanical problems would be energy and time units chosen so that A = 1.
For instance one could use seconds for time and measure energies in the very
small units of 6.6 x 10716 eV, or use eV for energies, and then the very small
units of 6.6 x 10716 seconds for time. Schrédinger’s equation implies that if one
is looking at a system where the typical energy scale is an eV, one’s state-vector
will be changing on the very short time scale of 6.6 x 1076 seconds. When we
do computations, usually we will set A = 1, implicitly going to a unit system
natural for quantum mechanics. After calculating a final result, appropriate
factors of A can be inserted to get answers in more conventional unit systems.

It is sometimes convenient however to carry along factors of A, since this
can help make clear which terms correspond to classical physics behavior, and
which ones are purely quantum mechanical in nature. Typically classical physics
comes about in the limit where

(energy scale)(time scale)
h

is large. This is true for the energy and time scales encountered in everyday
life, but it can also always be achieved by taking i — 0, and this is what will
often be referred to as the “classical limit”. One should keep in mind though
that the manner in which classical behavior emerges out of quantum theory in
such a limit can be a very complicated phenomenon.

1.2.2 Principles of measurement theory

The above axioms characterize the mathematical structure of a quantum theory,
but they don’t address the “measurement problem”. This is the question of
how to apply this structure to a physical system interacting with some sort
of macroscopic, human-scale experimental apparatus that “measures” what is
going on. This is a highly thorny issue, requiring in principle the study of two
interacting quantum systems (the one being measured, and the measurement
apparatus) in an overall state that is not just the product of the two states,
but is highly “entangled” (for the meaning of this term, see chapter E[) Since a
macroscopic apparatus will involve something like 1023 degrees of freedom, this
question is extremely hard to analyze purely within the quantum mechanical
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framework (requiring for instance the solution of a Schrédinger equation in 1023
variables).

Instead of trying to resolve in general this problem of how macroscopic clas-
sical physics behavior emerges in a measurement process, one can adopt the
following two principles as providing a phenomenological description of what
will happen, and these allow one to make precise statistical predictions using
quantum theory:

Principle (Observables). States for which the value of an observable can be
characterized by a well-defined number are the states that are eigenvectors for
the corresponding self-adjoint operator. The value of the observable in such a
state will be a real number, the eigenvalue of the operator.

This principle identifies the states we have some hope of sensibly associating
a label to (the eigenvalue), a label which in some contexts corresponds to an
observable quantity characterizing states in classical mechanics. The observ-
ables with important physical significance (for instance the energy, momentum,
angular momentum, or charge) will turn out to correspond to some group action
on the physical system.

Principle (The Born rule). Given an observable O and two unit-norm states
[11) and |12) that are eigenvectors of O with distinct eigenvalues A1 and Ao

Ol1) = AMilY1), Olh2) = Aal¢h2)
the complex linear combination state
cilpr) + c2lih2)

will not have a well-defined value for the observable O. If one attempts to
measure this observable, one will get either A1 or \a, with probabilities

||
et + |3
and
|c3]
e + |3
respectively.

The Born rule is sometimes raised to the level of an axiom of the theory, but
it is plausible to expect that, given a full understanding of how measurements
work, it can be derived from the more fundamental axioms of the previous
section. Such an understanding though of how classical behavior emerges in
experiments is a very challenging topic, with the notion of “decoherence” playing
an important role. See the end of this chapter for some references that discuss
these issues in detail.

Note that the state c|i)) will have the same eigenvalues and probabilities as
the state |¢), for any complex number c. It is conventional to work with states
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of norm fixed to the value 1, which fixes the amplitude of ¢, leaving a remaining
ambiguity which is a phase e*’. By the above principles this phase will not
contribute to the calculated probabilities of measurements. We will however
not take the point of view that this phase information can just be ignored. It
plays an important role in the mathematical structure, and the relative phase

of two different states certainly does affect measurement probabilities.

1.3 Unitary group representations

The mathematical framework of quantum mechanics is closely related to what
mathematicians describe as the theory of “unitary group representations”. We
will be examining this notion in great detail and working through many examples
in coming chapters, but here is a quick summary of the general theory.

1.3.1 Lie groups

A fundamental notion that appears throughout different fields of mathematics
is that of a group:

Definition (Group). A group G is a set with an associative multiplication, such
that the set contains an identity element, as well as the multiplicative inverse
of each element.

If the set has a finite number of elements, this is called a “finite group”.
The theory of these and their use in quantum mechanics is a well-developed
subject, but one we mostly will bypass in favor of the study of “Lie groups”,
which have an infinite number of elements. The elements of a Lie group make
up a geometrical space of some dimension, and choosing local coordinates on the
space, the group operations are given by differentiable functions. Most of the Lie
groups we will consider are “matrix groups”, meaning subgroups of the group
of n by n invertible matrices (with real or complex matrix entries). The group
multiplication in this case is matrix multiplication. An example we will consider
in great detail is the group of all rotations about a point in three dimensional
space, in which case such rotations can be identified with 3 by 3 matrices, with
composition of rotations corresponding to multiplication of matrices.

Digression. A standard definition of a Lie group is as a smooth manifold, with
group laws given by smooth (infinitely differentiable) maps. More generally, one
might consider topological manifolds and continuous maps, but this gives nothing
new (by the solution to Hilbert’s Fifth problem). Most of the finite dimensional
Lie groups of interest are matrix Lie groups, which can be defined as closed
subgroups of the group of invertible matrices of some fixed dimension. One
particular group of importance in quantum mechanics (the metaplectic group,
see chapter@) is mot a matriz group, so the more general definition is needed
to include this case.



1.3.2 Group representations

Groups often occur as “transformation groups”, meaning groups of elements
acting as transformations of some particular geometric object. In the example
mentioned above of the group of three dimensional rotations, such rotations are
linear transformations of R3. In general:

Definition (Group action on a set). An action of a group G on a set M s
given by a map
(9,2) EGXM —g-xe€M

that takes a pair (g,x) of a group element g € G and an element x € M to
another element g - © € M such that

91 (92 %) = (9192) - @ (1.2)

and

where e is the identity element of G

A good example to keep in mind is that of three dimensional space M = R3
with the standard inner product. This comes with two different group actions
preserving the inner product

e An action of the group G; = R? on R? by translations.

e An action of the group G2 = O(3) of three dimensional orthogonal trans-
formations of R3. These are the rotations about the origin (possibly
combined with a reflection). Note that in this case order matters: for
non-commutative groups like O(3) one has g1g2 # g2g1 for some group
elements g1, go.

A fundamental principle of modern mathematics is that the way to under-
stand a space M, given as some set of points, is to look at F(M), the set of
functions on this space. This “linearizes” the problem, since the function space
is a vector space, no matter what the geometrical structure of the original set
is. If the set has a finite number of elements, the function space will be a finite
dimensional vector space. In general though it will be infinite dimensional and
one will need to further specify the space of functions (e.g., continuous functions,
differentiable functions, functions with finite norm, etc.) under consideration.

Given a group action of G on M, functions on M come with an action of G
by linear transformations, given by

(9-f)z)=flg™" ) (1.3)

where f is some function on M.



The order in which elements of the group act may matter, so the inverse is
needed to get the group action property since

91+ (92 )(x) = (92 )( o)
flgy ( hex)
= fllgz'gr ") )

f((9192) tox)

(9192) f(x )

This calculation would not work out properly for non-commutative G if one

defined (g- f)(z) = f(g - 2).
One can abstract from this situation and define as follows a representation
as an action of a group by linear transformations on a vector space:

Definition (Representation). A representation (7,V) of a group G is a homo-
morphism
m:9€G—7(g) € GL(V)

where GL(V') is the group of invertible linear maps V- — V, with V' a vector
space.

Saying the map 7 is a homomorphism means

7(g1)7(g2) = 7(9192)

for all g1, g2 € G, i.e., that it satisfies the property needed to get a group action.
We will mostly be interested in the case of complex representations, where V is a
complex vector space, so one should assume from now on that a representation is
complex unless otherwise specified (there will be cases where the representations
are real).

When V is finite dimensional and a basis of V' has been chosen, then linear
maps and matrices can be identified (see the review of linear algebra in chapter
. Such an identification provides an isomorphism

GL(V) ~ GL(n,C)

of the group of invertible linear maps of V' with GL(n, C), the group of invertible
n by n complex matrices. We will begin by studying representations that are
finite dimensional and will try to make rigorous statements. Later on we will
get to representations on function spaces, which are infinite dimensional, and
will then often neglect rigor and analytical difficulties. Note that only in the
case of M a finite set of points will we get an action by finite dimensional
matrices this way, since then F(M) will be a finite dimensional vector space
(C# of points in M)

A good example to consider to understand this construction in the finite
dimensional case is the following:



e Take M to be a set of 3 elements z1,x9,23. So F(M) = C3. For f €
F(M), f is a vector in C?, with components (f(z1), f(x2), f(23)).

e Take G = S35, the group of permutations of 3 elements. This group has
3! = 6 elements.

e Take GG to act on M by permuting the 3 elements
(9,2j) = g-z;

e This group action provides a representation of G on F(M) by the linear
maps

(m(9)f)(x;) = flg~" - z;)

Taking the standard basis of F'(M) = C?, the j'th basis element will correspond
to the function f that takes value 1 on z;, and 0 on the other two elements.
With respect to this basis the 7(g) give six 3 by 3 complex matrices, which
under multiplication of matrices satisfy the same relations as the elements of
the group under group multiplication. In this particular case, all the entries of
the matrix will be 0 or 1, but that is special to the permutation representation.

A common source of confusion is that representations (w, V') are sometimes
referred to by the map 7, leaving implicit the vector space V' that the matrices
m(g) act on, but at other times referred to by specifying the vector space V,
leaving implicit the map 7. One reason for this is that the map m may be the
identity map: often G is a matrix group, so a subgroup of GL(n,C), acting
on V ~ C" by the standard action of matrices on vectors. One should keep
in mind though that just specifying V is generally not enough to specify the
representation, since it may not be the standard one. For example, it could very
well be the trivial representation on V', where

i.e., each element of G acts on V' as the identity.

1.3.3 Unitary group representations

The most interesting classes of complex representations are often those for which
the linear transformations 7(g) are “unitary”, preserving the notion of length
given by the standard Hermitian inner product, and thus taking unit vectors to
unit vectors. We have the definition:

Definition (Unitary representation). A representation (m,V') on a complex vec-
tor space V' with Hermitian inner product (-,-) is a unitary representation if it
preserves the inner product, i.e.,

(m(g)v1, m(g)v2) = (v1,v2)

for all g € G and vy,v3 € V.



For a unitary representation, the matrices m(g) take values in a subgroup
U(n) C GL(n,C). In our review of linear algebra (chapter [4)) we will see that
U(n) can be characterized as the group of n by n complex matrices U such that

u-t=yut

where U is the conjugate-transpose of U. Note that we’ll be using the notation
“t” to mean the “adjoint” or conjugate-transpose matrix. This notation is pretty
universal in physics, whereas mathematicians prefer to use “*” instead of “i”.

1.4 Representations and quantum mechanics

The fundamental relationship between quantum mechanics and representation
theory is that whenever we have a physical quantum system with a group G
acting on it, the space of states H will carry a unitary representation of G (at
least up to a phase factor ambiguity). For physicists working with quantum
mechanics, this implies that representation theory provides information about
quantum mechanical state spaces when G acts on the system. For mathemati-
cians studying representation theory, this means that physics is a very fruitful
source of unitary representations to study: any physical system with a group G
acting on it will provide one.
For a representation m and group elements g that are close to the identity,

exponentiation can be used to write m(g) € GL(n,C) as

m(g) = e
where A is also a matrix, close to the zero matrix. We will study this situation
in much more detail and work extensively with examples, showing in particular
that if 7(g) is unitary (i.e., in the subgroup U(n) C GL(n,C)), then A will be
skew-adjoint:

Al =-4

where AT is the conjugate-transpose matrix. Defining B = iA, we find that B
is self-adjoint
B'=1B

We thus see that, at least in the case of finite dimensional H, the unitary
representation m of G on H coming from an action of G on our physical sys-
tem gives us not just unitary matrices m(g), but also corresponding self-adjoint
operators B on H. Lie group actions thus provide us with a class of quantum
mechanical observables, with the self-adjointness property of these operators
corresponding to the unitarity of the representation on state space. It is a re-
markable fact that for many physical systems the class of observables that arise
in this way include the ones of most physical interest.

In the following chapters we’ll see many examples of this phenomenon. A
fundamental example that we will study in detail is that of action by translation
in time. Here the group is G = R (with the additive group law) and we get
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a unitary representation of R on the space of states H. The corresponding
self-adjoint operator is the Hamiltonian operator H (divided by h) and the
representation is given by
teR - w(t) =e wH!

which one can check is a group homomorphism from the additive group R to a
group of unitary operators. This unitary representation gives the dynamics of
the theory, with the Schrodinger equation just the statement that —%H At
is the skew-adjoint operator that gets exponentiated to give the unitary trans-
formation that moves states ¥ (t) ahead in time by an amount At.

One way to construct quantum mechanical state spaces H is as “wavefunc-
tions”, meaning complex-valued functions on space-time. Given any group ac-
tion on space-time, we get a representation m on the state space H of such
wavefunctions by the construction of equation [I.3] Many of the representations
of interest will however not come from this construction, and we will begin our
study of the subject in the next few chapters with such examples, which are
simpler because they are finite dimensional. In later chapters we will turn to
representations induced from group actions on space-time, which will be infinite
dimensional.

1.5 Groups and symmetries

The subject we are considering is often described as the study of “symmetry
groups”, since the groups may occur as groups of elements acting by transfor-
mations of a space M preserving some particular structure (thus, a “symmetry
transformation”). We would like to emphasize though that it is not necessary
that the transformations under consideration preserve any particular structure.
In the applications to physics, the term “symmetry” is best restricted to the
case of groups acting on a physical system in a way that preserves the equations
of motion (for example, by leaving the Hamiltonian function unchanged in the
case of a classical mechanical system). For the case of groups of such symme-
try transformations, the use of the representation theory of the group to derive
implications for the behavior of a quantum mechanical system is an important
application of the theory. We will see however that the role of representation
theory in quantum mechanics is quite a bit deeper than this, with the overall
structure of the theory determined by group actions that are not symmetries
(in the sense of not preserving the Hamiltonian).

1.6 For further reading
We will be approaching the subject of quantum theory from a different direc-

tion than the conventional one, starting with the role of symmetry and with the
simplest possible finite dimensional quantum systems, systems which are purely

11



quantum mechanical, with no classical analog. This means that the early dis-
cussion found in most physics textbooks is rather different from the one here.
They will generally include the same fundamental principles described here, but
often begin with the theory of motion of a quantized particle, trying to motivate
it from classical mechanics. The state space is then a space of wavefunctions,
which is infinite dimensional and necessarily brings some analytical difficulties.

Quantum mechanics is inherently a quite different conceptual structure than
classical mechanics. The relationship of the two subjects is rather complicated,
but it is clear that quantum mechanics cannot be derived from classical me-
chanics, so attempts to motivate it that way are unconvincing, although they
correspond to the very interesting historical story of how the subject evolved.
We will come to the topic of the quantized motion of a particle only in chapter
at which point it should become much easier to follow the standard books.

There are many good physics quantum mechanics textbooks available, aimed
at a wide variety of backgrounds, and a reader of this book should look for one
at an appropriate level to supplement the discussions here. One example would
be [81], which is not really an introductory text, but it includes the physicist’s
version of many of the standard calculations we will also be considering. Some
useful textbooks on the subject aimed at mathematicians are [20], [41], [43], [57],
and [9I]. The first few chapters of [28] provide an excellent while very concise
summary of both basic physics and quantum mechanics. One important topic
we won’t discuss is that of the application of the representation theory of finite
groups in quantum mechanics. For this as well as a discussion that overlaps quite
a bit with the point of view of this book while emphasizing different topics, see
[85]. For another textbook at the level of this one emphasizing the physicist’s
point of view, see [107].

For the difficult issue of how measurements work and how classical physics
emerges from quantum theory, an important part of the story is the notion of
“decoherence”. Good places to read about this are Wojciech Zurek’s updated
version of his 1991 Physics Today article [I11], as well as his more recent work
on “quantum Darwinism” [I12]. There is an excellent book on the subject
by Schlosshauer [75] and for the details of what happens in real experimental
setups, see the book by Haroche and Raimond [44]. For a review of how classical
physics emerges from quantum physics written from the mathematical point of
view, see Landsman [54]. Finally, to get an idea of the wide variety of points
of view available on the topic of the “interpretation” of quantum mechanics,
there’s a volume of interviews [76] with experts on the topic.

The topic of Lie groups and their representation theory is a standard part
of the mathematical curriculum at a more advanced level. As we work through
examples in later chapters we’ll give references to textbooks covering this ma-
terial.
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Chapter 2

The Group U(1) and its
Representations

The simplest example of a Lie group is the group of rotations of the plane, with
elements parametrized by a single number, the angle of rotation 6. It is useful
to identify such group elements with unit vectors e’ in the complex plane.
The group is then denoted U(1), since such complex numbers can be thought
of as 1 by 1 unitary matrices . We will see in this chapter how the general
picture described in chapter [1| works out in this simple case. State spaces will
be unitary representations of the group U(1), and we will see that any such
representation decomposes into a sum of one dimensional representations. These
one dimensional representations will be characterized by an integer ¢, and such
integers are the eigenvalues of a self-adjoint operator we will call @), which is an
observable of the quantum theory.

One motivation for the notation @) is that this is the conventional physics
notation for electric charge, and this is one of the places where a U(1) group
occurs in physics. Examples of U(1) groups acting on physical systems include:

e Quantum particles can be described by a complex-valued “wavefunction”
(see chapter [10]), and U(1) acts on such wavefunctions by pointwise phase
transformations of the value of the function. This phenomenon can be
used to understand how particles interact with electromagnetic fields, and
in this case the physical interpretation of the eigenvalue of the @) operator
will be the electric charge of the state. We will discuss this in detail in

chapter

e If one chooses a particular direction in three dimensional space, then the
group of rotations about that axis can be identified with the group U(1).
The eigenvalues of @) will have a physical interpretation as the quantum
version of angular momentum in the chosen direction. The fact that such
eigenvalues are not continuous, but integral, shows that quantum angular
momentum has quite different behavior than classical angular momentum.
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e When we study the harmonic oscillator (chapter we will find that it
has a U(1) symmetry (rotations in the position-momentum plane), and
that the Hamiltonian operator is a multiple of the operator @ for this
case. This implies that the eigenvalues of the Hamiltonian (which give
the energy of the system) will be integers times some fixed value. When
one describes multi-particle systems in terms of quantum fields one finds
a harmonic oscillator for each momentum mode, and then the @ for that
mode counts the number of particles with that momentum.

We will sometimes refer to the operator () as a “charge” operator, assigning a
much more general meaning to the term than that of the specific example of
electric charge. U(1) representations are also ubiquitous in mathematics, where
often the integral eigenvalues of the ) operator will be called “weights”.

In a very real sense, the reason for the “quantum” in “quantum mechanics”
is precisely because of the role of U(1) groups acting on the state space. Such
an action implies observables that characterize states by an integer eigenvalue
of an operator @), and it is this “quantization” of observables that motivates the
name of the subject.

2.1 Some representation theory

Recall the definition of a group representation:

Definition (Representation). A representation (w,V) of a group G on a com-
plex vector space V' (with a chosen basis identifying V ~ C") is a homomor-
phism

m: G — GL(n,C)

This is just a set of n by n matrices, one for each group element, satisfying
the multiplication rules of the group elements. n is called the dimension of the
representation.

We are mainly interested in the case of G a Lie group, where G is a differ-
entiable manifold of some dimension. In such a case we will restrict attention
to representations given by differentiable maps 7. As a space, GL(n, C) is the
space Cc”’ of alln by n complex matrices, with the locus of non-invertible (zero
determinant) elements removed. Choosing local coordinates on G, m will be
given by 2n? real functions on G, and the condition that G is a differentiable
manifold means that the derivative of 7 is consistently defined. Our focus will
be not on the general case, but on the study of certain specific Lie groups and
representations 7 which are of central interest in quantum mechanics. For these
representations one will be able to readily see that the maps 7 are differentiable.

To understand the representations of a group G, one proceeds by first iden-
tifying the irreducible ones:

Definition (Irreducible representation). A representation m is called irreducible
if it is has no subrepresentations, meaning non-zero proper subspaces W C 'V
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such that (myw, W) is a representation. A representation that does have such a
subrepresentation s called reducible.

Given two representations, their direct sum is defined as:

Definition (Direct sum representation). Given representations w1 and ma of
dimensions n1 and ns, there is a representation of dimension ny + ny called the
direct sum of the two representations, denoted by m @ mo. This representation
18 gwen by the homomorphism

m(gg) T 2(29))

In other words, representation matrices for the direct sum are block diagonal
matrices with 7, and ms giving the blocks. For unitary representations

(7r1€97r2):g€G—>(

Theorem 2.1. Any unitary representation w can be written as a direct sum
T=m Oma®- - DTy
where the m; are irreducible.

Proof. If (w, V') is not irreducible there exists a non-zero W C V such that
(mjw, W) is a representation, and

(71—7 V) = (7T|W’W) ® (Tr\WJw WL)

Here W+ is the orthogonal complement of W in V (with respect to the Hermi-
tian inner product on V). (w1, W) is a subrepresentation since, by unitarity,
the representation matrices preserve the Hermitian inner product. The same ar-
gument can be applied to W and W+, and continue until (7, V') is decomposed
into a direct sum of irreducibles. O

Note that non-unitary representations may not be decomposable in this way.
For a simple example, consider the group of upper triangular 2 by 2 matrices,
1
0
is a subrepresentation, but there is no complement to W in V that is also a
subrepresentation (the representation is not unitary, so there is no orthogonal
complement subrepresentation).

Finding the decomposition of an arbitrary unitary representation into irre-
ducible components can be a very non-trivial problem. Recall that one gets
explicit matrices for the 7(g) of a representation (w, V) only when a basis for
V' is chosen. To see if the representation is reducible, one can’t just look to
see if the m(g) are all in block-diagonal form. One needs to find out whether
there is some basis for V for which they are all in such form, something very
non-obvious from just looking at the matrices themselves.

The following theorem provides a criterion that must be satisfied for a rep-
resentation to be irreducible:

acting on V' = C2. The subspace W C V of vectors proportional to
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Theorem (Schur’s lemma). If a complex representation (m,V') is irreducible,
then the only linear maps M : V. — V commuting with all the w(g) are A1,
multiplication by a scalar A € C.

Proof. Assume that M commutes with all the m(g). We want to show that
(m, V) irreducible implies M = A1. Since we are working over the field C (this
doesn’t work for R), we can always solve the eigenvalue equation

det(M — A1) =0
to find the eigenvalues A of M. The eigenspaces
W={veV:Mv= X}

are non-zero vector subspaces of V' and can also be described as ker(M — A1),
the kernel of the operator M —A1. Since this operator and all the 7(g) commute,
we have

v € ker(M — A1) = 7(g)v € ker(M — A1)

so ker(M — A1) C V is a representation of G. If V is irreducible, we must
have either ker(M — A1) = V or ker(M — A1) = 0. Since A is an eigenvalue,
ker(M — A1) # 0, so ker(M — A1) =V and thus M = Al as a linear operator
onV. O

More concretely Schur’s lemma says that for an irreducible representation, if a
matrix M commutes with all the representation matrices 7(g), then M must
be a scalar multiple of the unit matrix. Note that the proof crucially uses the
fact that eigenvalues exist. This will only be true in general if one works with
C and thus with complex representations. For the theory of representations on
real vector spaces, Schur’s lemma is no longer true.

An important corollary of Schur’s lemma is the following characterization of
irreducible representations of G when G is commutative.

Theorem 2.2. If G is commutative, all of its irreducible representations are
one dimensional.

Proof. For G commutative, g € G, any representation will satisfy

m(g)m(h) = m(h)m(g)

for all h € G. If 7 is irreducible, Schur’s lemma implies that, since they commute
with all the 7(g), the matrices 7(h) are all scalar matrices, i.e., 7(h) = A\,1 for
some A\, € C. 7 is then irreducible when it is the one dimensional representation
given by w(h) = Ap. O
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2.2 The group U(1) and its representations

One might think that the simplest Lie group is the one dimensional additive
group R, a group that we will study together with its representations beginning
in chapter It turns out that one gets a much easier to analyze Lie group by
adding a periodicity condition (which removes the problem of what happens as
you go to +00), getting the “circle group” of points on a unit circle. Each such
point is characterized by an angle, and the group law is addition of angles.

The circle group can be identified with the group of rotations of the plane
R?, in which case it is called SO(2), for reasons discussed in chapter {4 It is
quite convenient however to identify R? with the complex plane C and work
with the following group (which is isomorphic to SO(2)):

Definition (The group U(1)). The elements of the group U(1) are points on
the unit circle, which can be labeled by a unit complex number e, or an angle
0 € R with 0 and 0 + N2m labeling the same group element for N € Z. Multi-
plication of group elements is complex multiplication, which by the properties of

the exponential satisfies
eiel ei92 — e’i(91+92)

so in terms of angles the group law is addition (mod 27 ).

The name “U(1)” is used since complex numbers e? are 1 by 1 unitary matrices.

Figure 2.1: U(1) viewed as the unit circle in the complex plane C.
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By theorem since U(1) is a commutative group, all irreducible repre-
sentations will be one dimensional. Such an irreducible representation will be
given by a differentiable map

m:U(l) = GL(1,C)

GL(1,C) is the group of invertible complex numbers, also called C*. A differ-
entiable map 7 that is a representation of U(1) must satisfy homomorphism and
periodicity properties which can be used to show:

Theorem 2.3. All irreducible representations of the group U(1l) are unitary,
and given by

e e U(1) = mp(0) = e*? € U(1) c GL(1,C) ~ C*
for ke Z.

Proof. We will write the 7 as a function of an angle 6 € R, so satisfying the
periodicity property
7k (27) = m(0) = 1

Since it is a representation, 7w will satisfy the homomorphism property
(01 + 02) = T (601)7x(02)
We need to show that any differentiable map
f:U)—=cC”

satisfying the homomorphism and periodicity properties is of the form f = my.
Computing the derivative f/(6) = % we find

= a0
0+ Ab) — f(0
- g 200
= f(6) Alégo (ﬂ#)e_l) (using the homomorphism property)
= f(0)f(0)

Denoting the constant f'(0) by ¢, the only solutions to this differential equation
satisfying f(0) =1 are
£(0) = e’
Requiring periodicity we find
f2r) =e?" = f(0) =1

which implies ¢ = ik for k € Z, and f = 7, for some integer k. O
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The representations we have found are all unitary, with 7 taking values in
U(1) € C*. The complex numbers e**? satisfy the condition to be a unitary 1

by 1 matrix, since
(ezke)fl _ efzk(} — eika

These representations are restrictions to the unit circle U(1) of irreducible rep-
resentations of the group C*, which are given by

ez € CY = m(z) =28 € C*

Such representations are not unitary, but they have an extremely simple form,
so it sometimes is convenient to work with them, later restricting to the unit
circle, where the representation is unitary.

2.3 The charge operator

Recall from chapter [I|the claim of a general principle that, when the state space
‘H is a unitary representation of a Lie group, we get an associated self-adjoint
operator on H. We’ll now illustrate this for the simple case of G = U(1), where
the self-adjoint operator we construct will be called the charge operator and
denoted Q.

If the representation of U(1) on H is irreducible, by theorem it must be
one dimensional with # = C. By theorem it must be of the form (m,, C) for
some g € Z. In this case the self-adjoint operator ) is multiplication of elements
of H by the integer q. Note that the integrality condition on ¢ is needed because
of the periodicity condition on 6, corresponding to the fact that we are working
with the group U(1), not the group R.

For a general U(1) representation, by theorems [2.1] and [2.3] we have

H=Hy DHy ©--- D Hy,

for some set of integers ¢1, g2, . . ., g (n is the dimension of H, the ¢; may not be
distinct), where H,, is a copy of C, with U(1) acting by the 7, representation.
One can then define

Definition. The charge operator Q for the U(1) representation (mw,H) is the
self-adjoint linear operator on H that acts by multiplication by q; on the irre-
ducible sub-representation H,,. Taking basis elements in Hy; it acts on H as
the matriz

@i 0 -+ 0
0 .0
Q=|. ®
0 0 - gqn

Thinking of ‘H as a quantum mechanical state space, @ is our first example
of a quantum mechanical observable, a self-adjoint operator on . States in the
subspaces H,, will be eigenvectors for ) and will have a well-defined numerical
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value for this observable, the integer ¢;. A general state will be a linear super-
position of state vectors from different H,, and there will not be a well-defined
numerical value for the observable () on such a state.

The representation can be recovered from the action of () on H, with the
action of the group U(1) on H given by multiplying by ¢ and exponentiating, to
get

etaq1t 0 0
) ) ig20 ..
m(e') = '@ = 0 ¢ O € U(n) C GL(n,C)
0 0 .. elant

The standard physics terminology is that “Q is the generator of the U(1) action
by unitary transformations on the state space H”.

The general abstract mathematical point of view (which we will discuss in
much more detail in chapter [5]) is that a representation 7 is a map between
manifolds, from the Lie group U(1) to the Lie group GL(n,C), that takes the
identity of U(1) to the identity of GL(n,C). As such it has a differential 7/,
which is a linear map from the tangent space at the identity of U(1) (which
here is iR) to the tangent space at the identity of GL(n,C) (which is the space
M (n, C) of n by n complex matrices). The tangent space at the identity of a Lie
group is called a “Lie algebra”. In later chapters we will study many different
examples of such Lie algebras and such maps 7/, with the linear map 7’ often
determining the representation 7.

In the U(1) case, the relation between the differential of m and the operator
Q is

7' i € iR — 7'(i0) = iQ0

The following drawing illustrates the situation:
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0 eldnt

Figure 2.2: Visualizing a representation m : U(1) — U(n), along with its differ-
ential.

The spherical figure in the right-hand side of the picture is supposed to
indicate the space U(n) C GL(n,C) (GL(n,C) is the n by n complex matrices,
C”2, minus the locus of matrices with zero determinant, which are those that
can’t be inverted). It has a distinguished point, the identity. The representation
7 takes the circle U(1) to a circle inside U(n). Its derivative 7’ is a linear map
taking the tangent space iR to the circle at the identity to a line in the tangent
space to U(n) at the identity.

In the very simple example G = U(1), this abstract picture is over-kill and
likely confusing. We will see the same picture though occurring in many other
much more complicated examples in later chapters. Just like in this U(1) case,
for finite dimensional representations the linear maps 7’ will be matrices, and
the representation matrices m can be found by exponentiating the 7.

2.4 Conservation of charge and U(1) symmetry

The way we have defined observable operators in terms of a group representation
on H, the action of these operators has nothing to do with the dynamics. If
we start at time ¢ = 0 in a state in H,;, with definite numerical value g; for
the observable, there is no reason that time evolution should preserve this.
Recall from one of our basic axioms that time evolution of states is given by the
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Schrédinger equation
d )
2 1V(0) = —iH|y(t)

(we have set A = 1). We will later more carefully study the relation of this
equation to the symmetry of time translation (the Hamiltonian operator H
generates an action of the group R of time translations, just as the operator @
generates an action of the group U(1)). For now though, note that for time-
independent Hamiltonian operators H, the solution to this equation is given by
exponentiating H, with
[ (8)) = U®)|4(0))
. —it)2
U(t) = e = 14tH+%H2+~~
The commutator of two operators O1, O is defined by

[01, 02] = 0102 — 0201

and such operators are said to commute if [O1,02] = 0. If the Hamiltonian
operator H and the charge operator @@ commute, then @ will also commute
with all powers of H

where

[H*,Q] =0
and thus with the exponential of H, so
[U(t),Q] =0
This condition
U@t)Q =QU(t) (2.1)

implies that if a state has a well-defined value g; for the observable @) at time
t =0, it will continue to have the same value at any other time ¢, since

Qly(t)) = QU#)[¢(0)) = U()Q(0)) = U(t)q;[¢(0)) = g;[v(#))

This will be a general phenomenon: if an observable commutes with the Hamil-
tonian observable, one gets a conservation law. This conservation law says that
if one starts in a state with a well-defined numerical value for the observable (an
eigenvector for the observable operator), one will remain in such a state, with
the value not changing, i.e., “conserved”.

When [@Q, H] = 0, the group U(1) is said to act as a “symmetry group” of
the system, with 7(e?) the “symmetry transformations”. Equation implies
that

U(t)e'Q? = QU (t)

so the action of the U(1) group on the state space of the system commutes with
the time evolution law determined by the choice of Hamiltonian. It is only when
a representation determined by @ has this particular property that the action
of the representation is properly called an action by symmetry transformations,
and that one gets conservation laws. In general [Q, H] # 0, with @ then gen-
erating a unitary action on H that does not commute with time evolution and
does not imply a conservation law.
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2.5 Summary

To summarize the situation for G = U(1), we have found

e Irreducible representations m are one dimensional and characterized by
their derivative 7’ at the identity. If G = R, 7’ could be any complex
number. If G = U(1), periodicity requires that 7’ must be ig,q € Z, so
irreducible representations are labeled by an integer.

e An arbitrary representation 7 of U(1) is of the form
W(ew) _ eiQQ

where @) is a matrix with eigenvalues a set of integers ¢;. For a quantum
system, @ is the self-adjoint observable corresponding to the U(1) group
action on the system, and is said to be a “generator” of the group action.

e If [Q, H] = 0, the U(1) group acts on the state space as “symmetries”. In
this case the ¢; will be “conserved quantities”, numbers that characterize
the quantum states, and do not change as the states evolve in time.

Note that we have so far restricted attention to finite dimensional represen-
tations. In section |11.1| we will consider an important infinite dimensional case,
a representation on functions on the circle which is essentially the theory of
Fourier series. This comes from the action of U(1) on the circle by rotations,
giving an induced representation on functions by equation [1.3

2.6 For further reading

For more about the abstract representation theory discussed at the beginning
of the chapter, one of many possible sources is chapter IT of [82]. Most quantum
mechanics books consider the subject of U(1) symmetry and its implications
too trivial to mention, starting their discussion of group actions and symmetries
with more complicated examples. For a text that does discuss this in some detail
(using SO(2) rather than U(1)), see chapter 6 of [98].

23



Chapter 3

Two-state Systems and

SU(2)

The simplest truly non-trivial quantum systems have state spaces that are in-
herently two-complex dimensional. This provides a great deal more structure
than that seen in chapter [2| which could be analyzed by breaking up the space
of states into one dimensional subspaces of given charge. We'll study these two-
state systems in this section, encountering for the first time the implications of
working with representations of a non-commutative group. Since they give the
simplest non-trivial realization of many quantum phenomena, such systems are
the fundamental objects of quantum information theory (the “qubit”) and the
focus of attempts to build a quantum computer (which would be built out of
multiple copies of this sort of fundamental object). Many different possible two-
state quantum systems could potentially be used as the physical implementation
of a qubit.

One of the simplest possibilities to take would be the idealized situation of a
single electron, somehow fixed so that its spatial motion could be ignored, leav-
ing its quantum state described solely by its so-called “spin degree of freedom”,
which takes values in H = C2. The term “spin” is supposed to call to mind the
angular momentum of an object spinning about some axis, but such classical
physics has nothing to do with the qubit, which is a purely quantum system.

In this chapter we will analyze what happens for general quantum systems
with # = C? by first finding the possible observables. Exponentiating these
will give the group U(2) of unitary 2 by 2 matrices acting on H = C2. This is
a specific representation of U(2), the “defining” representation. By restricting
to the subgroup SU(2) C U(2) of elements of determinant one, one gets a
representation of SU(2) on C? often called the “spin %” representation.

Later on, in chapter [8] we will find all the irreducible representations of
SU(2). These are labeled by a natural number

N=0,1,2,3,...
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and have dimension N +1. The corresponding quantum systems are said to have
“spin N/2”. The case N = 0 is the trivial representation on C and the case
N =1 is the case of this chapter. In the limit N — oo one can make contact
with classical notions of spinning objects and angular momentum, but the spin
1

5 case is at the other limit, where the behavior is purely quantum-mechanical.

3.1 The two-state quantum system

3.1.1 The Pauli matrices: observables of the two-state
quantum system

For a quantum system with two dimensional state space H = C?, observables are
self-adjoint linear operators on C2. With respect to a chosen basis of C2, these
are 2 by 2 complex matrices M satisfying the condition M = Mt (M is the
conjugate transpose of M). Any such matrix will be a (real) linear combination
of four matrices:

M = cpl + c101 + ca02 + c303

with ¢; € R and the standard choice of basis elements given by

L (10 (01 (0 —i /10
“\o 1) T\t o) 27\ o) BT o 41

where the o; are called the “Pauli matrices”. This choice of basis is a convention,
with one aspect of this convention that of taking the basis element in the 3-
direction to be diagonal. In common physical situations and conventions, the
third direction is the distinguished “up-down” direction in space, so often chosen
when a distinguished direction in R? is needed.

Recall that the basic principle of how measurements are supposed to work
in quantum theory says that the only states that have well-defined values for
these four observables are the eigenvectors for these matrices, where the value
is the eigenvalue, real since the operator is self-adjoint. The first matrix gives
a trivial observable (the identity on every state), whereas the last one, o3, has

the two eigenvectors
1y (1
7380) = \o

()--()

with eigenvalues +1 and —1. In quantum information theory, where this is
the qubit system, these two eigenstates are labeled |0) and |1) because of the
analogy with a classical bit of information. When we get to the theory of spin in
chapter |7, we will see that the observable 13 corresponds (in a non-trivial way)

2
to the action of the group SO(2) = U(1) of rotations about the third spatial

and
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axis, and the eigenvalues —%, —|—% of this operator will be used to label the two

eigenstates, so
1 1 1 0
)" (o) md =g = <1)

Such eigenstates | + 3) and | — 3) provide a basis for C?, so an arbitrary
vector in H can be written as

1 1
) =al+3)+ 81— 3)

for a, 5 € C. Only if o or § is 0 does the observable o3 correspond to a well-
defined number that characterizes the state and can be measured. This will be
either 1 (if 8 = 0 so the state is an eigenvector |+ 1)), or —% (if @ = 0 so the
state is an eigenvector | — 1)).

An easy to check fact is that |+ 3) and | — 1) are NOT eigenvectors for the
operators o1 and 0. One can also check that no pair of the three o; commute,
which implies that there are no vectors that are simultaneous eigenvectors for
more than one o;. This non-commutativity of the operators is responsible for the
characteristic paradoxical property of quantum observables: there exist states
with a well defined number for the measured value of one observable o;, but
such states will not have a well-defined number for the measured value of the
other two non-commuting observables.

The physical description of this phenomenon in the realization of this system
as a spin% particle is that if one prepares states with a well-defined spin compo-
nent in the j-direction, the two other components of the spin can’t be assigned a
numerical value in such a state. Any attempt to prepare states that simultane-
ously have specific chosen numerical values for the 3 observables corresponding
to the o; is doomed to failure. So is any attempt to simultaneously measure
such values: if one measures the value for a particular observable o, then going
on to measure one of the other two will ensure that the first measurement is no
longer valid (repeating it will not necessarily give the same thing). There are
many subtleties in the theory of measurement for quantum systems, but this
simple two-state example already shows some of the main features of how the
behavior of observables is quite different from that of classical physics.

While the basis vectors <é) and ((1)> are eigenvectors of o3, o1 and o9

take these basis vectors to non-trivial linear combinations of basis vectors. It
turns out that there are two specific linear combinations of o and o5 that do
something very simple to the basis vectors. Since

(01+i02)—<8 (2)> and (04 — iz) = <g 8>

(01 + i) <(1)) —2 (é) (01 + o) (é) = <8>
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and

(o1 — io2) (é) =2 <(1)) (01~ i2) <(1)) - (8>

(01 + i0o9) is called a “raising operator”: on eigenvectors of o3 it either
increases the eigenvalue by 2, or annihilates the vector. (o7 — io2) is called
a “lowering operator”: on eigenvectors of o3 it either decreases the eigenvalue
by 2, or annihilates the vector. Note that these linear combinations are not
self-adjoint and are not observables, (o1 + i03) is the adjoint of (o1 — i09) and
vice-versa.

3.1.2 Exponentials of Pauli matrices: unitary transforma-
tions of the two-state system

We saw in chapterthat in the U(1) case, knowing the observable operator ) on
‘H determined the representation of U(1), with the representation matrices found
by exponentiating i0Q. Here we will find the representation corresponding to
the two-state system observables by exponentiating the observables in a similar
way.

Taking the identity matrix first, multiplication by i and exponentiation
gives the diagonal unitary matrix

10
i (& 0
e’ < 0 ew)

This is exactly the case studied in chapter for a U(1) group acting on H = C?,

with Lo
o= (5 1)

This matrix commutes with any other 2 by 2 matrix, so we can treat its action
on H independently of the action of the o;.

Turning to the other three basis elements of the space of observables, the
Pauli matrices, it turns out that since all the o; satisfy aj2- = 1, their exponentials
also take a simple form.

00 . 1. 1.
€% =1+ ifo; + 5(@9)20]2» + 5(29)30? +-

) 1 1
=1+ibo; — 5921 — 259303- +--
1 . 1
= (1—592+--~)1+z(9—§93+-~-)aj
= (cos0)1 +io;(sinh) (3.1)

As 6 goes from # = 0 to # = 27, this exponential traces out a circle in the
space of unitary 2 by 2 matrices, starting and ending at the unit matrix. This
circle is a group, isomorphic to U(1). So, we have found three different U(1)
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subgroups inside the unitary 2 by 2 matrices, but only one of them (the case
j = 3) will act diagonally on H, with the U(1) representation determined by

(o )

For the other two cases j = 1 and j = 2, by a change of basis either one could
be put in the same diagonal form, but doing this for one value of j makes the
other two no longer diagonal. To understand the SU(2) action on H, one needs
to consider not just the U(1) subgroups, but the full three dimensional SU(2)
group one gets by exponentiating general linear combinations of Pauli matrices.

To compute such exponentials, one can check that these matrices satisfy the
following relations, useful in general for doing calculations with them instead of
multiplying out explicitly the 2 by 2 matrices:

[0j,0k]+ = 0o, + 0Koj = 20,51 (3.2)
Here [-, -]+ is called the anticommutator. This relation says that all o; satisfy
012» =1 and distinct o; anticommute (e.g., o0, = —oy0o; for j # k).

Notice that the anticommutation relations imply that, if we take a vector
v = (v1,v2,v3) € R3 and define a 2 by 2 matrix by

. . V3 v — Z"Ug
V-0 =101 + V202 + V303 = <U1+iU2 —vs )
then taking powers of this matrix we find
(v-o)? = (v} +v3 +05)1 = |v|]’1

If v is a unit vector, we have

1 n even
(v-o) =
v-o nodd

Replacing o; by v - o, the same calculation as for equation gives (for v
a unit vector) _
eV = (cos0)1 +i(sinf)v - o (3.3)

Notice that the inverse of this matrix can easily be computed by taking 6 to —6
(€)1 = (cos0)1 — i(sinf)v - o

We'll review linear algebra and the notion of a unitary matrix in chapter [4]
but one form of the condition for a matrix M to be unitary is

Mt =M1
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i0v-o

so the self-adjointness of the o; implies unitarity of e since

i0v-o

The determinant of e can also easily be computed

det(e?V7) = det((cos )1 + i(sinf)v - o)

~ dot cos @ +i(sin@)vs i(sinf)(vy — iva)
- ae i(sin0)(vy + ive) cosf — i(sinf)vs
= cos? 0 + (sin? 0) (v? + vZ +v3)
=1

So, we see that by exponentiating ¢ times linear combinations of the self-
adjoint Pauli matrices (which all have trace zero), we get unitary matrices of
determinant one. These are invertible, and form the group named SU(2), the
group of unitary 2 by 2 matrices of determinant one. If we exponentiated not
just i0v - o, but i(¢1 4 v - o) for some real constant ¢ (such matrices will not
have trace zero unless ¢ = 0), we would get a unitary matrix with determinant
e™??. The group of all unitary 2 by 2 matrices is called U(2). It contains as
subgroups SU(2) as well as the U(1) described at the beginning of this section.
U(2) is slightly different from the product of these two subgroups, since the

group element
-1 0
0 -1

is in both subgroups. In chapter [4 we will encounter the generalization to SU(n)
and U(n), groups of unitary n by n complex matrices.
To get some more insight into the structure of the group SU(2), consider an
arbitrary 2 by 2 complex matrix
a B
(7 J )

Unitarity implies that the rows are orthonormal. This results from the condition
that the matrix times its conjugate-transpose is the identity

a B [(fa v\ _ (1 0
v 6)\B &) \0 1
Orthogonality of the two rows gives the relation

ya+o6f=0 = 6:—%
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The condition that the first row has length one gives
aa+ BB =lal*+ 8> =1

Using these two relations and computing the determinant (which has to be 1)
gives _
oary

(aa+p8)=—-==1

=
@l

so one must have B
Y= _ﬁa 6 =a

and an SU(2) matrix will have the form
a f
,B a

o> + 18> =1

The elements of SU(2) are thus parametrized by two complex numbers, with
the sum of their length-squareds equal to one. Identifying C? = R*, these are
vectors of length one in R*. Just as U(1) could be identified as a space with the
unit circle ST in C = R?, SU(2) can be identified with the unit three-sphere S3
in R*.

where (o, 3) € C? and

3.2 Commutation relations for Pauli matrices

An important set of relations satisfied by Pauli matrices are their commutation

relations:
3

[0j,0k] = 0jo) — OoRo; = 2i Zejklo'l (3.4)
1=1
where €1 satisfies €123 = 1, is antisymmetric under permutation of two of its
subscripts, and vanishes if two of the subscripts take the same value. More
explicitly, this says:

[01,02] = 2i03, [02,03] = 2i01, [03,01] = 2i09

These relations can easily be checked by explicitly computing with the matrices.
Putting together equations and gives a formula for the product of two

Pauli matrices:
3

00 = 6jk1 +1 Z €5k10]
1=1
While physicists prefer to work with the self-adjoint Pauli matrices and their
real eigenvalues, the skew-adjoint matrices



can instead be used. These satisfy the slightly simpler commutation relations
3
X5, Xe] =) €uXi
1=1

or more explicitly
(X1, Xo] = X5, [Xo, X3] = X1, [X5,X1] = Xo (3.5)

The non-triviality of the commutators reflects the non-commutativity of the
group. Group elements U € SU(2) near the identity satisfy

Ux~14e6X)+eXs+eXs
for €; small and real, just as group elements z € U(1) near the identity satisfy
z~1+ie

The X; and their commutation relations can be thought of as an infinitesimal
version of the full group and its group multiplication law, valid near the identity.
In terms of the geometry of manifolds, recall that SU(2) is the space S3. The
X give a basis of the tangent space R? to the identity of SU(2), just as i gives
a basis of the tangent space to the identity of U(1).

U(1) SU(2)

(one dimension suppressed)

Figure 3.1: Comparing the geometry of U(1) as S to the geometry of SU(2)
as S3.
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3.3 Dynamics of a two-state system

Recall that the time dependence of states in quantum mechanics is given by the
Schrédinger equation

d )
() = —iH ()

where H is a particular self-adjoint linear operator on H, the Hamiltonian op-
erator. Considering the case of H time-independent, the most general such
operator H on C2 will be given by

H = ho]. —+ hlal —+ hQCTQ + h30'3

for four real parameters hg, h1, ho, hg. The solution to the Schréodinger equation
is then given by exponentiation:

() = U(B)[(0))

where ,
U(t) = e "1

The hol term in H contributes an overall phase factor e~**!, with the remaining

factor of U(t) an element of the group SU(2) rather than the larger group U(2)
of all 2 by 2 unitaries.
Using our equation valid for a unit vector v, our U(t) is given by taking

h = (hy, ha, hg), v = % and § = —t|h|, so we find

i h h h
U(t) =e~thot (cos(—th)l + isin(—t[h]) 101 + hooa + 303>

||
: h h h
—ethot (cos(t|h|)1—isin(t|h|) 1t ﬁf’f* 3”3)
e [(cos(tb]) — i sin(t|h|)  —isin(t|h) it
—° —isin(t|h|) 2 cos(t|hl) + il sin(th))

In the special case h = (0,0, h3) we have

e—it(ho-‘rhg) 0
U(t) = < 0 e—it(ho—hg))
so if our initial state is
[$(0)) = ol + 2) + 8 - 3)
-y 2
for a, B € C, at later times the state will be

» 1 P 1
(1)) = ae Rt 4 2) 4+ Bem o) - 2)
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In this special case, the eigenvalues of the Hamiltonian are hg + hs.

In the physical realization of this system by a spin % particle (ignoring its
spatial motion), the Hamiltonian is given by

ge
H = M(Blal + BQO’Q + B30’3) (36)
where the B; are the components of the magnetic field, and the physical con-
stants are the gyromagnetic ratio (g), the electric charge (e), the mass (m) and
the speed of light (¢). By computing U(t) above, we have solved the problem
of finding the time evolution of such a system, setting h; = ;2= B;. For the
special case of a magnetic field in the 3-direction (B; = By = 0), we see that
the two different states with well-defined energy (| + 3) and | — 3), recall that
the energy is the eigenvalue of the Hamiltonian) will have an energy difference
between them of
2%y = I B,

2me
This is known as the Zeeman effect and is readily visible in the spectra of atoms
subjected to a magnetic field. We will consider this example in more detail in
chapter [7] seeing how the group of rotations of R3 enters into the story. Much
later, in chapter we will derive the Hamiltonian from general principles

of how electromagnetic fields couple to spin % particles.

3.4 For further reading

Many quantum mechanics textbooks now begin with the two-state system, giv-
ing a much more detailed treatment than the one given here, including much
more about the physical interpretation of such systems (see for example [97]).
Volume IIT of Feynman’s Lectures on Physics [25] is a quantum mechanics text
with much of the first half devoted to two-state systems. The field of “Quantum
Information Theory” gives a perspective on quantum theory that puts such sys-
tems (in this context called the “qubit”) front and center. One possible reference
for this material is John Preskill’s notes on quantum computation [69].
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Chapter 4

Linear Algebra Review,
Unitary and Orthogonal
Groups

A significant background in linear algebra will be assumed in later chapters,
and we’ll need a range of specific facts from that subject. These will include
some aspects of linear algebra not emphasized in a typical linear algebra course,
such as the role of the dual space and the consideration of various classes of
invertible matrices as defining a group. For now our vector spaces will be finite
dimensional. Later on we will come to state spaces that are infinite dimensional,
and will address the various issues that this raises at that time.

4.1 Vector spaces and linear maps

A vector space V over a field k is a set with a consistent way to take linear
combinations of elements with coefficients in k. We will only be using the cases
k =R and k = C, so such finite dimensional V" will just be R™ or C". Choosing
a basis (set of n linearly independent vectors) {e;}, an arbitrary vector v € V
can be written as

v =v1€e1 + vye2 + -+ + v e,

giving an explicit identification of V' with n-tuples v; of real or complex numbers
which we will usually write as column vectors

U1

V2

U’IL
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Then the expansion of a vector v with respect to the basis can be written

vy
U2
v = (e1 ey - en)

Un

The choice of a basis {e;} also allows us to express the action of a linear
operator L on V'
L:veV =LveV

as multiplication by an n by n matrix:

v Ly Lz ... L, vy

(%) L21 L22 e Lgn (%)
— .

Un, Lnl Ln2 oo Lnn Un,

The reader should be warned that we will often not notationally distinguish
between a linear operator L and its matrix with matrix entries L;;, with respect
to some unspecified basis, since we are often interested in properties of operators
L that, for the corresponding matrix, are basis-independent (e.g., is the operator
or matrix invertible?). The invertible linear operators on V form a group under
composition, a group we will sometimes denote GL(V'), with “GL” indicating
“General Linear”. Choosing a basis identifies this group with the group of
invertible matrices, with group law matrix multiplication. For V' n dimensional,
we will denote this group by GL(n,R) in the real case, GL(n, C) in the complex
case.

Note that when working with vectors as linear combinations of basis vectors,
we can use matrix notation to write a linear transformation as

L11 L12 e Lln V1
Lyy Ly ... Loy V2
U%Lv:(el ey - en) . . . . .
Lpi Lp2 ... Lpy Un

We see from this that we can think of the transformed vector as we did above
in terms of transformed coefficients v; with respect to fixed basis vectors, but
also could leave the v; unchanged and transform the basis vectors. At times
we will want to use matrix notation to write formulas for how the basis vectors
transform in this way, and then will write

€1 Liv Loy ... Lp €1

e Lig Ly ... Lp e
— . .

(S79) Lln L2n e Lnn (S7%)

Note that putting the basis vectors e; in a column vector like this causes the
matrix for L to act on them by the transposed matrix.
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4.2 Dual vector spaces

To any vector space V we can associate a new vector space, its dual:

Definition (Dual vector space). For V' a vector space over a field k, the dual
vector space V* is the vector space of all linear maps V — k, i.e.,

V*={l:V — k such that l(av + pw) = al(v) + Bl(w)}
fora,B €k, vyweV.
Given a linear transformation L acting on V', we can define:

Definition (Transpose transformation). The transpose of L is the linear trans-
formation

L' :V* = V*
given by
(L) (v) = I(Lv) (4.1)
forleV*veV.

For any choice of basis {e;} of V, there is a dual basis {e}} of V* that

satisfies
ej(er) = djk
Coordinates on V with respect to a basis are linear functions, and thus elements
of V*. The coordinate function v; can be identified with the dual basis vector
e; since
ej(v) = ej(vier +vaey + - +vpe,) = v;
It can easily be shown that the elements of the matrix for L in the basis e; are
given by
ij = e;f (Lek)

and that the matrix for the transpose map (with respect to the dual basis) is
the matrix transpose

(L") = Li;
Matrix notation can be used to write elements

l=lel+lel+ - -+l V"

of V* as row vectors
(11 Iy --- ln)

of coordinates on V*. Evaluation of [ on a vector v is then given by matrix
multiplication

l(’U) = (ll lQ s ln) . = llvl + ZQUQ + -+ ln’U"



One can equally well interpret this formula as the expansion of [ € V* in the
dual basis of coordinate functions v; = €.

For any representation (m, V) of a group G on V, we can define a corre-
sponding representation on V*:

Definition (Dual or contragredient representation). The dual or contragredient
representation on V* is given by taking as linear operators

(™ Hg): V= V* (4.2)
These satisfy the homomorphism property since
(m ™ g) (7 (g2)" = (7~ (g2)m ™ (g1))" = ((m(g1)7(g2)) )"

One way to characterize this representation is as the action on V* such that
pairings between elements of V* and V are invariant, since

[(v) = (77 (9)) D (m(g)v) = Un(g) " 7 (g)v) = I(v)
Choosing a basis of V, a representation operator m(g) becomes a matrix P,
acting on V' by

U1 U1
V2 V2
— P
Un Un

The action on the dual space V* will then be given by (interpreting the v; as
the dual basis elements for V*)

U1 U1
Vo V2
[ = (ll l2 s ln) . — (ll ZQ cee ln) ]D_1 .
on on

This can be read as saying that 7(g) acts by the matrix (P~!)” onl € V* or
as P~! on the vj, interpreted as basis elements of V*.

4.3 Change of basis

Any invertible transformation A on V' can be used to change the basis e; of V/
to a new basis € by taking

[ .
ej—>ej—AeJ

The matrix for a linear transformation L transforms under this change of basis
as

Lji = €j(Ley) — (€})"(Ley,) =(Ae;)"(LAey)
=(AT) " (e})(LAey)
:e;(AflLAek)
=(A"'LA)j;

37



In the second step we are using the fact that elements of the dual basis transform
as the dual representation. This is what is needed to ensure the relation

(€5)"(e}) = djk

The change of basis formula shows that if two matrices L; and L are related
by conjugation by a third matrix A

Ly=A"'L,A

then they represent the same linear transformation, with respect to two different
choices of basis. Recall that a finite dimensional representation is given by a set
of matrices m(g), one for each group element. If two representations are related
by
m2(g) = A7'm(g)A

(for all g, A does not depend on g), then we can think of them as being the
same representation, with different choices of basis. In such a case the represen-
tations 7, and mo are called “equivalent”, and we will often implicitly identify
representations that are equivalent.

4.4 Inner products

An inner product on a vector space V' is an additional structure that provides
a notion of length for vectors, of angle between vectors, and identifies V* ~ V.
In the real case:

Definition (Inner product, real case). An inner product on a real vector space
V is a symmetric ((v,w) = (w,v)) map

(,):VxV-=R
that is mon-degenerate and linear in both variables.

Our real inner products will usually be positive-definite ((v,v) > 0 and
(v,v) =0 = v = 0), with indefinite inner products only appearing in the
context of special relativity, where an indefinite inner product on four dimen-
sional space-time is used.

In the complex case:

Definition (Inner product, complex case). A Hermitian inner product on a
complex vector space V' is a map

(,):VxV—=C
that is conjugate symmetric

(v, w) = (w,v)

non-degenerate in both variables, linear in the second variable, and antilinear in
the first variable: for o € C and u,v,w €V

(u+v,w) = (u,w) + (v,w), (au,v)=alu,v)
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An inner product gives a notion of length-squared || - ||? for vectors, with
[l = {v,v)

Note that whether to specify antilinearity in the first or second variable is a
matter of convention. The choice we are making is universal among physicists,
with the opposite choice common among mathematicians. Our Hermitian in-
ner products will be positive definite (||v]|> > 0 for v # 0) unless specifically
noted otherwise (i.e., characterized explicitly as an indefinite Hermitian inner
product).

An inner product also provides an isomorphism V ~ V* by the map

veV—=l,eV”* (4.3)
where [, is defined by
ly(w) = (v,w)
in the real case, and
ly(w) = (v, w)
in the complex case (where this is a complex antilinear rather than linear iso-

morphism).

Physicists have a useful notation due to Dirac for elements of a vector space
and its dual, for the case when V is a complex vector space with a Hermitian
inner product (such as the state space H for a quantum theory). An element of
such a vector space V is written as a “ket vector”

)

where « is a label for a vector in V. Sometimes the vectors in question will be
eigenvectors for some observable operator, with the label a the eigenvalue.
An element of the dual vector space V* is written as a “bra vector”

{af
with the labeling in terms of « determined by the isomorphism ie.,
{a =l
Evaluating (a| € V* on |8) € V gives an element of C, written

(@l(18)) = (lB)

Note that in the inner product the angle bracket notation means something
different than in the bra-ket notation. The similarity is intentional though since
(«|B) is the inner product of a vector labeled by « and a vector labeled by
(with “bra-ket” a play on words based on this relation to the inner product
bracket notation). Recalling what happens when one interchanges vectors in a
Hermitian inner product, one has

(Ble) = (alB)
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For a choice of orthonormal basis {e;}, i.e., satisfying
(e, ex) = 0jk
a useful choice of label is the index j, so
l7) =€
Because of orthonormality, coefficients of vectors |«) with respect to the basis
{e;} are
(Jla)

and the expansion of a vector in terms of the basis is written
n
@) = 17){la) (4.4)
j=1
Similarly, for elements (o] € V*,

(o] = (ali) (]

j=1

The column vector expression for |«) is thus

and the row vector form of (] is

(@) (a2) ... {aln)) = ((la) 2la) ... (nla))

The inner product is the usual matrix product

(alp) = ((all) (a]2) ... (alm) | .
(n|f)

If L is a linear operator L : V' — V, then with respect to the basis {e;} it
becomes a matrix with matrix elements

L = (K|L]7)

The expansion [4.4] of a vector |a) in terms of the basis can be interpreted as
multiplication by the identity operator

1=Z|j><j|
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and this kind of expression is referred to by physicists as a “completeness rela-
tion”, since it requires that the set of |j) be a basis with no missing elements.
The operator

Pj = 5)(Jl
is the projection operator onto the j’th basis vector.

Digression. In this book, all of our indices will be lower indices. One way
to keep straight the difference between vectors and dual vectors is to use upper
indices for components of vectors, lower indices for components of dual vectors.
This is quite useful in Riemannian geometry and general relativity, where the
inner product is given by a metric that can vary from point to point, causing
the isomorphism between vectors and dual vectors to also vary. For quantum
mechanical state spaces, we will be using a single, standard, fized inner product,
so there will be a single isomorphism between vectors and dual vectors. In this
case the bra-ket notation can be used to provide a notational distinction between
vectors and dual vectors.

4.5 Adjoint operators

When V is a vector space with inner product, the adjoint of L can be defined
by:

Definition (Adjoint operator). The adjoint of a linear operator L : V — V s
the operator LT satisfying
(Lv,w) = (v, LTw)

for allv,w e V.

Note that mathematicians tend to favor L* as notation for the adjoint of L, as
opposed to the physicist’s notation LT that we are using.

In terms of explicit matrices, since lr,, is the conjugate-transpose of Lv, the
matrix for LT will be given by the conjugate-transpose LT of the matrix for L:

In the real case, the matrix for the adjoint is just the transpose matrix. We
will say that a linear transformation is self-adjoint if Lt = L, skew-adjoint if
Lt =—L.

4.6 Orthogonal and unitary transformations

A special class of linear transformations will be invertible transformations that
preserve the inner product, i.e., satisfying

(Lv, Lw) = (v, w)
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for all v,w € V. Such transformations take orthonormal bases to orthonormal
bases, so one role in which they appear is as a change of basis between two
orthonormal bases.

In terms of adjoints, this condition becomes

(Lv, Lw) = (v, L' Lw) = (v, w)
S0
L'L=1

or equivalently
Lt=17"

In matrix notation this first condition becomes

n n
> (LNkLi =Y LijLi = 651
= k=1

k=1

which says that the column vectors of the matrix for L are orthonormal vectors.
Using instead the equivalent condition

LLT =1

we find that the row vectors of the matrix for L are also orthonormal. Since
such linear transformations preserving the inner product can be composed and
are invertible, they form a group, and some of the basic examples of Lie groups
are given by these groups for the cases of real and complex vector spaces.

4.6.1 Orthogonal groups
We’ll begin with the real case, where these groups are called orthogonal groups:

Definition (Orthogonal group). The orthogonal group O(n) in n dimensions
1s the group of invertible transformations preserving an inner product on a real
n dimensional vector space V. This is isomorphic to the group of n by n real
invertible matrices L satisfying

L~'=17

The subgroup of O(n) of matrices with determinant 1 (equivalently, the subgroup
preserving orientation of orthonormal bases) is called SO(n).

Recall that for a representation 7 of a group G on V, there is a dual repre-
sentation on V* given by taking the transpose-inverse of 7. If G is an orthogonal
group, then 7 and its dual are the same matrices, with V identified by V* by
the inner product.

Since the determinant of the transpose of a matrix is the same as the deter-
minant of the matrix, we have

L'L =1 = det(L™ 1) det(L) = det(L”) det(L) = (det(L))* = 1
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S0
det(L) = +1

O(n) is a continuous Lie group, with two components distinguished by the sign
of the determinant: SO(n), the subgroup of orientation-preserving transfor-
mations, which include the identity, and a component of orientation-changing
transformations.

The simplest non-trivial example is for n = 2, where all elements of SO(2)
are given by matrices of the form

cosf) —sinf
sinf  cos6

These matrices give counter-clockwise rotations in R? by an angle 6. The other
component of O(2) will be given by matrices of the form

cosf sinf
sinf —cost

which describe a reflection followed by a rotation. Note that the group SO(2)
is isomorphic to the group U(1) by

cosf —sinf o it
sind cosd
so the representation theory of SO(2) is just as for U(1), with irreducible com-
plex representations one dimensional and classified by an integer.
In chapter [6] we will consider in detail the case of SO(3), which is crucial for

physical applications because it is the group of rotations in the physical three
dimensional space.

4.6.2 Unitary groups

In the complex case, groups of invertible transformations preserving the Hermi-
tian inner product are called unitary groups:

Definition (Unitary group). The unitary group U(n) in n dimensions is the
group of invertible transformations preserving a Hermitian inner product on a
complex n dimensional vector space V. This is isomorphic to the group of n by
n complex invertible matrices satisfying

L'=7T =1Lt

The subgroup of U(n) of matrices with determinant 1 is called SU(n).

In the unitary case, the dual of a representation 7 has representation matrices
that are transpose-inverses of those for 7, but



so the dual representation is given by conjugating all elements of the matrix.
The same calculation as in the real case here gives

det(L™") det(L) = det(L") det(L) = det(L) det(L) = | det(L)|* = 1
so det(L) is a complex number of modulus one. The map
LeU(n)—det(L)eU(1)

is a group homomorphism.

We have already seen the examples U(1), U(2) and SU(2). For general
values of n, the study of U(n) can be split into that of its determinant, which
lies in U(1) so is easy to deal with, followed by the subgroup SU(n), which is a
much more complicated story.

Digression. Note that it is not quite true that the group U(n) is the product
group SU(n) x U(1). If one tries to identify the U(1) as the subgroup of U(n)
of elements of the form €%1, then matrices of the form

61’%2771

for m an integer will lie in both SU(n) and U(1), so U(n) is not a product
of those two groups (it is an example of a semi-direct product, these will be
discussed in chapter @

We saw at the end of section[3.1.4 that SU(2) can be identified with the three-
sphere S3, since an arbitrary group element can be constructed by specifying one
row (or one column), which must be a vector of length one in C?. For the case
n = 3, the same sort of construction starts by picking a row of length one in C3,
which will be a point in S°. The second row must be orthonormal, and it can be
shown that the possibilities lie in a three-sphere S®. Once the first two rows are
specified, the third row is uniquely determined. So as a manifold, SU(3) is eight
dimensional, and one might think it could be identified with S° x S3. It turns out
that this is not the case, since the S® varies in a topologically non-trivial way
as one varies the point in S5. As spaces, the SU(n) are topologically “twisted”
products of odd dimensional spheres, providing some of the basic examples of
quite non-trivial topological manifolds.

4.7 Eigenvalues and eigenvectors

We have seen that the matrix for a linear transformation L of a vector space V/
changes by conjugation when we change our choice of basis of V. To get basis-
independent information about L, one considers the eigenvalues of the matrix.
Complex matrices behave in a much simpler fashion than real matrices, since in
the complex case the eigenvalue equation

det(A\1 — L) =0 (4.5)
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can always be factored into linear factors. For an arbitrary n by n complex ma-
trix there will be n solutions (counting repeated eigenvalues with multiplicity).
A basis will exist for which the matrix will be in upper triangular form.

The case of self-adjoint matrices L is much more constrained, since transpo-
sition relates matrix elements. One has:

Theorem 4.1 (Spectral theorem for self-adjoint matrices). Given a self-adjoint
complex n by n matriz L, there exists a unitary matriz U such that

ULU =D
where D is a diagonal matriz with entries Dj; = X\;, \; € R.

Given L, its eigenvalues \; are the solutions to the eigenvalue equation and
U is determined by the eigenvectors. For distinct eigenvalues the corresponding
eigenvectors are orthogonal.

This spectral theorem here is a theorem about finite dimensional vector
spaces and matrices, but there are analogous theorems for self-adjoint operators
on infinite dimensional state spaces. Such a theorem is of crucial importance in
quantum mechanics, where for L an observable, the eigenvectors are the states
in the state space with well-defined numerical values characterizing the state,
and these numerical values are the eigenvalues. The theorem tells us that, given
an observable, we can use it to choose distinguished orthonormal bases for the
state space by picking a basis of eigenvectors, normalized to length one.

Using the bra-ket notation in this case we can label elements of such a basis
by their eigenvalues, so

) = Iy
(the A; may include repeated eigenvalues). A general state is written as a linear
combination of basis states

) =1l
J
which is sometimes written as a “resolution of the identity operator”

> Il =1 (46)

Turning from self-adjoint to unitary matrices, unitary matrices can also be
diagonalized by conjugation by another unitary. The diagonal entries will all be
complex numbers of unit length, so of the form e*7, A; € R. For the simplest
examples, consider the cases of the groups SU(2) and U(2). Any matrix in U(2)
can be conjugated by a unitary matrix to the diagonal matrix

et 0
( 0 Gi)‘2>

which is the exponential of a corresponding diagonalized skew-adjoint matrix

it 0
0 i)
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For matrices in the subgroup SU(2), A1 = —A2 = A, so in diagonal form an
SU(2) matrix will be
e 0
(0 )

which is the exponential of a corresponding diagonalized skew-adjoint matrix

that has trace zero
ix 0
0 —iA

4.8 For further reading

Almost any of the more advanced linear algebra textbooks should cover the
material of this chapter.
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Chapter 5

Lie Algebras and Lie
Algebra Representations

In this chapter we will introduce Lie algebras and Lie algebra representations,
which provide a tractable linear construction that captures much of the behavior
of Lie groups and Lie group representations. We have so far seen the case of
U(1), for which the Lie algebra is trivial, and a little bit about the SU(2) case,
where the first non-trivial Lie algebra appears. Chapters [6] and [8] will provide
details showing how the general theory works out for the basic examples of
SU(2), SO(3) and their representations. The very general nature of the material
in this chapter may make it hard to understand until one has some experience
with examples that only appear in later chapters. The reader is thus advised
that it may be a good idea to first skim the material of this chapter, returning
for a deeper understanding and better insight into these structures after first
seeing them in action later on in more concrete contexts.

For a group G we have defined unitary representations (m, V') for finite di-
mensional vector spaces V of complex dimension n as homomorphisms

7m:G—U(n)

Recall that in the case of G = U(1) (see the proof of theorem we could use
the homomorphism property of 7 to determine 7 in terms of its derivative at the
identity. This turns out to be a general phenomenon for Lie groups G: we can
study their representations by considering the derivative of 7 at the identity,
which we will call 7/. Because of the homomorphism property, knowing 7’ is
often sufficient to characterize the representation 7 it comes from. 7’ is a linear
map from the tangent space to G at the identity to the tangent space of U(n)
at the identity. The tangent space to G at the identity will carry some extra
structure coming from the group multiplication, and this vector space with this
structure will be called the Lie algebra of G. The linear map «’ will be an
example of a Lie algebra representation.

The subject of differential geometry gives many equivalent ways of defining
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the tangent space at a point of manifolds like G, but we do not want to enter
here into the subject of differential geometry in general. One of the standard
definitions of the tangent space is as the space of tangent vectors, with tangent
vectors defined as the possible velocity vectors of parametrized curves g(t) in
the group G.

More advanced treatments of Lie group theory develop this point of view (see
for example [99]) which applies to arbitrary Lie groups, whether or not they are
groups of matrices. In our case though, since we are interested in specific groups
that are usually explicitly given as groups of matrices, in such cases we can give
a more concrete definition, using the exponential map on matrices. For a more
detailed exposition of this subject, using the same concrete definition of the Lie
algebra in terms of matrices, see for instance [42] or the abbreviated on-line
version [40].

5.1 Lie algebras

If a Lie group G is defined as a differentiable manifold with a group law, one
can consider the tangent space at the identity, and that will be the Lie algebra
of G. We are however interested mainly in cases where G is a matrix group,
and in such cases the Lie algebra can be defined more concretely:

Definition (Lie algebra). For G a Lie group of n by n invertible matrices, the
Lie algebra of G (written Lie(G) or g) is the space of n by n matrices X such
that e!X € G fort € R.

Here the exponential of a matrix is given by usual power series formula for the
exponential

1 1
A =14+ A4+ A% 4. 4 AV ..
2 n!

which can be shown to converge (like the usual exponential), for any matrix A.
While this definition is more concrete than defining a Lie algebra as a tangent
space, it does not make obvious some general properties of a Lie algebra, in
particular that a Lie algebra is a real vector space (see theorem 3.20 of [42]).
Our main interest will be in using it to recognize certain specific Lie algebras
corresponding to specific Lie groups.

Notice that while the group G determines the Lie algebra g, the Lie algebra
does not determine the group. For example, O(n) and SO(n) have the same
tangent space at the identity, and thus the same Lie algebra, but elements in
O(n) not in the component of the identity (i.e., with determinant —1) can’t be
written in the form e** (since then you could make a path of matrices connecting
such an element to the identity by shrinking ¢ to zero).

Note also that, for a given X, different values of ¢ may give the same group
element, and this may happen in different ways for different groups sharing the
same Lie algebra. For example, consider G = U(1) and G = R, which both
have the same Lie algebra g = R. In the first case an infinity of values of ¢ give
the same group element, in the second, only one does. In chapter [6] we'll see
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a more subtle example of this: SU(2) and SO(3) are different groups with the
same Lie algebra.

We have G C GL(n,C), and X € M(n,C), the space of n by n complex
matrices. For all t € R, the exponential !X is an invertible matrix (with inverse
e~t%), soin GL(n, C). For each X, we thus have a path of elements of GL(n, C)
going through the identity matrix at ¢ = 0, with velocity vector

%615)( _ XetX
which takes the value X at t = 0:

d

%(etx)hf:() — X

To calculate this derivative, use the power series expansion for the exponential,
and differentiate term-by-term.

For the case G = GL(n, C), we have gl(n,C) = M(n,C), which is a linear
space of the right dimension to be the tangent space to G at the identity, so
this definition is consistent with our general motivation. For subgroups G C
GL(n,C) given by some condition (for example that of preserving an inner
product), we will need to identify the corresponding condition on X € M(n, C)
and check that this defines a linear space.

The existence of such a linear space g C M (n,C) will provide us with a
distinguished representation on a real vector space, called the “adjoint repre-
sentation”:

Definition (Adjoint representation). The adjoint representation (Ad, g) is given
by the homomorphism

Ad:ge G — Ad(g) € GL(g)
where Ad(g) acts on X € g by
(Ad(9))(X) = gXg~

To show that this is well-defined, one needs to check that gXg~—* € g when
X € g, but this can be shown using the identity

1 _
ethg 1

=gy

which implies that et9%9 " € G if e!X € G. To check this identity, expand the
exponential and use

(9Xg™")" = (9Xg N)(gXg™) - (9Xg™") = gXFg ™"
It is also easy to check that this is a homomorphism, with

Ad(g1)Ad(g2) = Ad(g192)

A Lie algebra g is not just a real vector space, but comes with an extra
structure on the vector space:
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Definition (Lie bracket). The Lie bracket operation on g is the bilinear anti-
symmetric map given by the commutator of matrices

L] (X,)Y)egxg— [X,)Y]=XY-YXeg
We need to check that this is well-defined, i.e., that it takes values in g.
Theorem. If XY €g, [X,Y]=XY -YX €g.

Proof. Since X € g, we have !X € G and we can act on Y € g by the adjoint
representation

Ad(eX)Y = e Xye ™ c g

As t varies this gives us a parametrized curve in g. Its velocity vector will also

be in g, so

d _
a(etXYe tX) €g

One has (by the product rule, which can easily be shown to apply in this case)

d Xy —tx d ix —tX | X d _;x
L etXy — [ L(etXy v (2
o (e e~ ) o (e )] e +e dte

= XeXye ™ — Xy Xe X

Evaluating this at ¢ = 0 gives

XY -YX
which is thus, from the definition, shown to be in g. O
The relation d
%(etXYe_tX)“:O =[X,Y] (5.1)

used in this proof will be continually useful in relating Lie groups and Lie alge-
bras.

To do calculations with a Lie algebra, one can choose a basis X7, Xs,..., X,
for the vector space g, and use the fact that the Lie bracket can be written in
terms of this basis as

(X, Xi] = Z ikl Xi (5.2)
=1
where cjp; is a set of constants known as the “structure constants” of the Lie
algebra. For example, in the case of su(2), the Lie algebra of SU(2) has a basis
X1, Xo, X3 satisfying
3
(X, Xx] = ijlel
=1

(see equation [3.5]) so the structure constants of su(2) are the totally antisym-
metric €.
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5.2 Lie algebras of the orthogonal and unitary
groups

The groups we are most interested in are the groups of linear transformations
preserving an inner product: the orthogonal and unitary groups. We have seen
that these are subgroups of GL(n,R) or GL(n, C), consisting of those elements
Q) satisfying the condition

Q0f =1

In order to see what this condition becomes on the Lie algebra, write = e*X,
for some parameter ¢, and X a matrix in the Lie algebra. Since the transpose of
a product of matrices is the product (order-reversed) of the transposed matrices,
ie.,

(X)) =vyTx”T

and the complex conjugate of a product of matrices is the product of the complex
conjugates of the matrices, one has

(etX)T _ etXT

The condition
o0t =1

thus becomes .
etX(etX)T — XX

Taking the derivative of this equation gives
etXX’fetX* + XetXetXT —0
Evaluating this at ¢t = 0 gives
X+XM=0

so the matrices we want to exponentiate must be skew-adjoint (it can be shown
that this is also a sufficient condition), satisfying

XT=_-X

Note that physicists often choose to define the Lie algebra in these cases
as self-adjoint matrices, then multiplying by 7 before exponentiating to get a
group element. We will not use this definition, with one reason that we want to
think of the Lie algebra as a real vector space, so want to avoid an unnecessary
introduction of complex numbers at this point.
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5.2.1 Lie algebra of the orthogonal group

Recall that the orthogonal group O(n) is the subgroup of GL(n,R) of matrices
Q satisfying Q7 = Q~'. We will restrict attention to the subgroup SO(n) of
matrices with determinant 1, which is the component of the group containing
the identity, with elements that can be written as

Q:etX

These give a path connecting € to the identity (taking e*X,s € [0,t]). We
saw above that the condition Q7 = Q! corresponds to skew-symmetry of the
matrix X

XT=-X

So in the case of G = SO(n), we see that the Lie algebra so(n) is the space of
skew-symmetric (X7 = —X) n by n real matrices, together with the bilinear,
antisymmetric product given by the commutator:

(X,Y) € so(n) x so(n) — [X,Y] € so(n)

The dimension of the space of such matrices will be

7’L2—TL

L4244 (0= 1) = =

and a basis will be given by the matrices €, with j,k =1,...,n,j < k defined
as
-1 ifj=Lk=m
(€jk)im =13 +1 ifj=m,k=1 (5.3)
0 otherwise

In chapter [ we will examine in detail the n = 3 case, where the Lie algebra
50(3) is R3, realized as the space of antisymmetric real 3 by 3 matrices, with a
basis the three matrices €12, €13, €23.

5.2.2 Lie algebra of the unitary group

For the case of the group U(n) the unitarity condition implies that X is skew-
adjoint (also called skew-Hermitian), satisfying

XT=_-X

So the Lie algebra u(n) is the space of skew-adjoint n by n complex matrices,
together with the bilinear, antisymmetric product given by the commutator:

(X,Y) eu(n) xu(n) = [X,Y] € u(n)

Note that these matrices form a subspace of C"* of half the dimension,
so of real dimension n%. u(n) is a real vector space of dimension n?, but it
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is NOT a space of real n by n matrices. It is the space of skew-Hermitian
matrices, which in general are complex. While the matrices are complex, only
real linear combinations of skew-Hermitian matrices are skew-Hermitian (recall
that multiplication by ¢ changes a skew-Hermitian matrix into a Hermitian
matrix). Within this space of skew-Hermitian complex matrices, if one looks at
the subspace of real matrices one gets the sub-Lie algebra so(n) of antisymmetric
matrices (the Lie algebra of SO(n) C U(n)).
Any complex matrix Z € M(n,C) can be written as a sum of

1 1
7= §(Z+ZT) + 5(Z—ZT)
where the first term is self-adjoint, the second skew-Hermitian. This second
term can also be written as ¢ times a self-adjoint matrix

%(Z— Zh =i (;(Z— ZT))

so we see that we can get all of M(n, C) by taking all complex linear combina-
tions of self-adjoint matrices.
There is an identity relating the determinant and the trace of a matrix

det(eX) — etrace(X)

which can be proved by conjugating the matrix to upper-triangular form and
using the fact that the trace and the determinant of a matrix are conjugation
invariant. Since the determinant of an SU(n) matrix is 1, this shows that the
Lie algebra su(n) of SU(n) will consist of matrices that are not only skew-
Hermitian, but also of trace zero. So in this case su(n) is again a real vector
space, with the trace zero condition a single linear condition giving a vector
space of real dimension n? — 1.

One can show that U(n) and u(n) matrices can be diagonalized by conjuga-
tion by a unitary matrix and thus show that any U(n) matrix can be written as
an exponential of something in the Lie algebra. The corresponding theorem is
also true for SO(n) but requires looking at diagonalization into 2 by 2 blocks. It
is not true for O(n) (you can’t reach the disconnected component of the identity
by exponentiation). It also turns out to not be true for the groups SL(n,R)
and SL(n,C) for n > 2 (while the groups are connected, they have elements
that are not exponentials of any matrix in sl(n, R) or s((2, C) respectively).

5.3 A summary

Before turning to Lie algebra representations, we’ll summarize here the classes of
Lie groups and Lie algebras that we have discussed and that we will be studying
specific examples of in later chapters:

e The general linear groups GL(n,R) and GL(n,C) are the groups of all
invertible matrices, with real or complex entries respectively. Their Lie
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algebras are gl(n,R) = M(n,R) and gl(n,C) = M(n,C). These are
the vector spaces of all n by n matrices, with Lie bracket the matrix
commutator.

Other Lie groups will be subgroups of these, with Lie algebras sub-Lie
algebras of these Lie algebras.

e The special linear groups SL(n,R) and SL(n,C) are the groups of in-
vertible matrices with determinant one. Their Lie algebras sl(n,R) and
sl(n, C) are the Lie algebras of all n by n matrices with zero trace.

e The orthogonal group O(n) C GL(n,R) is the group of n by n real ma-
trices Q satisfying Q7 = QL. Tts Lie algebra o(n) is the Lie algebra of n
by n real matrices X satisfying X7 = —X.

e The special orthogonal group SO(n) C SL(n,R) is the subgroup of O(n)
with determinant one. It has the same Lie algebra as O(n): so(n) = o(n).

e The unitary group U(n) C GL(n,C) is the group of n by n complex
matrices () satisfying Qf = Q1. Its Lie algebra u(n) is the Lie algebra of
n by n skew-Hermitian matrices X, those satisfying X = —X.

e The special unitary group SU(n) C SL(n,C) is the subgroup of U(n) of
matrices of determinant one. Its Lie algebra su(n) is the Lie algebra of n
by n skew-Hermitian matrices X with trace zero.

In later chapters we’ll encounter some other examples of matrix Lie groups,
including the symplectic group Sp(2d,R) (see chapter and the pseudo-
orthogonal groups O(r, s) (see chapter [29).

5.4 Lie algebra representations

We have defined a group representation as a homomorphism (a map of groups
preserving group multiplication)

m:G — GL(n,C)

We can similarly define a Lie algebra representation as a map of Lie algebras
preserving the Lie bracket:

Definition (Lie algebra representation). A (complex) Lie algebra representation
(6,V) of a Lie algebra g on an n dimensional complex vector space V' is given
by a real-linear map

¢: X €g— ¢(X) € gl(n,C) = M(n,C)

satisfying
P([X,Y]) = [6(X), 6(Y)]

Such a representation is called unitary if its image is in u(n), i.e., if it satisfies
$(X)" = —¢(X)
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More concretely, given a basis X1, Xo,..., Xy of a Lie algebra g of dimension
d with structure constants c;z;, a representation is given by a choice of d complex
n dimensional matrices ¢(X;) satisfying the commutation relations

d
[0(X;), o(Xi)] = Z i d(Xi)
=1

The representation is unitary when the matrices are skew-adjoint.

The notion of a Lie algebra representation is motivated by the fact that
the homomorphism property causes the map m to be largely determined by its
behavior infinitesimally near the identity, and thus by the derivative 7’. One
way to define the derivative of such a map is in terms of velocity vectors of
paths, and this sort of definition in this case associates to a representation
m: G — GL(n,C) a linear map

7' g — M(n,C)

where
d

*(W(etx))u:o

m(X) =5

G GL(n,C)

Figure 5.1: Derivative of a representation 7 : G — GL(n,C), illustrated in
terms of “velocity” vectors along paths.

For the case of U(1) we classified in theorem all irreducible representa-
tions (homomorphisms U(1) — GL(1,C) = C*) by looking at the derivative
of the map at the identity. For general Lie groups G, something similar can
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be done, showing that a representation 7 of G gives a representation of the Lie
algebra (by taking the derivative at the identity), and then trying to classify
Lie algebra representations.

Theorem. If 7 : G — GL(n,C) is a group homomorphism, then

T Xeg—or(X)= %(W(etx))“:o € gl(n,C) = M(n,C)
satisfies
1.
m(e!™) = et (X)
2. Forge G

m'(9Xg™) = m(g)n' (X)(n(g)) !
3. @ is a Lie algebra homomorphism:

(X, Y]) = [«'(X), 7' (V)]

Proof. 1. We have

d X d $)X
@'ﬂ’(@t ) = £7T(e(t+ ) )|S:0
d

= £7T(€tXBSX)‘3:0

d
tX\ % sX
L e

=m(e

= W(etX)TFI(X)

|s=0

So f(t) = m(e!X) satisfies the differential equation % f = fr'(X) with
initial condition f(0) = 1. This has the unique solution f(t) = e!™ (X)

2. We have

’ —1
et (9X9™0) — 4

Differentiating with respect to t at t = 0 gives
m(9Xg™") = m(g)m'(X)(m(g) "
3. Recall B.1 p
X,¥] = S (X Ve )
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SO

*([X,Y]) == (jt(etxye—tx)“_o)

= %ﬂ'/(etXYe_tX)‘t:O (by hnearity)
d —
= (@) (V)m(e™ )0 (by 2.)

d ’ _ _n_/
= (T (¥ )eT T ) (by 1)

= [*'(X), 7' (V)]
O

This theorem shows that we can study Lie group representations (m,V)
by studying the corresponding Lie algebra representation (7/,V). This will
generally be much easier since the 7’ are linear maps. Unlike the non-linear
maps 7, the map 7’ is determined by its value on basis elements X; of g. The
m'(X;) will satisfy the same bracket relations as the X, (see equation . We
will proceed in this manner in chapter [§] when we construct and classify all
SU(2) and SO(3) representations, finding that the corresponding Lie algebra
representations are much simpler to analyze. Note though that representations
of the Lie algebra g do not necessarily correspond to representations of the group
G (when they do they are called “integrable”). For a simple example, looking
at the proof of theorem one gets unitary representations of the Lie algebra
of U(1) for any value of the constant k, but these are only representations of
the group U(1) when k is integral.

For any Lie group G, we have seen that there is a distinguished representa-
tion, the adjoint representation (Ad, g). The corresponding Lie algebra represen-
tation is also called the adjoint representation, but written as (Ad', g) = (ad, g).
From the fact that

Ad(e™)(Y) = Xy e X

we can differentiate with respect to ¢ and use equation [5.1]to get the Lie algebra
representation

ad(X)(Y) = (eXYe )y = [X,V] (5.4)

This leads to the definition:

Definition (Adjoint Lie algebra representation). (ad, g) is the Lie algebra rep-
resentation given by
X €g—ad(X)

where ad(X) is defined as the linear map from g to itself given by

Y = [X,Y]
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Note that this linear map ad(X), which can be written as [X, -], can be thought
of as the infinitesimal version of the conjugation action

() N etX(.)eftX
The Lie algebra homomorphism property of ad says that
ad([X,Y]) = ad(X) oad(Y) — ad(Y) o ad(X)

where these are linear maps on g, with o composition of linear maps, so operating
on Z € g we have

ad([X, Y))(Z) = (ad(X) 0 ad(Y))(Z) — (ad(Y) o ad(X))(Z)
Using our expression for ad as a commutator, we find
(X, Y], Z] = [X,[Y, Z]] - [\, [X, Z]]

This is called the Jacobi identity. It could have been more simply derived as
an identity about matrix multiplication, but here we see that it is true for a
more abstract reason, reflecting the existence of the adjoint representation. It
can be written in other forms, rearranging terms using antisymmetry of the
commutator, with one example the sum of cyclic permutations

(X, Y], Z] + (2, X]. Y]+ [[Y, 2], X] =0
Lie algebras can be defined much more abstractly as follows:

Definition (Abstract Lie algebra). An abstract Lie algebra over a field k is a
vector space A over k, with a bilinear operation

[,]:(X,)Y)eAxA— [X,Y]€ A
satisfying

1. Antisymmetry:
(X, Y] = [, X]

2. Jacobi identity:

(X, Y], 2]+ [[2, X], Y]+ [[Y, 2], X] = 0

Such Lie algebras do not need to be defined as matrices, and their Lie bracket
operation does not need to be defined in terms of a matrix commutator (although
the same notation continues to be used). Later on we will encounter important
examples of Lie algebras that are defined in this more abstract way.
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5.5 Complexification

Conventional physics discussion of Lie algebra representations proceed by as-
suming complex coefficients are allowed in all calculations, since we are inter-
ested in complex representations. An important subtlety is that the Lie algebra
is a real vector space, often in a confusing way, as a subspace of complex ma-
trices. To properly keep track of what is going on one needs to understand the
notion of “complexification” of a vector space or Lie algebra. In some cases this
is easily understood as just going from real to complex coefficients, but in other
cases a more complicated construction is necessary. The reader is advised that
it might be a good idea to just skim this section at first reading, coming back
to it later only as needed to make sense of exactly how things work when these
subtleties make an appearance in a concrete problem.

The way we have defined a Lie algebra g, it is a real vector space, not a
complex vector space. Even if G is a group of complex matrices, its tangent
space at the identity will not necessarily be a complex vector space. Consider
for example the cases G = U(1) and G = SU(2), where u(1l) = R and su(2) =
R3. While the tangent space to the group GL(n,C) of all invertible complex
matrices is a complex vector space (M (n,C), all n by n matrices), imposing
some condition such as unitarity picks out a subspace of M (n, C) which generally
is just a real vector space, not a complex one. So the adjoint representation
(Ad,g) is in general not a complex representation, but a real representation,
with

Ad(g) € GL(g) = GL(dim g,R)

The derivative of this is the Lie algebra representation
ad: X € g — ad(X) € gl(dim g,R)

and once we pick a basis of g, we can identify gl(dim g,R) = M(dim g,R). So,
for each X € g we get a real linear operator on a real vector space.

We most often would like to work with not real representations, but complex
representations, since it is for these that Schur’s lemma applies (the proof of
also applies to the Lie algebra case), and representation operators can be
diagonalized. To get from a real Lie algebra representation to a complex one,
we can “complexify”, extending the action of real scalars to complex scalars.
If we are working with real matrices, complexification is nothing but allowing
complex entries and using the same rules for multiplying matrices as before.

More generally, for any real vector space we can define:

Definition. The complezification Ve of a real vector space V' is the space of
pairs (v, vq) of elements of V' with multiplication by a + bi € C given by

(a + ib)(v1,v2) = (avy — bug, ave + buy)
One should think of the complexification of V' as
Ve=V+iV
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with vy in the first copy of V, vy in the second copy. Then the rule for mul-
tiplication by a complex number comes from the standard rules for complex
multiplication.

Given a real Lie algebra g, the complexification g is pairs of elements (X,Y)
of g, with the above rule for multiplication by complex scalars, which can be
thought of as

gc=g+1ig

The Lie bracket on g extends to a Lie bracket on gc by the rule
(X1, Y1), (X2, ¥2)] = ([X1, Xo] — [Y1, Y2], [X3, Y2 + [V1, Xo])
which can be understood by the calculation
(X1 +1iY1, Xo + 1Y) = [X1, Xo] — V1, Ya] +4i([Xq, Ya] + [Y1, X3))

With this Lie bracket g¢ is a Lie algebra over the complex numbers.

For many of the cases we will be interested in, this level of abstraction is not
really needed, since they have the property that V' will be given as a subspace
of a complex vector space, with the property that V' NiV = 0, in which case V¢
will just be the larger subspace you get by taking complex linear combinations
of elements of V. For example, gl(n, R), the Lie algebra of real n by n matrices,
is a subspace of gl(n, C), the complex matrices, and one can see that

g[(n7 R)C = g[(nv C)

Recalling our discussion from section of u(n), a real Lie algebra, with
elements certain complex matrices (the skew-Hermitian ones), multiplication
by i gives the Hermitian ones, and complexifying will give all complex matrices
SO

u(n)c = gl(n, C)

This example shows that two different real Lie algebras (u(n) and gl(n,R))
may have the same complexification. For yet another example, so(n) is the
Lie algebra of all real antisymmetric matrices, so(n)c is the Lie algebra of all
complex antisymmetric matrices.

For an example where the general definition is needed and the situation
becomes easily confusing, consider the case of gl(n,C), thinking of it as a Lie
algebra and thus a real vector space. The complexification of this real vector
space will have twice the (real) dimension, so

gl(n,C)c = gl(n, C) + igl(n, C)

will not be what you get by just allowing complex coefficients (gl(n, C)), but
something built out of two copies of this.

Given a representation 7’ of a real Lie algebra g, it can be extended to a
representation of gc by complex linearity, defining

(X +iY) =7 (X) +in' (V)
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If the original representation was on a complex vector space V, the extended
one will act on the same space. If the original representation was on a real
vector space V, the extended one will act on the complexification V. Some of
the examples of these phenomena that we will encounter are the following:

e The adjoint representation
ad : g — gl(dim g,R) = M(dim g,R)
extends to a complex representation

ad : gc — gl(dim g,C) = M(dim g,C)

e Complex n dimensional representations
7’ su(2) — M(n,C)
of su(2) extend to representations
7' su(2)c =s1(2,C) — M(n,C)

Doing this allows one to classify the finite dimensional irreducible repre-
sentations of su(2) by studying s[(2, C) representations (see section|3.1.2)).

e We will see that complex representations of a real Lie algebra called the
Heisenberg Lie algebra play a central role in quantum theory and in quan-
tum field theory. An important technique for constructing such represen-
tations (using so-called “annihilation” and “creation” operators) does so
by extending the representation to the complexification of the Heisenberg
Lie algebra (see section 22.4)).

e Quantum field theories based on complex fields start with a Heisenberg
Lie algebra that is already complex (see chapter [37| for the case of non-
relativistic fields, section for relativistic fields). The use of annihila-
tion and creation operators for such theories thus involves complexifying
a Lie algebra that is already complex, requiring the use of the general
notion of complexification discussed in this section.

5.6 For further reading

The material of this section is quite conventional mathematics, with many good
expositions, although most aimed at a higher level than ours. Examples at a
similar level to this one are [86] and [94], which cover basics of Lie groups and
Lie algebras, but without representations. The notes [40] and book [42] of Brian
Hall are a good source for the subject at a somewhat more sophisticated level
than adopted here. Some parts of the proofs given in this chapter are drawn
from those two sources.
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Chapter 6

The Rotation and Spin
Groups in 3 and 4
Dimensions

Among the basic symmetry groups of the physical world is the orthogonal group
SO(3) of rotations about a point in three dimensional space. The observables
one gets from this group are the components of angular momentum, and under-
standing how the state space of a quantum system behaves as a representation
of this group is a crucial part of the analysis of atomic physics examples and
many others. This is a topic one will find in some version or other in every
quantum mechanics textbook, and in chapter [8| we will discuss it in detail.

Remarkably, it is an experimental fact that the quantum systems in nature
are often representations not of SO(3), but of a larger group called Spin(3), one
that has two elements corresponding to every element of SO(3). Such a group
exists in any dimension n, always as a “doubled” version of the orthogonal group
SO(n), one that is needed to understand some of the more subtle aspects of
geometry in n dimensions. In the n = 3 case it turns out that Spin(3) ~ SU(2)
and in this chapter we will study in detail the relationship of SO(3) and SU(2).
This appearance of the unitary group SU(2) is special to geometry in 3 and 4
dimensions, and the theory of quaternions will be used to provide an explanation
for this.

6.1 The rotation group in three dimensions

Rotations in R? about the origin are given by elements of SO(2), with a counter-
clockwise rotation by an angle 6 given by the matrix

R(9) = (Cosﬁ ~ sin 9)

sinf  cos6
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This can be written as an exponential, R(#) = e’ = cos 01 + Lsin @ for

0 -1
=(1)

Here SO(2) is a commutative Lie group with Lie algebra s0(2) = R. Note that
we have a representation on V' = R? here, but it is a real representation, not
one of the complex ones we have when we have a representation on a quantum
mechanical state space.

In three dimensions the group SO(3) is three dimensional and non-commu-
tative. Choosing a unit vector w and angle 8, one gets an element R(6,w) of

SO(3), rotation by an angle 6 about the w axis. Using standard basis vectors
e;, rotations about the coordinate axes are given by

1 0 0 cosf 0 sinf
R(f,e1) =10 cosf® —sind|, R(f,e3) = 0 1 0
0 sinf cosf —sinf 0 cosf
cosf) —sinf 0
R(f,e3) = | sinf cosf® O
0 0 1

A standard parametrization for elements of SO(3) is in terms of 3 “Euler angles”
¢, 0,1 with a general rotation given by

R($,0,¢) = R(¢, e3) R(0, e1) R(¢, e3) (6.1)

i.e., first a rotation about the z-axis by an angle ¢, then a rotation by an
angle 6 about the new z-axis, followed by a rotation by v about the new z-
axis. Multiplying out the matrices gives a rather complicated expression for a
rotation in terms of the three angles, and one needs to figure out what range to
choose for the angles to avoid multiple counting.

The infinitesimal picture near the identity of the group, given by the Lie
algebra structure on s0(3), is much easier to understand. Recall that for orthog-
onal groups the Lie algebra can be identified with the space of antisymmetric
matrices, so in this case there is a basis

0 0 O 0 01 0 -1 0
L=10 0 =1)] lua=10 0 O) Izs=11 0 O
01 0 -1 0 0 0 0 O

which satisfy the commutation relations
[l13l2] = 137 [12113] - l17 [13711] == ZQ
Note that these are exactly the same commutation relations (equation [3.5)

satisfied by the basis vectors X1, X2, X3 of the Lie algebra su(2), so so(3) and
su(2) are isomorphic Lie algebras. They both are the vector space R? with the
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same Lie bracket operation on pairs of vectors. This operation is familiar in yet
another context, that of the cross-product of standard basis vectors e; in R3:

€] X ey =e€e3, €3 X ez =e€e], €3 X e = ey
We see that the Lie bracket operation
(X,Y)€eR?*xR? = [X,Y] € R?

that makes R? a Lie algebra s0(3) is the cross-product on vectors in R3.
So far we have three different isomorphic ways of putting a Lie bracket on
R3, making it into a Lie algebra:

1. Identify R? with antisymmetric real 3 by 3 matrices and take the matrix
commutator as Lie bracket.

2. Identify R? with skew-adjoint, traceless, complex 2 by 2 matrices and take
the matrix commutator as Lie bracket.

3. Use the vector cross-product on R3 to get a Lie bracket, i.e., define

[v,w]=vxw

Something very special that happens for orthogonal groups only in dimension
n = 3 is that the vector representation (the defining representation of SO(n)
matrices on R™) is isomorphic to the adjoint representation. Recall that any Lie
group G has a representation (Ad, g) on its Lie algebra g. so(n) can be identified
with the antisymmetric n by n matrices, so is of (real) dimension ”22_ 2. Only for
n = 3 is this equal to n, the dimension of the representation on vectors in R"™.
This corresponds to the geometrical fact that only in 3 dimensions is a plane (in
all dimensions rotations are built out of rotations in various planes) determined
uniquely by a vector (the vector perpendicular to the plane). Equivalently,
only in 3 dimensions is there a cross-product v x w which takes two vectors
determining a plane to a unique vector perpendicular to the plane.

The isomorphism between the vector representation (7yector, R?) on column
vectors and the adjoint representation (Ad,s0(3)) on antisymmetric matrices is
given by

U1 0 —7U3 (%)
vy | <> v1ly + valo + v3l3 = U3 0 —V1
U3 —vy U1 0

or in terms of bases by
€e; < lj

For the vector representation on column vectors, Tyector(9) = g and 7, ;0r(X) =
X, where X is an antisymmetric 3 by 3 matrix, and g = ¢X is an orthogonal 3

by 3 matrix. Both act on column vectors by the usual multiplication.
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For the adjoint representation on antisymmetric matrices

0 —v3 Vo 0 —vU3 V2
Ad(g) | vs 0 —vi | =g vs 0 —v]g!
—V2 (%4 0 —V2 (%1 0

The corresponding Lie algebra representation is given by

O —vV3 (%] O —U3 V2
ad(X) V3 0 —U1 = [X, V3 0 —U1 ]
—vy M 0 —vy 0 0

where X is a 3 by 3 antisymmetric matrix.

One can explicitly check that these representations are isomorphic, for in-
stance by calculating how basis elements [; € s0(3) act. On vectors, these [; act
by matrix multiplication, giving for instance, for j =1

lie1 =0, l1es = e3, l1e3 = —€2
On antisymmetric matrices one has instead the isomorphic relations

(ad(l))(l) = 0, (ad(l))(l2) = I3, (ad(r))(3) = =l

6.2 Spin groups in three and four dimensions

A subtle and remarkable property of the orthogonal groups SO(n) is that they
come with an associated group, called Spin(n), with every element of SO(n)
corresponding to two distinct elements of Spin(n). There is a surjective group
homomorphism

® : Spin(n) — SO(n)

with the inverse image of each element of SO(n) given by two distinct elements
of Spin(n).

Digression. The topological reason for this is that, (forn > 2) the fundamental
group of SO(n) is non-trivial, with m (SO(n)) = Zy (in particular there is a
non-contractible loop in SO(n), contractible if you go around it twice). Spin(n)
is topologically the simply-connected double cover of SO(n), and the covering
map ® : Spin(n) — SO(n) can be chosen to be a group homomorphism.

Spin(n) is a Lie group of the same dimension as SO(n), with an isomorphic tan-
gent space at the identity, so the Lie algebras of the two groups are isomorphic:
so(n) ~ spin(n).

In chapter 29 we will explicitly construct the groups Spin(n) for any n, but
here we will only do this for n = 3 and n = 4, using methods specific to these two
cases. In the cases n = 5 (where Spin(5) = Sp(2), the 2 by 2 norm-preserving
quaternionic matrices) and n = 6 (where Spin(6) = SU(4)) special methods
can be used to identify Spin(n) with other matrix groups. For n > 6 the group
Spin(n) will be a matrix group, but distinct from other classes of such groups.

65



Given such a construction of Spin(n), we also need to explicitly construct
the homomorphism ®, and show that its derivative ®’ is an isomorphism of
Lie algebras. We will see that the simplest construction of the spin groups
here uses the group Sp(1) of unit-length quaternions, with Spin(3) = Sp(1)
and Spin(4) = Sp(1) x Sp(1). By identifying quaternions and pairs of complex
numbers, we can show that Sp(1) = SU(2) and thus work with these spin groups
as either 2 by 2 complex matrices (for Spin(3)), or pairs of such matrices (for

Spin(4)).

6.2.1 Quaternions

The quaternions are a number system (denoted by H) generalizing the complex
number system, with elements ¢ € H that can be written as

q=qo+qi+gjtaegk ¢ eER
with i, j, k € H satisfying
iZ=j72=k’=-1,ij=—-ji=kki=—-ik=j jk=-kj=i
and a conjugation operation that takes
q—q=q0— qi—qj— gk
This operation satisfies (for u,v € H)
uv = vu
As a vector space over R, H is isomorphic with R*. The length-squared
function on this R* can be written in terms of quaternions as

lal* =93 = a5 +ai + a5 + 3
and is multiplicative since

luv|? = waw = woa = |ul?|v|?

Using ~
9 _
lq|?
one has a formula for the inverse of a quaternion
-1 q
BT

q
The length one quaternions thus form a group under multiplication, called
Sp(1). There are also Lie groups called Sp(n) for larger values of n, consisting
of invertible matrices with quaternionic entries that act on quaternionic vectors
preserving the quaternionic length-squared, but these play no significant role in
quantum mechanics so we won’t study them further. Sp(1) can be identified
with the three dimensional sphere since the length one condition on ¢ is

GG +a+ag=1
the equation of the unit sphere S® C R*.
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6.2.2 Rotations and spin groups in four dimensions

Pairs (u,v) of unit quaternions give the product group Sp(1) x Sp(1). An
element (u,v) of this group acts on ¢ € H = R* by left and right quaternionic
multiplication

q— uqlf1
This action preserves lengths of vectors and is linear in ¢, so it must correspond
to an element of the group SO(4). One can easily see that pairs (u,v) and
(—u, —v) give the same linear transformation of R*, so the same element of
SO(4) and show that SO(4) is the group Sp(1) x Sp(1), with the two elements
(u,v) and (—u,—v) identified. The name Spin(4) is given to the Lie group
Sp(1) x Sp(1) that “double covers” SO(4) in this manner, with the covering
map

@ : (u,v) € Sp(1) x Sp(1) = Spin(4) — {qg — ugv™'} € SO(4)

6.2.3 Rotations and spin groups in three dimensions

Later on we’ll encounter Spin(4) and SO(4) again, but for now we’re interested
in the subgroup Spin(3) that only acts non-trivially on 3 of the dimensions,
and double covers not SO(4) but SO(3). To find this, consider the subgroup
of Spin(4) consisting of pairs (u,v) of the form (u,u) (a subgroup isomorphic
to Sp(1), since elements correspond to a single unit length quaternion w). This
subgroup acts on quaternions by conjugation

q— uq’tf1
an action which is trivial on the real quaternions (since u(gol)u=t = go1). It
preserves and acts nontrivially on the space of “pure imaginary” quaternions of
the form

qg=17v=uvi+v9j+v3k

which can be identified with the vector space R3. An element u € Sp(1) acts
on 7€ R?®CH as

7 — utu™t
This is a linear action, preserving the length |¥], so it corresponds to an el-
ement of SO(3). We thus have a map (which can easily be checked to be a
homomorphism)

®:uec Sp(l) = {¥ — utu"'} € SO(3)
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1
/\ : in Sp(1) = Spin(3)

in SO(3)

Figure 6.1: Double cover Sp(1) — SO(3).

Both u and —u act in the same way on ¥, so we have two elements in Sp(1)
corresponding to the same element in SO(3). One can show that ® is a surjective
map (any element of SO(3) is ® of something), so it is what is called a “covering”
map, specifically a two-fold cover. It makes Sp(1) a double cover of SO(3), and
we give this group the name “Spin(3)”. This also allows us to characterize
more simply SO(3) as a geometrical space. It is S% = Sp(1) = Spin(3) with
opposite points on the three-sphere identified. This space is known as RP?, real
projective 3-space, which can also be thought of as the space of lines through
the origin in R* (each such line intersects S® in two opposite points).

Digression. The covering map ® is an example of a topologically non-trivial
cover. Topologically, it is not true that S® ~ RP? x (+1,—1). S is a connected
space, not two disconnected pieces. This topological non-triviality implies that
globally there is no possible homomorphism going in the opposite direction from
O (i.e., SO(3) — Spin(3)). This can be done locally, picking a local patch in
SO(3) and taking the inverse of ® to a local patch in Spin(3), but this won’t
work if we try and extend it globally to all of SO(3).

The identification R? = C allowed us to represent elements of the unit circle
group U(1) as exponentials ¢?, where i was in the Lie algebra u(1) = iR of
U(1). Sp(1) behaves in much the same way, with the Lie algebra sp(1) now the
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space of all pure imaginary quaternions, which can be identified with R3 by

w1y
w=|wy | eR® @ =wii+wj+wskeH
w3

Unlike the U(1) case, there’s a non-trivial Lie bracket, the commutator of quater-
nions.

Elements of the group Sp(1) are given by exponentiating such Lie algebra
elements, which we will write in the form

u(f, w) = e’

where 6 € R and W is a purely imaginary quaternion of unit length. Since

W = (wii+ waj + w3k)? = —(wi + w3 +w3) = —1

the exponential can be expanded to show that

e = cos @ + @Wsin O

Taking 6 as a parameter, the u(6, w) give paths in Sp(1) going through the
identity at 8 = 0, with velocity vector @ since

d
@U(& W)\ozo = (—sinf + Wcos 9)|9:0 =
We can explicitly evaluate the homomorphism ® on such elements u(6, w) €

Sp(1), with the result that ® takes u(f, w) to a rotation by an angle 26 around
the axis w:

Theorem 6.1.
D(u(f,w)) = R(20, w)
Proof. First consider the special case w = e3 of rotations about the 3-axis.

ok

u(f,e3) = e’ = cosf + ksin b

and
u(f,e3)”! = e = cosf — ksinf
so ®(u(f,es3)) is the rotation that takes v (identified with the quaternion ¥ =
v1i + vaj + v3k) to
u(0, e3)vu(f, e3) ™! =(cos + ksin @) (vyi+ vaj + vsk)(cos § — ksin 6)
=(v1(cos? § — sin® B) — vy(2sin O cos )i
+ (2v; sin @ cos @ + va(cos® O — sin” 0))j + vsk
=(v1 cos 20 — vy sin 20)i + (v sin 20 + vy cos 20)j + vsk
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This is the orthogonal transformation of R? given by

U1 cos20 —sin20 0 v
v=|v| = [sin20 cos20 0 Vg (6.2)
v3 0 0 1 V3

The same calculation can readily be done for the case of e;, then use the
Euler angle parametrization of equation to show that a general u(f, w) can
be written as a product of the cases already worked out. O

Notice that as 6 goes from 0 to 27, u(f, w) traces out a circle in Sp(1). The
homomorphism @ takes this to a circle in SO(3), one that gets traced out twice
as 6 goes from 0 to 27, explicitly showing the nature of the double covering
above that particular circle in SO(3).

The derivative of the map ® will be a Lie algebra homomorphism, a linear
map

® :sp(1) — s0(3)

It takes the Lie algebra sp(1) of pure imaginary quaternions to the Lie algebra
50(3) of 3 by 3 antisymmetric real matrices. One can compute it easily on basis
vectors, using for instance equation [6.2f above to find for the case W = k

P’ (k) :%(I)(cos 6 + ksin 6)9—o

—2sin26 —2cos20 0
=| 2cos20 —2sin26 0
0 0 0

0 -2 0
=2 0 0] =2

0 0 O
Repeating this on other basis vectors one finds that

' (i) = 20y, D' (§) = 202, D' (k) = 2I3
Thus @’ is an isomorphism of sp(1) and so(3) identifying the bases
j k

) %7 5 and llv l2) l3

DO | e

Note that it is the %, %, % that satisfy simple commutation relations

i3] k [§ k] i [ki] ]
2'2] 27 |2°2) 27 |2'2] 2
6.2.4 The spin group and SU(2)

Instead of doing calculations using quaternions with their non-commutativity
and special multiplication laws, it is more conventional to choose an isomorphism
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between quaternions H and a space of 2 by 2 complex matrices, and work with
matrix multiplication and complex numbers. The Pauli matrices can be used
to give such an isomorphism, taking

L (VO i (0 = (0 -1
“lo 1)o7 T\ 0 ) 2=11 o

. i 0

k—>—ZO’3:<OZ Z)

The correspondence between H and 2 by 2 complex matrices is then given
by
Qo —ig3 —q2 — iql)

=q+q@i+ejt+eake . .
qg=4qoTq q2) T 43 <q2—zq1 o +igs

Since ‘ .
qo — 193 —q2 — 41 2 2 2 2
det . . =qy+taqi ta95+
<(I2 —tq1 qot1gs ) foThT 2T
we see that the length-squared function on quaternions corresponds to the de-
terminant function on 2 by 2 complex matrices. Taking ¢ € Sp(1), so of length
one, the corresponding complex matrix is in SU(2).
Under this identification of H with 2 by 2 complex matrices, we have an
identification of Lie algebras sp(1) = su(2) between pure imaginary quaternions
and skew-Hermitian trace-zero 2 by 2 complex matrices

- . . —w —wg — W1 .
W = wii+ waj + wsk < 3 2 = —iw-0o
W — 1W1 1ws

The basis %, %,% of sp(1) gets identified with a basis for the Lie algebra

su(2) which written in terms of the Pauli matrices is

O
X, = —i2L
J 7’2

with the X satisfying the commutation relations
(X1, Xo] = X5, [X2, X3] = X1, [X5,X41]=X>
which are precisely the same commutation relations as for so(3)
(L1, 0] =15, [l2,1s] =11, [l3,l1] =12
We now have three isomorphic Lie algebras sp(l) = su(2) = so(3), with

elements that get identified as follows

7 w w w 0 “Ws W2
i j k 3 1 — W2
Wiz + W5 +w3s) ¢ —= . > w3 0 —wq
(w13 +wzy +ws}) 2<w1+2w2 —ws W 0
—ws 1
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This isomorphism identifies basis vectors by

i SN

5 “— —1 B U
etc. The first of these identifications comes from the way we chose to identify
H with 2 by 2 complex matrices. The second identification is ®’, the derivative
at the identity of the covering map ®.

On each of these isomorphic Lie algebras we have adjoint Lie group (Ad)
and Lie algebra (ad) representations. Ad is given by conjugation with the cor-
responding group elements in Sp(1), SU(2) and SO(3). ad is given by taking
commutators in the respective Lie algebras of pure imaginary quaternions, skew-
Hermitian trace-zero 2 by 2 complex matrices and 3 by 3 real antisymmetric
matrices.

Note that these three Lie algebras are all three dimensional real vector
spaces, so these are real representations. To get a complex representation, take
complex linear combinations of elements. This is less confusing in the case of
su(2) than for sp(1) since taking complex linear combinations of skew-Hermitian
trace-zero 2 by 2 complex matrices gives all trace-zero 2 by 2 matrices (the Lie
algebra sl(2, C)).

In addition, recall that there is a fourth isomorphic version of this repre-
sentation, the representation of SO(3) on column vectors. This is also a real
representation, but can straightforwardly be complexified. Since s0(3) and su(2)
are isomorphic Lie algebras, their complexifications s0(3)¢ and sl(2, C) will also
be isomorphic.

In terms of 2 by 2 complex matrices, Lie algebra elements can be exponen-
tiated to get group elements in SU(2) and define

Q(Q7W) — 60(w1X1+w2X2+w3X3) — e*i%wwj' (63)

0
=1cos— —i(w- in — 6.4
cos 5 i(w - o)sin 5 (6.4)
Transposing the argument of theorem [6.1] from H to complex matrices, one finds
that, identifying

v V1 —
v<—>v-a:< 3 ! 2)

V1 + 1vg —v3

one has

with Q(6,w) acting by conjugation, taking
v.oo = QO,w)(v-a)Q0,w) = (R(O,w)V) o (6.5)

Note that in changing from the quaternionic to complex case, we are treating
the factor of 2 differently, since in the future we will want to use Q(6,w) to
perform rotations by an angle 6. In terms of the identification SU(2) = Sp(1),
we have Q(0, w) = u(§, w).
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Recall that any SU(2) matrix can be written in the form

(% 2)

a=qo—1iq3, B=—q—iq

with o, B € C arbitrary complex numbers satisfying |a|?4|3]?> = 1. A somewhat
unenlightening formula for the map ® : SU(2) — SO(3) in terms of such explicit
SU(2) matrices is given by

Re(a? — 3?)  Im(a®+ %) —2Re(af)
o3 ( o B) = | —Im(a? — %) Re(a®+ %) 2Im(ap)
e 2Re(0f)  20m(aB)  laf?~ [5]

See [83], page 123-4, for a derivation.

6.3 A summary

To summarize, we have shown that in the three dimensional case we have two
distinct Lie groups:

e Spin(3), which geometrically is the space S3. Its Lie algebra is R® with
Lie bracket the cross-product. We have seen two different explicit con-
structions of Spin(3), in terms of unit quaternions (Sp(1)), and in terms
of 2 by 2 unitary matrices of determinant 1 (SU(2)).

e SO(3), which has a Lie algebra isomorphic to that of Spin(3).

There is a group homomorphism ® that takes the first group to the second,
which is a two-fold covering map. Its derivative ®' is an isomorphism of the Lie
algebras of the two groups.

We can see from these constructions two interesting irreducible representa-
tions of these groups:

e A representation on R3 which can be constructed in two different ways: as
the adjoint representation of either of the two groups, or as the defining
representation of SO(3). This is known to physicists as the “spin 1”
representation.

e A representation of the first group on C2, which is most easily seen as
the defining representation of SU(2). It is not a representation of SO(3),
since going once around a non-contractible loop starting at the identity
takes one to minus the identity, not back to the identity as required. This
is called the “spin 3” or “spinor” representation and will be studied in

2
more detail in chapter [7]
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6.4 For further reading

For another discussion of the relationship of SO(3) and SU(2) as well as a
construction of the map @, see [83], sections 4.2 and 4.3, as well as [3], chapter
8, and [86], chapters 2 and 4.
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Chapter 7

Rotations and the Spin %
Particle in a Magnetic Field

The existence of a non-trivial double cover Spin(3) of the three dimensional rota-
tion group may seem to be a somewhat obscure mathematical fact. Remarkably
though, the existence of fundamental spin § particles shows that it is Spin(3)
rather than SO(3) that is the symmetry group corresponding to rotations of fun-
damental quantum systems. Ignoring the degrees of freedom describing their
motion in space, which we will examine in later chapters, states of elementary
particles such as the electron are described by a state space % = C?2, with rota-
tions acting on this space by the two dimensional irreducible representation of
SU(2) = Spin(3).

This is the same two-state system studied in chapter with the SU(2) action
found there now acquiring an interpretation as corresponding to the double cover
of the group of rotations of physical space. In this chapter we will revisit that
example, emphasizing the relation to rotations.

7.1 The spinor representation

In chapter [6] we examined in great detail various ways of looking at a particular
three dimensional irreducible real representation of the groups SO(3), SU(2)
and Sp(1). This was the adjoint representation for those three groups, and
isomorphic to the vector representation for SO(3). In the SU(2) and Sp(1)
cases, there is an even simpler non-trivial irreducible representation than the
adjoint: the representation of 2 by 2 complex matrices in SU(2) on column
vectors C? by matrix multiplication or the representation of unit quaternions in
Sp(1) on H by scalar multiplication. Choosing an identification C? = H these
are isomorphic representations on C? of isomorphic groups, and for calculational
convenience we will use SU(2) and its complex matrices rather than dealing with
quaternions. We thus have:
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Definition (Spinor representation). The spinor representation of Spin(3) =
SU(2) is the representation on C? given by

g € SU(2) = Tspinor(9) = g
FElements of the representation space C? are called “spinors”.

The spin representation of SU(2) is not a representation of SO(3). The
double cover map ® : SU(2) — SO(3) is a homomorphism, so given a rep-
resentation (m, V) of SO(3) one gets a representation (7 o ®, V) of SU(2) by
composition. One cannot go in the other direction: there is no homomorphism
SO(3) — SU(2) that would allow one to make the spin representation of SU(2)
on C? into an SO(3) representation.

One could try and define a representation of SO(3) by

[BS 50(3) — 7T(g) = Wspinor(g) € SU(Q)

where § is some choice of one of the two elements g € SU(2) satisfying ®(g) = g.
The problem with this is that it won’t quite give a homomorphism. Changing
the choice of g will introduce a minus sign, so 7 will only be a homomorphism
up to sign

m(g1)m(g2) = £7(9192)

The nontrivial nature of the double covering map ® implies that there is no
way to completely eliminate all minus signs, no matter how one chooses § (since
a continuous choice of g is not possible for all g in a non-contractible loop of
elements of SO(3)) . Examples like this, which satisfy the representation prop-
erty only one up to a sign ambiguity, are known as “projective representations”.
So, the spinor representation of SU(2) = Spin(3) can be used to construct a
projective representation of SO(3), but not a true representation of SO(3).

Quantum mechanics texts sometimes deal with this phenomenon by noting
that there is an ambiguity in how one specifies physical states in H, since mul-
tiplying a vector in H by a scalar doesn’t change the eigenvalues of operators
or the relative probabilities of observing these eigenvalues. As a result, the
sign ambiguity noted above has no physical effect since arguably one should be
working with states modulo the scalar ambiguity. It seems more straightfor-
ward though to not try and work with projective representations, but just use
the larger group Spin(3), accepting that this is the correct group reflecting the
action of rotations on three dimensional quantum systems.

The spin representation is more fundamental than the vector representa-
tion, in the sense that the spin representation cannot be found only knowing
the vector representation, but the vector representation of SO(3) can be con-
structed knowing the spin representation of SU(2). We have seen this using the
identification of R® with 2 by 2 complex matrices, with equation showing
that rotations of R3 correspond to conjugation by spin representation matrices.
Another way of seeing this uses the tensor product, and is explained in section
Note that taking spinors as fundamental entails abandoning the descrip-
tion of three dimensional geometry purely in terms of real numbers. While the
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vector representation is a real representation of SO(3) or Spin(3), the spinor
representation is a complex representation.

7.2 The spin % particle in a magnetic field

In chapter [3| we saw that a general quantum system with # = C?2 could be
understood in terms of the action of U(2) on C2. The self-adjoint observables
correspond (up to a factor of ¢) to the corresponding Lie algebra representation.
The U(1) C U(2) subgroup commutes with everything else and can be analyzed
separately, here we will consider only the SU(2) subgroup. For an arbitrary
such system, the group SU(2) has no particular geometric significance. When
it occurs in its role as double cover of the rotational group, the quantum system
is said to carry “spin”, in particular “spin %” for the two dimensional irreducible
representation (in chapter [8| we will discuss state spaces of higher spin values).

As before, we take as a standard basis for the Lie algebra su(2) the operators
Xj,7=1,2,3, where

which satisfy the commutation relations
[XlaXQ] - X37 [XQ) X3] - X17 [X37X1] - X2

To make contact with the physics formalism, we’ll define self-adjoint operators

S; =iX; = ‘12] (7.1)

In general, to a skew-adjoint operator (which is what one gets from a unitary
Lie algebra representation and what exponentiates to unitary operators) we
will associate a self-adjoint operator by multiplying by i. These self-adjoint
operators have real eigenvalues (in this case :i:%)7 so are favored by physicists as
observables since experimental results are given by real numbers. In the other
direction, given a physicist’s observable self-adjoint operator, we will multiply
by —i to get a skew-adjoint operator (which may be an operator for a unitary
Lie algebra representation).

Note that the conventional definition of these operators in physics texts
includes a factor of A:
hUj

2

A compensating factor of 1/k is then introduced when exponentiating to get
group elements

SPMS = ihX; =

Q0, w) = eI mVS" € SU(2)

which do not depend on A. The reason for this convention has to do with the
action of rotations on functions on R? (see chapter and the appearance of
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I in the definition of the momentum operator. Our definitions of S; and of
rotations using (see equation [6.3])

Q(G,W) _ 67i9w~S _ er-X

will not include these factors of A, but in any case they will be equivalent to
the usual physics definitions when we make our standard choice of working with
units such that A = 1.

States in H = C? that have a well-defined value of the observable S; will be
the eigenvectors of S;, with value for the observable the corresponding eigen-
value, which will be :I:%. Measurement theory postulates that if we perform the
measurement corresponding to S; on an arbitrary state |¢), then we will

e with probability c; get a value of +% and leave the state in an eigenvector
|, +1) of S; with eigenvalue +3

e with probability c_ get a value of f% and leave the state in an eigenvector

|lj, —1) of S; with eigenvalue —3

where if ) )

we have . ‘042 o |B|2
af? + |8 laf? +|B8]2

After such a measurement, any attempt to measure another Sy, k # j will give
:i:% with equal probability (since the inner products of |j, :i:%) and |k, :I:%) are
equal up to a phase) and put the system in a corresponding eigenvector of S.

If a quantum system is in an arbitrary state |1} it may not have a well-defined
value for some observable A, but the “expected value” of A can be calculated.
This is the sum over a basis of H consisting of eigenvectors (which will all
be orthogonal) of the corresponding eigenvalues, weighted by the probability
of their occurrence. The calculation of this sum in this case (A = S;) using
expansion in eigenvectors of S; gives

W) @, +5+ B, 3Dl +3) + Bl —3))
_laP(+d) +18P(=3)

WAl (@, +31 + BU, —31)Aelj, +3) + Bli, —3))
|

| + B
1 1
:C+(+§) +C—(*§)

One often chooses to simplify such calculations by normalizing states so that
the denominator (i|1) is 1. Note that the same calculation works in general
for the probability of measuring the various eigenvalues of an observable A, as
long as one has orthogonality and completeness of eigenvectors.
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In the case of a spin % particle, the group Spin(3) = SU(2) acts on states
by the spinor representation with the element Q(6, w) € SU(2) acting as

[9) = Q(0, w)l¢)

As we saw in chapter @ the Q(0, w) also act on self-adjoint matrices by conju-
gation, an action that corresponds to rotation of vectors when one makes the
identification

V& veo

(see equation |6.5). Under this identification the S; correspond (up to a factor
of 2) to the basis vectors e;. Their transformation rule can be written as

Sj = S5 = Q(0,w)S;Q(0, w) !

and
S S1
Sy | = R(6, W)T So
S S3

Note that, recalling the discussion in section rotations on sets of basis
vectors like this involve the transpose R(#, w)? of the matrix R(f, w) that acts
on coordinates.

Recalling the discussion in section the spin degree of freedom that we
are describing by H = C? has a dynamics described by the Hamiltonian

H=-u-B (7.2)

Here B is the vector describing the magnetic field, and

—e
b= ngcS
is an operator called the magnetic moment operator. The constants that appear
are: —e the electric charge, c the speed of light, m the mass of the particle, and g,
a dimensionless number called the “gyromagnetic ratio”, which is approximately
2 for an electron, about 5.6 for a proton.
The Schrodinger equation is

L19(0) = ~i(—p - B(D)

with solution
lv(t)) = U(t)]¥(0))

where

. ) L —geq, ge . gE|B\X‘£
U(t) _ ezty,B _ ezt S-B t X-B t B

2mc = e 2mc = g 32mc

The time evolution of a state is thus given at time ¢ by the same SU(2) element
that, acting on vectors, gives a rotation about the axis w = % by an angle

ge|BJt
2me
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so is a rotation about w taking place with angular velocity g;ﬁ'.

The amount of non-trivial physics that is described by this simple system is
impressive, including;:

e The Zeeman effect: this is the splitting of atomic energy levels that occurs
when an atom is put in a constant magnetic field. With respect to the
energy levels for no magnetic field, where both states in H = C? have the
same energy, the term in the Hamiltonian given above adds

ge|B|
)
dme

to the two energy levels, giving a splitting between them proportional to
the size of the magnetic field.

e The Stern-Gerlach experiment: here one passes a beam of spin % quantum
systems through an inhomogeneous magnetic field. We have not yet dis-
cussed particle motion, so more is involved here than the simple two-state
system. However, it turns out that one can arrange this in such a way as
to pick out a specific direction w, and split the beam into two components,
of eigenvalue —|—% and —% for the operator w - S.

e Nuclear magnetic resonance spectroscopy: a spin % can be subjected to

a time-varying magnetic field B(¢), and such a system will be described
by the same Schrodinger equation (although now the solution cannot be
found just by exponentiating a matrix). Nuclei of atoms provide spin %
systems that can be probed with time and space-varying magnetic fields,

allowing imaging of the material that they make up.

e Quantum computing: attempts to build a quantum computer involve try-
ing to put together multiple systems of this kind (qubits), keeping them
isolated from perturbations by the environment, but still allowing inter-
action with the system in a way that preserves its quantum behavior.

7.3 The Heisenberg picture

The treatment of time-dependence so far has used what physicists call the
“Schrodinger picture” of quantum mechanics. States in H are functions of time,
obeying the Schrédinger equation determined by a Hamiltonian observable H,
while observable self-adjoint operators O are time-independent. Time evolution
is given by a unitary transformation

Ut) =", |u(t)) = Ut)[%(0))

U(t) can instead be used to make a unitary transformation that puts the
time-dependence in the observables, removing it from the states, giving some-
thing called the “Heisenberg picture.” This is done as follows:

(1) = [(t)r = U O(1) = [¥(0), O Og(t)=U"(HOU()
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where the “H” subscripts indicate the Heisenberg picture choice for the treat-
ment of time-dependence. It can easily be seen that the physically observable
quantities given by eigenvalues and expectations values are identical in the two
pictures:

#{WO|Orl () r = WOV @)U (OOU @)U (B (L) = (L (1)|Olp(?))

In the Heisenberg picture the dynamics is given by a differential equation
not for the states but for the operators. Recall from our discussion of the adjoint
representation (see equation [5.1]) the formula

o ixy x4 ix “ix | ixy (4 ix
dt(e Ye™ ) = dt(e Y)|e +eY i

= XX ve N — e XyetX X

Using this with
Y=0, X=iH
we find

d . .
-0 (t) = [iH, O (1)) = i[H, O (t)]

and this equation determines the time evolution of the observables in the Heisen-
berg picture.

Applying this to the case of the spin % system in a magnetic field, and taking
for our observable S (the S;, taken together as a column vector) we find

CSu(t) = i[H.Su(0)] = 15 [Su(1) - B.Su(0) (7.3)

We know from the discussion above that the solution will be
Su(t)=U#)Se(0)U#)™"

for
_it9cBlg. B

U(t) = e " 2me 28I

By equation [6.5| and the identification there of vectors and 2 by 2 matrices, the

spin vector observable evolves in the Heisenberg picture by rotating about the
ge|B|
2mece °

magnetic field vector B with angular velocity

7.4 Complex projective space

There is a different possible approach to characterizing states of a quantum
system with H = C2. Multiplication of vectors in H by a non-zero complex
number does not change eigenvectors, eigenvalues or expectation values, so ar-
guably has no physical effect. Thus what is physically relevant is the quotient
space (C? — 0)/C*, which is constructed by taking all non-zero elements of C?
and identifying those related by multiplication by a non-zero complex number.
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For some insight into this construction, consider first the analog for real
numbers, where (R? — 0)/R* can be thought of as the space of all lines in the
plane going through the origin.

R2
(0,1)
RP!
(w1, 2)
(—1,0) (1,0)
1 I
\ ]
\ !
\ /
\ /
(=21, —22) | v
BN N 7 g identify
SR S
(07 _1)

Figure 7.1: The real projective line RP!.

One sees that each such line hits the unit circle in two opposite points, so
this set could be parametrized by a semi-circle, identifying the points at the two
ends. This space is given the name RP! and called the “real projective line”. In
higher dimensions, the space of lines through the origin in R” is called RP™*
and can be thought of as the unit sphere in R™, with opposite points identified
(recall from section that SO(3) can be identified with RP?).

What we are interested in is the complex analog CP!, which is quite a bit
harder to visualize since in real terms it is a space of two dimensional planes
through the origin of a four dimensional space. A standard way to choose
coordinates on CP! is to associate to the vector

(2) e
2

the complex number z;/z3. Overall multiplication by a complex number will
drop out in this ratio, so one gets different values for the coordinate z1/zo for
each different coset element, and elements of CP! correspond to points on the
complex plane. There is however one problem with this coordinate: the point
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on the plane corresponding to
1
()

does not have a well-defined value: as one approaches this point one moves off
to infinity in the complex plane. In some sense the space CP' is the complex
plane, but with a “point at infinity” added.

CP! is better thought of not as a plane together with a point, but as a
sphere (often called the “Riemann sphere”), with the relation to the plane and
the point at infinity given by stereographic projection. Here one creates a one-
to-one mapping by considering the lines that go from a point on the sphere
to the north pole of the sphere. Such lines will intersect the plane in a point,
and give a one-to-one mapping between points on the plane and points on the
sphere, except for the north pole. Now, the north pole can be identified with
the “point at infinity”, and thus the space CP! can be identified with the space
S2. The picture looks like this

z=x+ 1y

Figure 7.2: The complex projective line CP!.

and the equations relating coordinates (x1, 2, 23) on the sphere and the complex
coordinate z1/z2 = z = x + iy on the plane are given by

T X2

B ].—iL’g7 y= ].—.’Eg

T

and
2z 2y 22+ -1

SR R L R ey |
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similar triangles:

(0,0,1) T

L
1 1—1[,’3

(07O7$3) X9

1—.133

Figure 7.3: Complex-valued coordinates on CP! — {oo} via stereographic pro-
jection.

Digression. For another point of view on CP*, one constructs the quotient of
C? by complex scalars in two steps. Multiplication by a real scalar corresponds
to a change in normalization of the state, and we will often use this freedom to
work with normalized states, those satisfying

(YY) = 2121 + 2022 = 1

Such normalized states are unit-length vectors in C2, which are given by points
on the unit sphere S3 C R* = C2.

With such normalized states, one still must quotient out the action of mul-
tiplication by a phase, identifying elements of S that differ by multiplication
by €. The set of these elements forms a new geometrical space, often writ-
ten S3/U(1). This structure is called a “fibering” of S® by circles (the action
by phase multiplication traces out non-intersecting circles) and is known as the
“Hopf fibration”. Try an internet search for various visualizations of the ge-
ometrical structure involved, a surprising decomposition of three dimensional

space (identifying points at infinity to get S*) into non-intersecting curves.

Acting on H = C? by linear maps

)~ DE)
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takes 5
z az
A ezt

29 vz + 6

Such transformations are invertible if the determinant of the matrix is non-zero,
and one can show that these give conformal (angle-preserving) transformations
of the complex plane known as “Mé&bius transformations”. In chapter [40] we will
see that this group action appears in the theory of special relativity, where the
action on the sphere can be understood as transformations acting on the space
of light rays. When the matrix above is in SU(2) (y = -3, § =@, aa+ 3=
1), it can be shown that the corresponding transformation on the sphere is a
rotation of the sphere in R?, providing another way to understand the nature
of SU(2) = Spin(3) as the double cover of the rotation group SO(3).

7.5 The Bloch sphere

For another point of view on the relation between the two-state system with
H = C? and the geometry of the sphere (known to physicists as the “Bloch
sphere” description of states), the unit sphere S? C R3 can be mapped to
operators by

X—>0-X

For each point x € S2, o - x has eigenvalues +1. Eigenvectors with eigenvalue
+1 are the solutions to the equation

o -x|y) = [¢) (7.4)

and give a subspace C C H, giving another parametrization of the points in
CP(1). Note that one could equivalently consider the operators

1
Pr==-(1-0-
S0 %)
and look at the space of solutions to

Pxly) =0

It can easily be checked that Py satisfies P2 = Py and is a projection operator.

For a more physical interpretation of this in terms of the spin operators, one
can multiply by % and characterize the C C H corresponding to x € S? as
the solutions to

1
S xl1) = 1)

Then the North pole of the sphere is a “spin-up” state, and the South pole is
a “spin-down” state. Along the equator one finds two points corresponding to
states with definite values for Sp, as well as two for states that have definite
values for Ss.
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S|y = +3|v)

) Salgp) = +31v)

51|1/’> = —%

Saltp) = —3

Sslv) = —3)

Figure 7.4: The Bloch sphere.

For later applications of the spin representation, we would like to make for
each x a choice of solution to equation [7.4] getting a map

uy 1 x €5% = |[P) =uy(x) € H=C?

such that
(o %) (x) = s (x) (7.5)

This equation determines w4 only up to multiplication by an x-dependent scalar.
A standard choice is

1 1+ 23 cos g
e — . = .. 7.6
e (%) 2(1 + x3) (901 + wz) (eZgzs sin § (7.6)

where 6, ¢ are standard spherical coordinates (which will be discussed in section
8.3). This particular choice has two noteworthy characteristics:

e One can check that it satisfies
uy (Rx) = Quy (x)

where R = ®() is the rotation corresponding to an SU(2) element
q- ( cosd —e7 sein g)

i¢ gin & (4
€'?sin 3 CoS 3
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u4(x) is determined by setting it to be <1> at the North pole, and defin-

0
ing it at other points x on the sphere by acting on it by the element {2
which, acting on vectors by conjugation (as usual using the identification
of vectors and complex matrices), would take the North pole to x.

e With the specific choices made, u4 (x) is discontinuous at the South pole,
where x3 = —1, and ¢ is not uniquely defined. For topological reasons,
there cannot be a continuous choice of uy(x) with unit length for all
x. In applications one generally will be computing quantities that are
independent of the specific choice of u(x), so the discontinuity (which is
choice-dependent) should not cause problems.

One can similarly pick a solution u_(x) to the equation
(0 %)u_(x) = —u_(x)

for eigenvectors with eigenvalue —1, with a standard choice

" (x) = 1 (—(Jcl - mg)) - (—e""ZS sin g)
- 2(1 + x3) 1+ a3 cos &

For each x, u4(x) and u_(x) satisfy
uy (%) u_(x) =0

so provide an orthonormal (for the Hermitian inner product) complex basis for
C2.

Digression. The association of a different vector space C C H = C? to each
point x by taking the solutions to equation[7.5 is an example of something called
a “vector bundle” over the sphere of x € S?. A specific choice for each X of a
solution uy (x) is called a “section” of the vector bundle. It can be thought of as
a sort of “twisted” complex-valued function on the sphere, taking values not in
the same C for each x as would a usual function, but in copies of C that vary
with x.

These copies of C move around in C? in a topologically non-trivial way: they
cannot all be identified with each other in a continuous manner. The vector bun-
dle that appears here is perhaps the most fundamental example of a topologically
non-trivial vector bundle. A discontinuity such as that found in the section
uy of equation 1s required because of this topological non-triviality. For a
non-trivial bundle like this one, there cannot be continuous non-zero sections.

While the Bloch sphere provides a simple geometrical interpretation of the
states of the two-state system, it should be noted that this association of points
on the sphere with states does not at all preserve the notion of inner product.
For example, the North and South poles of the sphere correspond to orthogonal
vectors in H, but of course (0,0,1) and (0,0,—1) are not at all orthogonal as
vectors in R3.
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7.6 For further reading

Just about every quantum mechanics textbook works out this example of a spin
% particle in a magnetic field. For one example, see chapter 14 of [81]. For
an inspirational discussion of spin and quantum mechanics, together with more
about the Bloch sphere, see chapter 22 of [65].
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Chapter 8

Representations of SU(2)
and SO(3)

For the case of G = U(1), in chapter [2] we were able to classify all complex
irreducible representations by an element of Z and explicitly construct each
irreducible representation. We would like to do the same thing here for repre-
sentations of SU(2) and SO(3). The end result will be that irreducible repre-
sentations of SU(2) are classified by a non-negative integer n = 0,1,2,3,---,
and have dimension n + 1, so we’ll (hoping for no confusion with the irreducible
representations (7, C) of U(1)) denote them (7, C"1). For even n these will
correspond to an irreducible representation p, of SO(3) in the sense that

T = pn 0P

but this will not be true for odd n. It is common in physics to label these
representations by s = § = 0, %, 1 and call the representation labeled by s

the “spin s representation”. We already know the first three examples:

R

e Spin 0: my or po is the trivial representation for SU(2) or SO(3). In
physics this is sometimes called the “scalar representation”. Saying that
states transform under rotations as the scalar representation just means
that they are invariant under rotations.

e Spin %: Taking
m(g) =g € SU(2) CU(2)

gives the defining representation on C2. This is the spinor representation
discussed in chapter It does not correspond to a representation of

SO(3).

e Spin 1: Since SO(3) is a group of 3 by 3 matrices, it acts on vectors in R3.
This is just the standard action on vectors by rotation. In other words,
the representation is (p2, R3), with ps the identity homomorphism

g € 8S0(3) — pa(g) = g € SO(3)
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This is sometimes called the “vector representation”, and we saw in chap-
ter [] that it is isomorphic to the adjoint representation.

Composing the homomorphisms ¢ and p:
m=po®:SU(2) —» SO(3) C GL(3,R)

gives a representation (w2, R?) of SU(2), the adjoint representation. Com-
plexifying gives a representation on C3, which in this case is just the action
with SO(3) matrices on complex column vectors, replacing the real coor-
dinates of vectors by complex coordinates.

8.1 Representations of SU(2): classification

8.1.1 Weight decomposition

If we make a choice of a U(1) C SU(2), then given any representation (7, V") of
SU(2) of dimension m, we get a representation (mjy(1), V) of U(1) by restriction
to the U(1) subgroup. Since we know the classification of irreducibles of U(1),
we know that

(7T|U(1)7 V) = Cth & qu G- D CQm

for some qi1,q2, - ,¢m € Z, where C, denotes the one dimensional representa-
tion of U(1) corresponding to the integer ¢ (theorem. These g; are called the
“weights” of the representation V. They are exactly the same thing discussed
in chapter [2|as “charges”, but here we’ll favor the mathematician’s terminology
since the U(1) here occurs in a context far removed from that of electromag-
netism and its electric charges.

Since our standard choice of coordinates (the Pauli matrices) picks out the
z-direction and diagonalizes the action of the U(1) subgroup corresponding to
rotation about this axis, this is the U(1) subgroup we will choose to define the
weights of the SU(2) representation V. This is the subgroup of elements of

SU(2) of the form
e 0
0 e—iO

Our decomposition of an SU(2) representation (m, V') into irreducible represen-
tations of this U(1) subgroup equivalently means that we can choose a basis of
V so that

etfa 0 . 0
- e 0\ | 0 e ... 0
O e_ie - e e

0 0 oo efam

An important property of the set of integers ¢; is the following:

Theorem. If q is in the set {q;}, so is —q.
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Proof. Recall that if we diagonalize a unitary matrix, the diagonal entries are
the eigenvalues, but their order is undetermined: acting by permutations on
these eigenvalues we get different diagonalizations of the same matrix. In the
case of SU(2) the matrix
0 1
p=(4)

has the property that conjugation by it permutes the diagonal elements, in

particular
ei@ 0 1 efiﬁ 0
P L) (0 2)

wer((y Lo pmer=a((7)" %))

and we see that 7(P) gives a change of basis of V' such that the representation
matrices on the U(1) subgroup are as before, with § — —6. Changing 6 — —0
in the representation matrices is equivalent to changing the sign of the weights
g;. The elements of the set {g;} are independent of the basis, so the additional
symmetry under sign change implies that for each non-zero element in the set
there is another one with the opposite sign. O

So

Looking at our three examples so far, we see that, restricted to U(1), the
scalar or spin 0 representation of course is one dimensional and of weight 0

(ﬂ-Oa C) = CO

and the spin % representation decomposes into U(1) irreducibles of weights
—1,41:
(m,C*)=C_1&Cyy

For the spin 1 representation, recall (theorem that the double cover
homomorphism & takes

JRTI cos20 sin20 0
( 0 e_w) € SU(2) —» | —sin20 cos26 0| € SO(3)
0 0 1

Acting with the SO(3) matrix above on C? will give a unitary transformation
of C3, which therefore is in the group U(3). One can show that the upper left
diagonal 2 by 2 block acts on C? with weights —2, +2, whereas the bottom right
element acts trivially on the remaining part of C3, which is a one dimensional
representation of weight 0. So, restricted to U(1), the spin 1 representation
decomposes as

(12,C*) =C_ 20 Cyo®Cya

Recall that the spin 1 representation of SU(2) is often called the “vector” rep-
resentation, since it factors in this way through the representation of SO(3) by
rotations on three dimensional vectors.
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8.1.2 Lie algebra representations: raising and lowering op-
erators

To proceed further in characterizing a representation (m, V') of SU(2) we need
to use not just the action of the chosen U(1) subgroup, but the action of
group elements in the other two directions away from the identity. The non-
commutativity of the group keeps us from simultaneously diagonalizing those
actions and assigning weights to them. We can however work instead with the
corresponding Lie algebra representation (7', V') of su(2). As in the U(1) case,
the group representation is determined by the Lie algebra representation. We
will see that for the Lie algebra representation, we can exploit the complexifica-
tion (recall section[5.5)) s[(2, C) of su(2) to further analyze the possible patterns
of weights.

Recall that the Lie algebra su(2) can be thought of as the tangent space R3
to SU(2) at the identity element, with a basis given by the three skew-adjoint

2 by 2 matrices

1
X; = —i50;

which satisfy the commutation relations
(X1, Xo] = X3, [Xo, X3] = X1, [X3,X4]=X>
We will often use the self-adjoint versions S; = iX; that satisfy
[S1,S2] = 4S5, [Sa,S5] =51, [Ss,S1] = iS9

A unitary representation (m,V’) of SU(2) of dimension m is given by a homo-
morphism

w:SU(2) = U(m)
We can take the derivative of this to get a map between the tangent spaces

of SU(2) and of U(m), at the identity of both groups, and thus a Lie algebra

representation

7' su(2) = u(m)

which takes skew-adjoint 2 by 2 matrices to skew-adjoint m by m matrices,
preserving the commutation relations.

We have seen in section that restricting the representation (w,V) to
the diagonal U (1) subgroup of SU(2) and decomposing into irreducibles tells us
that we can choose a basis of V' so that

(71', V) = (7711170) @ (71'(12,0) DD (ﬂ-Qm,?C)

For our choice of U(1) as matrices of the form
012085 _ e’ 0
0 6719
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with e going around U(1) once as 6 goes from 0 to 27, this means we can
choose a basis of V' so that

etfn (U 0
wesy= [ 0 ’
0 0 s etfam

Taking the derivative of this representation to get a Lie algebra representation,
using

d
(X)) = —am(€")lo=o0
we find for X =253

et 0 0 iGp 0 .- 0

) d 0 etfaz ... 0 0 igy --- 0

"(i283) = — =

™ (1253) al - e
0 0 .. elfam 0 0 - igm

|0=0

Recall that 7’ is a real-linear map from a real vector space (su(2) = R?) to
another real vector space (u(n), the skew-Hermitian m by m complex matrices).
As discussed in section [5.5] we can use complex linearity to extend any such
map to a complex-linear map from su(2)c (the complexification of su(2)) to
u(m)c (the complexification of u(m)). Since su(2)Nisu(2) = 0 and any element
of 5[(2, C) be written as a complex number times an element of su(2), we have

su(2)c = su(2) + isu(2) = sl(2,C)
Similarly
u(m)c = u(m) + wu(m) = M(m, C) = gl(m, C)
As an example, multiplying X = i2S55 € su(2) by —%, we have S3 € sl(2, C)

and the diagonal elements in the matrix 7’(i2S53) get also multiplied by —3
(since 7’ is now a complex-linear map), giving

4 0 - 0
(s =0 > Y
o 0 ... Im

2

We see that 7/ (S3) will have half-integral eigenvalues, and make the following
definitions:

Definition (Weights and weight spaces). If 7'(S3) has an eigenvalue g, we say
that k is a weight of the representation (m,V).
The subspace Vi, CV of the representation V' satisfying

k
vEVE, = 7'(S3)v= 3V
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18 called the k’th weight space of the representation. All vectors in it are eigen-
vectors of m'(Ss) with eigenvalue .

The dimension dim Vi is called the multiplicity of the weight k in the rep-
resentation (m, V).

S1 and Se don’t commute with S3, so they won’t preserve the subspaces Vi
and we can’t diagonalize them simultaneously with S3. We can however exploit
the fact that we are in the complexification s[(2, C) to construct two complex
linear combinations of S; and S, that do something interesting;:

Definition (Raising and lowering operators). Let

. 1 .
S+251+152:(8 o)’ 5251—252:((1) 8)

We have Sy, S_ € sl(2,C). These are neither self-adjoint nor skew-adjoint, but

satisfy
(S+)t =53

and similarly we have

7 (Se) = 7'(S5)

We call ©'(S4+) a “raising operator” for the representation (w,V), and ©'(S_)
a “lowering operator”.

The reason for this terminology is the following calculation:
[S3,54] = [S3, 51 +iS2] =iS2 +i(—iS1) = S1 + S =S¢
which implies (since 7’ is a Lie algebra homomorphism)
' (S3)m'(S4) — 7' (S4)7w'(S5) = 7'([S5, S4]) = 7' (S4)

For any v € Vj, we have

™' (S3)n' (Sy)v = 7' (S4)7'(S3)v + 7' (S4 ) = (g + 1) (S4)v

SO
veV, — 7TI(S+)U € Vk+2

The linear operator n'(S;) takes vectors with a well-defined weight to vectors
with the same weight, plus 2 (thus the terminology “raising operator”). A
similar calculation shows that 7/(S_) takes Vi to Vj_2, lowering the weight by
2.

We're now ready to classify all finite dimensional irreducible unitary repre-
sentations (m,V) of SU(2). We define:

Definition (Highest weights and highest weight vectors). A non-zero vector
v eV, CV such that
©'(Si)v =0

1s called a highest weight vector, with highest weight n.
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Irreducible representations will be characterized by a highest weight vector,
as follows

Theorem (Highest weight theorem). Finite dimensional irreducible represen-
tations of SU(2) have weights of the form

-n,—n+2,---,n—-2,n
for n a non-negative integer, each with multiplicity 1, with n a highest weight.

Proof. Finite dimensionality implies there is a highest weight n, and we can
choose any highest weight vector v, € V,,. Repeatedly applying 7'(S_) to v,
will give new vectors
Up—2j = W/(S,)J'Un € anzj

with weights n — 2j.

Consider the span of the v,,_2;,j > 0. To show that this is a representation
one needs to show that the 7/(Ss) and 7’(S4) leave it invariant. For 7/(Ss) this
is obvious, for 7/(S4) one can show that

(St )vn—2j = j(n —j+ L)vn_agi1) (8.1)

by an induction argument. For j = 0 this is the highest weight condition on v,,.
Assuming validity for j, validity for j + 1 can be checked by

T (S4)0n—a(j+1) = (S4)7' (S-)vn—2;
=("([S4,S-]) +7'(S_)7'(S4))vn—2;
(7'(283) + 7' (S )7 (S+))vn—2;
((n = 2j)vn—25 + 7' (S-)j(n — j + 1)vp_s;;-1)
(
(

(n - Qj) +j(n —Jj+ 1))”n—2j
J+1(n—=(G+1)+Dvao+1-1)

where we have used the commutation relation
[S4,S5-] =255

By finite dimensionality, there must be some integer k& such that v,_2; # 0
for j <k, and v,—2; = 0 for j = k + 1. But then, for j = k£ + 1, we must have

7T/(S+)Un_2j =0

By equation this will happen only for £+ 1 =n+ 1 (and we need to take n
positive). We thus see that v_,, will be a “lowest weight vector”, annihilated by
7'(S_). As expected, the pattern of weights is invariant under change of sign,
with non-zero weight spaces for

-n,—n+2,---,n—-2,n
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Digression. Dropping the requirement of finite dimensionality, the same con-
struction starting with a highest weight vector and repeatedly applying the lower-
ing operator can be used to produce infinite dimensional irreducible representa-
tions of the Lie algebras su(2) or sl(2,C). These occur when the highest weight
is not a non-negative integer, and they will be non-integrable representations
(representations of the Lie algebra, but not of the Lie group).

Since we saw in section that representations can be studied by looking
at the set of their weights under the action of our chosen U(1) C SU(2), we
can label irreducible representations of SU(2) by a non-negative integer n, the
highest weight. Such a representation will be of dimension n + 1, with weights

-n,—n-+2,---,n—-2,n
Each weight occurs with multiplicity one, and we have
(W\U(l)a V) = Cfn ® C7n+2 ®D--- Cn72 ©® Cn

Starting with a highest weight or lowest weight vector, a basis for the repre-
sentation can be generated by repeatedly applying lowering or raising operators.
The picture to keep in mind is this

71'/(53) W/(Sg) W/(Sg) 71'/(53)

° Cn— 2 Cn
lowest  7'(8) ™' (S5) ™' (S5) w'(Sy)  highest
weight weight
vectors vectors

Figure 8.1: Basis for a representation of SU(2) in terms of raising and lowering
operators.

where all the vector spaces are copies of C, and all the maps are isomorphisms
(multiplications by various numbers).

In summary, we see that all irreducible finite dimensional unitary SU(2)
representations can be labeled by a non-negative integer, the highest weight n.
These representations have dimension n+ 1 and we will denote them (7, V" =
Cntl). Note that V,, is the n’th weight space, V" is the representation with
highest weight n. The physicist’s terminology for this uses not n, but § and
calls this number the “spin”of the representation. We have so far seen the lowest
three examples n = 0, 1,2, or spin s = § = 0, %, 1, but there is an infinite class
of larger irreducibles, with dim V,, =n+ 1 = 2s+ 1.
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8.2 Representations of SU(2): construction

The argument of the previous section only tells us what properties possible
finite dimensional irreducible representations of SU(2) must have. It shows
how to construct such representations given a highest weight vector, but does
not provide any way to construct such highest weight vectors. We would like
to find some method to explicitly construct an irreducible (m,, V™) for each
highest weight n. There are several possible constructions, but perhaps the
simplest one is the following, which gives a representation of highest weight n
by looking at polynomials in two complex variables, homogeneous of degree n.
This construction will produce representations not just of SU(2), but of the
larger group GL(2,C).

Recall from equation [I.3] that if one has an action of a group on a space M,
one can get a representation on functions f on M by taking

For the group GL(2,C), we have by definition an action on M = C2, and we
look at a specific class of functions on this space, the polynomials. We can break
up the infinite dimensional space of polynomials on C? into finite dimensional
subspaces as follows:

Definition (Homogeneous polynomials). The complex vector space of homo-
geneous polynomials of degree n in two complex variables z1, zo is the space of
functions on C? of the form

-1 -1
f(z1,22) = apel +a12]” 22+ -+ an_12126 4+ anzy
The space of such functions is a complex vector space of dimension n + 1.

This space of functions is exactly the representation space V" that we need to
get the spin § irreducible representation of SU(2) C GL(2,C).
If we choose a basis e}, e, of C?, then we can write ¢ as the matrix

. (: g) € GL(2,C)

The coordinates z;, zo will be the dual basis of the linear functions on C? and
(see the discussion at the end of sections and g will act on them by

Z1 -1 (%
()=o)
The representation 7,(g) on homogeneous polynomial functions will be given

by this action on the 27, zo in the expression for the polynomial.
Taking the derivative, the Lie algebra representation is given by

, d

LS = e femo = 7 (2 g

T - dt z2
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where X € gl(2,C) is any 2 by 2 complex matrix. By the chain rule, for

(260)=(2)

, _(0f OFN\(d ix (=
T (X)f = (321’52) (dt6 ) <Z2)>t—o

15) 5]
= — a—i(Xllzl + Xlgzg) - 8722()(2121 + X2232)

this is

where the X, are the components of the matrix X.

Computing what happens for X; = —i% (a basis of su(2), we get

(70 (X3) ) (21, 22) =

SO

and similarly

i

0 0 1 0] 0
/ = - —_— R / = - _— _
Wn(Xl) = B (2’1 82’2 + 22 821) , 7Tn(X2) 5 <2’2 azl z1 agQ)

The zfz;kk for K = 0,...n are eigenvectors for S3 = (X3 with eigenvalue
3(n — 2k) since

m(So)eh g = S~k + (- Kb ) = 2 (n— 2k)ek g
2% will be an explicit highest weight vector for the representation (m,, V").

An important thing to note here is that the formulas we have found for =),
are not in terms of matrices. Instead we have seen that when we construct our
representations using functions on C?, for any X € gl(2, C)), 7/, (X) is given by
a differential operator. These differential operators are independent of n, with
the same operator 7'(X) on all the V™. This is because the original definition
of the representation

(m(9)f)(x) = flg~" - @)

is on the full infinite dimensional space of polynomials on C2. While this space
is infinite dimensional, issues of analysis don’t really come into play here, since
polynomial functions are essentially an algebraic construction.

Restricting the differential operators 7'(X) to V™, the homogeneous poly-
nomials of degree n, they become linear operators on a finite dimensional space.
We now have an explicit highest weight vector, and an explicit construction
of the corresponding irreducible representation. If one chooses a basis of V",
then the linear operator 7/(X) will be given by a n+ 1 by n+ 1 matrix. Clearly
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though, the expression as a simple first-order differential operator is much easier
to work with. In the examples we will be studying in later chapters, the repre-
sentations under consideration will often be on function spaces, with Lie algebra
representations appearing as differential operators. Instead of using linear al-
gebra techniques to find eigenvalues and eigenvectors, the eigenvector equation
will be a partial differential equation, with our focus on using Lie groups and
their representation theory to solve such equations.

One issue we haven’t addressed yet is that of unitarity of the representation.
We need Hermitian inner products on the spaces V™, inner products that will
be preserved by the action of SU(2) that we have defined on these spaces. A
standard way to define a Hermitian inner product on functions on a space M is
to define them using an integral: for f, g complex-valued functions on M, take

their inner product to be
(f,9) = / fa
M

While for M = C? this gives an SU(2) invariant inner product on functions (one
that is not invariant for the full group GL(2, C)), it is useless for f, g polyno-
mial, since such integrals diverge. In this case an inner product on polynomial
functions on C? can be defined by

1 -
(f,9) = ﬁ/z f(Zh22)9(21722)6_“21|2+‘22‘2)d$1dy1d9€2dy2 (8.2)
c

Here z; = x1 +iy1, 22 = o2 +1y2. Integrals of this kind can be done fairly easily
since they factorize into separate integrals over z; and 2o, each of which can be
treated using polar coordinates and standard calculus methods. One can check
by explicit computation that the polynomials

Jk
2125

will be an orthonormal basis of the space of polynomial functions with respect
to this inner product, and the operators 7/(X), X € su(2) will be skew-adjoint.

Working out what happens for the first few examples of irreducible SU(2)
representations, one finds orthonormal bases for the representation spaces V"
of homogeneous polynomials as follows

e Forn=5=0

1
OFornzl,s:%
21, 22
e fForn=2,s=1
1, 1
—21, 2122, —=%
ﬂl 142 \/52
oForn:?),s:%
1 45 1 4 1 9 1 4
—=2], —=%1%2, —=Z1%5, —=%
VB VR T VG



8.3 Representations of SO(3) and spherical har-
monics

We would like to now use the classification and construction of representations of
SU(2) to study the representations of the closely related group SO(3). For any
representation (p, V) of SO(3), we can use the double covering homomorphism
®: SU(2) — SO(3) to get a representation

T=po®d

of SU(2). It can be shown that if p is irreducible, © will be too, so we must
have m = p o ® = m,, one of the irreducible representations of SU(2) found in
the last section. Using the fact that ®(—1) = 1, we see that

(1) =pod(-1)=1

From knowing that the weights of m,, are —n,—n+2,--- ,n—2,n, we know that
6in7r 0 . 0
et 0 0 ei(n72)7r L. 0
0 0 e—in‘n’

which will only be true for n even, not for n odd. Since the Lie algebra of SO(3)
is isomorphic to the Lie algebra of SU(2), the same Lie algebra argument using
raising and lowering operators as in the last section also applies. The irreducible
representations of SO(3) will be (p;, V = C?*1) for | = 0,1,2,-- -, of dimension
2] + 1 and satisfying

pro®=my

Just like in the case of SU(2), we can explicitly construct these representa-
tions using functions on a space with an SO(3) action. The obvious space to
choose is R? with the standard SO(3) action. The induced representation is as
usual

(p(9)f)(x) = f(g~" - )
and by the same argument as in the SU(2) case, once one has chosen a basis,

g € SO(3) is an orthogonal 3 by 3 matrix that acts on the coordinates x1, za, x3
(a basis of the dual R?) by

Z1 T1
T2 | — g_1 XT2
€3 T3

Taking the derivative, the Lie algebra representation on functions is given
by
T

P = o) o = (e [0 ) o
T3
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where X € s0(3). Recall that a basis for so(3) is given by the antisymmetric
matrices

0 0 O 0 01 0 -1 0
L=10 0 -1 lb={0 0 0] Ilsg=[(1 0 O
01 0 -1 0 0 0 0 O

which satisfy the commutation relations

U, ] =13, [la, 3] =11, I3, L] =12

Digression. A note on conventions

We’re using the notation l; for the real basis of the Lie algebra so(3) = su(2).
For a unitary representation p, the p'(l;) will be skew-adjoint linear operators.
For consistency with the physics literature, we’ll use the notation L; = ip'(l;)
for the self-adjoint version of the linear operator corresponding to l; in this
representation on functions. The L; satisfy the commutation relations

[LlaLQ] = iL37 [L23L3] = 7:[/17 [L3)L1] = ZLZ

We’ll also use elements I+ = I1 £ ily of the complexified Lie algebra to create
raising and lowering operators Ly = ip'(l14).

As with the SU(2) case, we won’t include a factor of I as is usual in physics
(the usual convention is L; = ihp'(l;)), since for considerations of the action of
the rotation group it would cancel out (physicists define rotations using exLi ).
The factor of h is only of significance when L; is expressed in terms of the
momentum operator, a topic discussed in chapter[19

In the SU(2) case, the '(S;) had half-integral eigenvalues, with the eigen-
values of '(253) the integral weights of the representation. Here the L; will
have integer eigenvalues, the weights will be the eigenvalues of 2L3, which will
be even integers.

Computing p’(l;) we find
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p'(h)f = il

1
if 0 cost smt (

0 —sint cost
d
d—f x2005t+x381nt
t —x9sint + x3cost
_(9f 9f ﬁ
8.231 8$2 81‘3
g Of _ Of
B 38562 231‘3
SO P 5
1) = pa—— — o —
p ( 1) 3 81‘2 81‘3
and similar calculations give
0 0 , 0 0
(ZS) = 111'287‘%1 - xlaix2

(12) —171873—13 871'1

The space of all functions on R3 is much too big: it will give us an infinity of
copies of each finite dimensional representation that we want. Notice that when
SO(3) acts on R?, it leaves the distance to the origin invariant. If we work in

spherical coordinates (r, 8, ¢) (see picture)
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T3

(331,3627963) = (7"79#/5)

P

X1 Z2

Figure 8.2: Spherical coordinates.

we will have

x1 =rsin 6 cos ¢
o =7 sinfsin ¢

T3 =1 cosf

Acting on f(r,¢,0), SO(3) will leave r invariant, only acting non-trivially on
0,¢. It turns out that we can cut down the space of functions to something
that will only contain one copy of the representation we want in various ways.
One way to do this is to restrict our functions to the unit sphere, i.e., look at
functions f(6,¢). We will see that the representations we are looking for can
be found in simple trigonometric functions of these two angular variables.

We can construct our irreducible representations p] by explicitly constructing
a function we will call Y}!(6, ¢) that will be a highest weight vector of weight
. The weight [ condition and the highest weight condition give two differential
equations for Y} (6, ¢):

L3y} =1}, L,Y! =0

These will turn out to have a unique solution (up to scalars).
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We first need to change coordinates from rectangular to spherical in our
expressions for L3, L4. Using the chain rule to compute expressions like

ﬁf('xl(n 0, ¢)7$2(T7 0, ¢)7$3(Tv 0, (b))

or
we find
% - sin 6 cos ¢ sin 6 SiI.l 10} cosf @
@ = | rcosflcos¢p rcosfsing —r sm@ @
76 —rsinfsin¢ rsinfcos ¢ o
50 9 . . . _9_
7 sinfcos¢ sinf sin ¢ cosb 351
[, cos Q.COS ¢ cosfsing —sinf 652
TS0 98 —sin ¢ cos @ Do

This is an orthogonal matrix, so can be inverted by taking its transpose, to get

3%1 sinfcos¢ cosflcos¢p —sing gr
8%2 = | sinfsin¢g cosfsing cos¢ %%
8%3 cos 6 —sind 0 ﬁ%
So we finally have
Li=ip(ly) =1 9,0 mgb +cot0cos¢
1=11pl1) =1 9«"38:102 dfzaxg S 96
, 0 0
Ly =ip'(ly) = (x183 — (%1) ( cos qi)— + cot fsin ¢ ¢>
. . 0 0 e,
Ly=ip'(l3) =i (xgaxl - xlax2> = za—¢

and

Ly =ip(ly) =€ <§9 +zcot06¢> Lo =ip(l.)=¢e"% <—§9 +zcot0£b>

Now that we have expressions for the action of the Lie algebra on functions in
spherical coordinates, our two differential equations saying our function Yll(G, ®)
is of weight [ and in the highest weight space are
.0

LSY—ll(ev ¢) = _Z%

V0, 0) =1Y](0, ¢)

and

, 0 0
l _ id l _
L .Y (0,¢6)=¢ <86+lcot08¢>Yl(0,¢)—O
The first of these tells us that

Y (0,9) = " Fi(0)
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for some function Fj(#), and using the second we get
(2 —lcot0)F1(6) =0
a0 e

with solution

Fy(0) = Cy sin' 6
for an arbitrary constant Cy. Finally
Y (0, ) = Cpe'sin' 0

This is a function on the sphere, which is also a highest weight vector in a
21+ 1 dimensional irreducible representation of SO(3). Repeatedly applying the
lowering operator L_ gives vectors spanning the rest of the weight spaces, the
functions

Y™ (0, 6) =Cipn(L-) "™V, ¢)

l—m
=Cim (e_w (_(;99 + i cot 9%)) e? sin' 6

form=01-1,1—2---,—1+1,—I

The functions Y;™(0, ) are called “spherical harmonics”, and they span
the space of complex functions on the sphere in much the same way that the
e’ span the space of complex-valued functions on the circle. Unlike the case
of polynomials on C2?, for functions on the sphere, one gets finite numbers
by integrating such functions over the sphere. So an inner product on these
representations for which they are unitary can be defined by simply setting

_ 2m ™
(f,9) = / fgsinfdfdo = / f(0,¢)g(0,¢)sin0dbde (8.3)
S2 ¢$=0 J6=0

We will not try and show this here, but for the allowable values of [,m the
Y (0, ¢) are mutually orthogonal with respect to this inner product.

One can derive various general formulas for the Y™ (0, ¢) in terms of Leg-
endre polynomials, but here we’ll just compute the first few examples, with
the proper constants that give them norm 1 with respect to the chosen inner
product.

e For the [ = 0 representation

)/2)0(9’ d)) = s

e For the [ = 1 representation

/3 /3 /3 _,
Yl =— ge“ﬁ sing, Y = Ecosﬁ, Y = ge_“’ﬁ sin ¢

(one can easily see that these have the correct eigenvalues for p/(Ls) =
- 0
—Z%)
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e For the [ = 2 representation one has

15 15 ;
V2= \/Tezw sin?6, Y, = \/75@”s sin § cos 0
327 8
Yo — F(3c0520 -1)
2 167

15 _, 15 _.
Y, ! = 1/8?6_“1’ sinfcosf, Y, 2= 3276_12¢ sin? 0

We will see in chapter that these functions of the angular variables in
spherical coordinates are exactly the functions that give the angular depen-
dence of wavefunctions for the physical system of a particle in a spherically
symmetric potential. In such a case the SO(3) symmetry of the system implies
that the state space (the wavefunctions) will provide a unitary representation 7
of SO(3), and the action of the Hamiltonian operator H will commute with the
action of the operators L3, L. As a result, all of the states in an irreducible
representation component of 7 will have the same energy. States are thus orga-
nized into “orbitals”, with singlet states called “s” orbitals (I = 0), triplet states
called “p” orbitals (I = 1), multiplicity 5 states called “d” orbitals (I = 2), etc.

8.4 The Casimir operator

For both SU(2) and SO(3), we have found that all representations can be
constructed out of function spaces, with the Lie algebra acting as first-order
differential operators. It turns out that there is also a very interesting second-
order differential operator that comes from these Lie algebra representations,
known as the Casimir operator. For the case of SO(3):

Definition (Casimir operator for SO(3)). The Casimir operator for the repre-
sentation of SO(3) on functions on S? is the second-order differential operator

L?* =17+ L3+ L}
(the symbol L? is not intended to mean that this is the square of an operator L)

A straightforward calculation using the commutation relations satisfied by
the L; shows that
(L2, p'(X)] =0

for any X € s0(3). Knowing this, a version of Schur’s lemma says that L? will act
on an irreducible representation as a scalar (i.e., all vectors in the representation
are eigenvectors of L?, with the same eigenvalue). This eigenvalue can be used
to characterize the irreducible representation.

The easiest way to compute this eigenvalue turns out to be to act with L? on
a highest weight vector. First one rewrites L? in terms of raising and lowering
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operators

L_ Ly =(Ly —iLy)(Ly +iLo)
=L+ L3 +i[Ly, Ly]
=3+ 13— Ls

SO
LP=L3+134+13=L_L,+ L3+ L3

For the representation p of SO(3) on functions on S? constructed above,
we know that on a highest weight vector of the irreducible representation p;
(restriction of p to the 2/ + 1 dimensional irreducible subspace of functions that
are linear combinations of the Y™ (6, ¢)), we have the two eigenvalue equations

Lif=0, Lyf =1f

with solution the functions proportional to Y}(6, ¢). Just from these conditions
and our expression for L? we can immediately find the scalar eigenvalue of L2
since

LPf=L L f+(Ls+L3)f=0+1+3)f=11+1)f

We have thus shown that our irreducible representation p; can be characterized
as the representation on which L? acts by the scalar (I + 1).

In summary, we have two different sets of partial differential equations whose
solutions provide a highest weight vector for and thus determine the irreducible
representation p;:

Lif=0, Lsf=1f

which are first-order equations, with the first using complexification and
something like a Cauchy-Riemann equation, and

L*f=11+1)f, Lyf =1f

where the first equation is a second-order equation, something like a
Laplace equation.

That a solution of the first set of equations gives a solution of the second set
is obvious. Much harder to show is that a solution of the second set gives a
solution of the first set. The space of solutions to

L*f=1(1+1)f

for [ a non-negative integer includes as we have seen the 2] + 1 dimensional
vector space of linear combinations of the Y™ (6, ¢) (there are no other solu-
tions, although we will not show that). Since the action of SO(3) on functions
commutes with the operator L2, this 2] + 1 dimensional space will provide a
representation, the irreducible one of spin .
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The second-order differential operator L? in the p representation on functions
can explicitly be computed, it is

L? =L} + L3+ L3

2
= (z <sin (b% + cot 6 cos ¢86¢)>
2 2
+ (z <— cos qb% + cot # sin d)aaqb)) + <_Z<96¢>)

1 0 /(. ,0 1 92
=_ (sin@@@ <sm 930) + e~ QW) (8.4)

We will re-encounter this operator in chapter as the angular part of the
Laplace operator on R3.

For the group SU(2) we can also find irreducible representations as solution
spaces of differential equations on functions on C2. In that case, the differential
equation point of view is much less useful, since the solutions we are looking for
are just the homogeneous polynomials, which are more easily studied by purely
algebraic methods.

8.5 For further reading

The classification of SU(2) representations is a standard topic in all textbooks
that deal with Lie group representations. A good example is [40], which covers
this material well, and from which the discussion here of the construction of
representations as homogeneous polynomials is drawn (see pages 77-79). The
calculation of the L; and the derivation of expressions for spherical harmonics
as Lie algebra representations of s0(3) appears in most quantum mechanics
textbooks in one form or another (for example, see chapter 12 of [§1]). Another
source used here for the explicit constructions of representations is [20], chapters
27-30.

A conventional topic in books on representation theory in physics is that of
the representation theory of the group SU(3), or even of SU(n) for arbitrary
n. The case n = 3 is of great historical importance, because of its use in the
classification and study of strongly interacting particles, The success of these
methods is now understood as due to an approximate SU(3) symmetry of the
strong interaction theory corresponding to the existence of three different light
quarks. The highest weight theory of SU(2) representations can be generalized
to the case of SU(n), as well as to finite dimensional representations of other
Lie groups. We will not try and cover this topic here since it is a bit intricate,
and is already very well-described in many textbooks aimed at mathematicians
(e.g., [42]) and at physicists (e.g., [32]).
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Chapter 9

Tensor Products,
Entanglement, and

Addition of Spin

If one has two independent quantum systems, with state spaces H; and Hs,
the combined quantum system has a description that exploits the mathematical
notion of a “tensor product”, with the combined state space the tensor product
Hy1 ® Ho. Because of the ability to take linear combinations of states, this
combined state space will contain much more than just products of independent
states, including states that are described as “entangled”, and responsible for
some of the most counter-intuitive behavior of quantum physical systems.

This same tensor product construction is a basic one in representation the-
ory, allowing one to construct a new representation (mw,gw,, W1 ® Wa) out of
representations (mwyw,, W1) and (mw,, W2). When we take the tensor product of
states corresponding to two irreducible representations of SU(2) of spins sq, sa,
we will get a new representation (7TV251®V252 Vi V252). It will be reducible,
a direct sum of representations of various spins, a situation we will analyze in
detail.

Starting with a quantum system with state space H that describes a single
particle, a system of n particles can be described by taking an n-fold tensor
product H®" = HQ® H ® --- ® H. It turns out that for identical particles, we
don’t get the full tensor product space, but only the subspaces either symmetric
or antisymmetric under the action of the permutation group by permutations
of the factors, depending on whether our particles are “bosons” or “fermions”.
This is a separate postulate in quantum mechanics, but finds an explanation
when particles are treated as quanta of quantum fields.

Digression. When physicists refer to “tensors”, they generally mean the “ten-
sor fields” used in general relativity or other geometry-based parts of physics,
not tensor products of state spaces. A tensor field is a function on a manifold,
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taking values in some tensor product of copies of the tangent space and its dual
space. The simplest tensor fields are vector fields, functions taking values in
the tangent space. A more non-trivial example is the metric tensor, which takes
values in the dual of the tensor product of two copies of the tangent space.

9.1 Tensor products

Given two vector spaces V and W (over R or C), the direct sum vector space
V @ W is constructed by taking pairs of elements (v, w) for v € V,w € W, and
giving them a vector space structure by the obvious addition and multiplication
by scalars. This space will have dimension

dm(VeWw)=dmV +dimW
If {e1,e2,...,€qimv } is a basis of V, and {f1,fs, ..., f4imw } a basis of W, the
{e1,e2,...,eqimv,f1.f2, ... faimw}

will be a basis of V& W.
A less trivial construction is the tensor product of the vector spaces V and
W. This will be a new vector space called V ® W, of dimension

dim(V @ W) = (dim V) (dim W)

One way to motivate the tensor product is to think of vector spaces as vector
spaces of functions. Elements

v =1v1e1 + Vg€ + - + VUdim Vedimy € V

can be thought of as functions on the dim V' points e;, taking values v; at e;. If
one takes functions on the union of the sets {e;} and {f;} one gets elements of
V@ W. The tensor product V® W will be what one gets by taking all functions
on not the union, but the product of the sets {e;} and {f;}. This will be the
set with (dim V')(dim W) elements, which we will write e; ® f;, and elements
of V. ® W will be functions on this set, or equivalently, linear combinations of
these basis vectors.

This sort of definition is less than satisfactory, since it is tied to an explicit
choice of bases for V and W. We won’t however pursue more details of this
question or a better definition here. For this, one can consult pretty much any
advanced undergraduate text in abstract algebra, but here we will take as given
the following properties of the tensor product that we will need:

e Given vectors v € V,w € W we get an element v @ w € V ® W, satisfying
bilinearity conditions (for ¢1,co constants)

v ® (crwy + caws) = ¢1(v @ wy) + co(v ® way)

(c1v1 + c2v2) @ w = ¢1(v1 @ w) + c2(v2 @ W)
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e There are natural isomorphisms
VoaW~WeV

and
U@VeoW)~UeV)W

for vector spaces U, V, W

e Given a linear operator A on V and another linear operator B on W, we
can define a linear operator A®@ B on V ® W by

(A® B)(v @ w) = Av ® Bw

forveV,weW.

With respect to the bases e;,fy of V and W, A will be a (dimV) by
(dim V') matrix, B will be a (dim W) by (dim W) matrix and A ® B will
be a (dim V)(dim W) by (dim V)(dim W) matrix (which can be thought
of as a (dim V') by (dim V') matrix of blocks of size (dim W)).

e One often wants to consider tensor products of vector spaces and dual
vector spaces. An important fact is that there is an isomorphism between
the tensor product V* ® W and linear maps from V' to W. This is given
by identifying [ @ w (I € V*,w € W) with the linear map

veV =lv)weWw
e Given the motivation in terms of functions on a product of sets, for func-
tion spaces in general we should have an identification of the tensor prod-

uct of function spaces with functions on the product set. For instance, for
square-integrable functions on R we expect

L*R)® L*(R)® - ® L*(R) = L*(R") (9.1)

n times

For V a real vector space, its complexification V¢ (see section [5.5) can be
identified with the tensor product

Ve=VrC

Here the notation ®g indicates a tensor product of two real vector spaces: V
of dimension dim V' with basis {ei,es, ..., eqmy} and C = R? of dimension 2
with basis {1,4}.
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9.2 Composite quantum systems and tensor prod-
ucts

Consider two quantum systems, one defined by a state space H; and a set of
operators O; on it, the second given by a state space Hs and set of operators O,.
One can describe the composite quantum system corresponding to considering
the two quantum systems as a single one, with no interaction between them, by
taking as a new state space

Hr =H1 @ Ho
with operators of the form
A®Ild+Id® B

with A € O1, B € Oy. The state space Hr can be used to describe an interacting
quantum system, but with a more general class of operators.

If H is the state space of a quantum system, this can be thought of as
describing a single particle. Then a system of N such particles is described by
the multiple tensor product

HO"=HOHR@ - QHIH

n times

The symmetric group S,, acts on this state space, and one has a representa-
tion (m, H®™) of S,, as follows. For ¢ € S,, a permutation of the set {1,2,...,n}
of n elements, on a tensor product of vectors one has

T(0) (V1 @ V2 @ -+ ®Up) = Vg(1) @ Vg(2) @ **+ & Vg (n)

The representation of S, that this gives is in general reducible, containing var-
ious components with different irreducible representations of the group S,,.

A fundamental axiom of quantum mechanics is that if H®" describes n iden-
tical particles, then all physical states occur as one dimensional representations
of S,. These are either symmetric (“bosons”) or antisymmetric (“fermions”)
where:

Definition. A state v € H®™ is called

e symmetric, or bosonic if Vo € S,
m(o)v=wv
The space of such states is denoted S™(H).
e antisymmetric, or fermionic if Vo € Sy,
m(o)v = (—=1)7ly

The space of such states is denoted A™(H). Here |o| is the minimal number
of transpositions that by composition give o.
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Note that in the fermionic case, for o a transposition interchanging two
particles, 7 acts on the factor H ® H by interchanging vectors, taking

wRweHQH

to itself for any vector w € H. Antisymmetry requires that 7 take this state to
its negative, so the state cannot be non-zero. As a result, one cannot have non-
zero states in H®" describing two identical particles in the same state w € H,
a fact that is known as the “Pauli principle”.

While the symmetry or antisymmetry of states of multiple identical particles
is a separate axiom when such particles are described in this way as tensor
products, we will see later on (chapter that this phenomenon instead finds
a natural explanation when particles are described in terms of quantum fields.

9.3 Indecomposable vectors and entanglement

If one is given a function f on a space X and a function g on a space Y, a
product function fg on the product space X X Y can be defined by taking (for
reX,yeyY)

(f9)(@,y) = f(z)g(y)

However, most functions on X X Y are not decomposable in this manner. Sim-
ilarly, for a tensor product of vector spaces:

Definition (Decomposable and indecomposable vectors). A wvector in V @ W
is called decomposable if it is of the form v @ w for some v € Viw € W. If it
cannot be put in this form it is called indecomposable.

Note that our basis vectors of V' ® W are all decomposable since they are
products of basis vectors of V and W. Linear combinations of these basis vectors
however are in general indecomposable. If we think of an element of V@ W
as a dimV by dim W matrix, with entries the coordinates with respect to our
basis vectors for V' ® W, then for decomposable vectors we get a special class
of matrices, those of rank one.

In the physics context, the language used is:

Definition (Entanglement). An indecomposable state in the tensor product
state space Hp = H1 ® Ha is called an entangled state.

The phenomenon of entanglement is responsible for some of the most surprising
and subtle aspects of quantum mechanical systems. The Einstein-Podolsky-
Rosen paradox concerns the behavior of an entangled state of two quantum
systems, when one moves them far apart. Then performing a measurement on
one system can give one information about what will happen if one performs
a measurement on the far removed system, introducing a sort of unexpected
apparent non-locality.

Measurement theory itself involves crucially an entanglement between the
state of a system being measured, thought of as in a state space Hsystem, and
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the state of the measurement apparatus, thought of as lying in a state space
Happaratus- The laws of quantum mechanics presumably apply to the total
system Hsystem ® Happaratus, With the counter-intuitive nature of measurements
appearing due to this decomposition of the world into two entangled parts: the
one under study, and a much larger for which only an approximate description
in classical terms is possible. For much more about this, a recommended reading
is chapter 2 of [75].

9.4 Tensor products of representations

Given two representations of a group a new representation can be defined, the
tensor product representation, by:

Definition (Tensor product representation of a group). For (my, V) and (my, W)
representations of a group G, there is a tensor product representation (rygw, V®
W) defined by

(mvew (9))(v @ w) = mv(g9)v @ mw (g)w

One can easily check that 7y gw is a homomorphism.
To see what happens for the corresponding Lie algebra representation, com-
pute (for X in the Lie algebra)

d
Tyew (X) (v @ w) =£7TV®W(€tX)(U ® w)i=0

= ()

- ((jtwv(etx)v> ® Ww(etx)w> _

+(me e (jtm(e“m))t_o
(R4 (X)) @ w -+ 0@ (e (X)) )

v WW(etX)w)t:()

which could also be written

mew(X) = (1 (X) @ 1w) + (1y @ myy (X))

9.4.1 Tensor products of SU(2) representations

Given two representations (my, V) and (7w, W) of a group G, we can decom-
pose each into irreducibles. To do the same for the tensor product of the two
representations, we need to know how to decompose the tensor product of two
irreducibles. This is a fundamental and non-trivial question, with the answer
for G = SU(2) as follows:

Theorem 9.1 (Clebsch-Gordan decomposition).
The tensor product (Tyn1gyre, V' @ V™2) decomposes into irreducibles as

(Wn1+n27vn1+n2) ) (7Tn1+n2—2, Vn1+n2—2) DD (ﬂ-\’ﬂlfnzla V|n1—n2|)
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Proof. One way to prove this result is to use highest weight theory, raising
and lowering operators, and the formula for the Casimir operator. We will not
try and show the details of how this works out, but in the next section give a
simpler argument using characters. However, in outline (for more details, see
for instance section 5.2 of [71]), here’s how one could proceed:

One starts by noting that if v,, € V,,,,v,, € V,,, are highest weight vectors
for the two representations, v, ® vy, will be a highest weight vector in the tensor

product representation (i.e., annihilated by 7, ., (S;)), of weight n; + no.
SO (Tny4+nq, V™ T72) will occur in the decomposition. Applying 7, ... (S-) to

U, ®@Vp, one gets a basis of the rest of the vectors in (7, yn,, V" 7"2). However,
at weight ni +mno —2 one can find another kind of vector, a highest weight vector
orthogonal to the vectors in (7, 1n,, V"1 7"2). Applying the lowering operator
to this gives (7, 4n,—2, V1 T"272). As before, at weight n; + ny — 4 one finds
another, orthogonal highest weight vector, and gets another representation, with
this process only terminating at weight |ny — na|. O

9.4.2 Characters of representations

A standard tool for dealing with representations is that of associating to a repre-
sentation an invariant called its character. This will be a conjugation invariant
function on the group that only depends on the equivalence class of the repre-
sentation. Given two representations constructed in very different ways, it is
often possible to check whether they are isomorphic by seeing if their character
functions match. The problem of identifying the possible irreducible represen-
tations of a group can be attacked by analyzing the possible character functions
of irreducible representations. We will not try and enter into the general theory
of characters here, but will just see what the characters of irreducible repre-
sentations are for the case of G = SU(2). These can be used to give a simple
argument for the Clebsch-Gordan decomposition of the tensor product of SU(2)
representations. For this we don’t need general theorems about the relations
of characters and representations, but can directly check that the irreducible
representations of SU(2) correspond to distinct character functions which are
easily evaluated.

Definition (Character). The character of a representation (m,V) of a group G
is the function on G given by

xv(g) = Tr(n(g))

Since the trace of a matrix is invariant under conjugation, xy will be a
complex-valued, conjugation invariant function on G. One can easily check that
it will satisfy the relations

Xvew = XV T Xw, XVew = XVXW

For the case of G = SU(2), any element can be conjugated to be in the
U(1) subgroup of diagonal matrices. Knowing the weights of the irreducible
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representations (m,, V") of SU(2), we know the characters to be the functions

0
0 . o T .
Xvn ((eo e—i@)) _ ezn@ +ez(n 2)0 +.ode i(n—2)0 +e in6 (92)

As n gets large, this becomes an unwieldy expression, but one has

Theorem (Weyl character formula).

\ <<ei9 0 >> et(n+1)6 _ o—i(n+1)6 Sin((n + 1)9)
vn =

0 e et — e~ B sin(0)

Proof. One just needs to use the identity

(einG + ei(an)Q 4t efi(n72)0 + efme)(ew o efiG) _ 6i(n+1)0 _ 67i(n+1)6

and equation [9.2] for the character. O

To get a proof of 0.1] compute the character of the tensor product on the di-
agonal matrices using the Weyl character formula for the second factor (ordering
things so that ng > n;)

XV"l QVn2 :XV"1 XV"Q
. . _ . _ » ei(n2+1)0 _ e—i(nz-{—l)o
:(em19 + el(nl 2)0 +ofe i(n1—2)0 +e mlé)

o0 _ o—i0
(ei(n1+n2+1)6’ _ e*i(TLlJr’ﬂerl)g) 4+ (ei(’l’bz*n1+1)9 _ 677;(77,27711#*1)9)

el _ o—ib
=Xynitny + Xynitneg—2 + 0+ Xyna—ny
So, when we decompose the tensor product of irreducibles into a direct sum of
irreducibles, the ones that must occur are exactly those of theorem
9.4.3 Some examples
Some simple examples of how this works are:
e Tensor product of two spinors:
Vievi=1v2eV°

This says that the four complex dimensional tensor product of two spinor
representations (which are each two complex dimensional) decomposes
into irreducibles as the sum of a three dimensional vector representation
and a one dimensional trivial (scalar) representation.

Using the basis ((1)> , <(1)> for V1, the tensor product V! ® V! has a basis

0)26) @)= 0) ()6 ()=0)
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The vector

H0)0)-(Q (erer

is clearly antisymmetric under permutation of the two factors of VI @ V1.
One can show that this vector is invariant under SU(2), by computing
either the action of SU(2) or of its Lie algebra su(2). So, this vector
is a basis for the component V' in the decomposition of V! ® V! into
irreducibles.

The other component, V2, is three dimensional, and has a basis

)0 ()= )+ (e lo) 6= )

These three vectors span one dimensional complex subspaces of weights
g = 2,0, —2 under the U(1) C SU(2) subgroup

et? 0
0 e

They are symmetric under permutation of the two factors of V! @ V1.

We see that if we take two identical quantum systems with # = V! =
C? and make a composite system out of them, if they were bosons we
would get a three dimensional state space V2 = S?(V1), transforming as
a vector (spin one) under SU(2). If they were fermions, we would get a
one dimensional state space V? = A%(V'!) of spin zero (invariant under
SU(2)). Note that in this second case we automatically get an entangled
state, one that cannot be written as a decomposable product.

Tensor product of three or more spinors:
VigVieV!=(V2ae VeV = (V2eVhe(VieV) =VievieV!

This says that the tensor product of three spinor representations decom-
poses as a four dimensional (“spin 3/2”) representation plus two copies of
the spinor representation.

This can be generalized by considering N-fold tensor products (V1)®V of
the spinor representation. This will be a sum of irreducible representa-
tions, including one copy of the irreducible V¥, giving an alternative to the
construction using homogeneous polynomials. Doing this however gives
the irreducible as just one component of something larger, and a method
is needed to project out the desired component. This can be done using
the action of the symmetric group Sy on (V1)®¥ and an understanding
of the irreducible representations of Sy. This relationship between irre-
ducible representations of SU(2) and those of Sy coming from looking at
how both groups act on (V1)®¥ is known as “Schur-Weyl duality”. This
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generalizes to the case of SU(n) for arbitrary n, where one can consider
N-fold tensor products of the defining representation of SU(n) matrices
on C™. For SU(n) this provides perhaps the most straightforward con-
struction of all irreducible representations of the group.

9.5 Bilinear forms and tensor products

A different sort of application of tensor products that will turn out to be im-
portant is to the description of bilinear forms, which generalize the dual space
V* of linear forms on V. We have:

Definition (Bilinear forms). A bilinear form B on a vector space V' over a field
k (for us, k =R or C) is a map

B:(v,v") €V xV = B(v,v') €k
that is bilinear in both entries, i.e.,
B(v+v',v") = B(v,v") + B(v',v"), B(ev,v") = cB(v,v")
B(v,v" +v") = B(v,v") + B(v,v"), B(v,cv’) = cB(v,v’)

where ¢ € k.
If B(v',v) = B(v,v') the bilinear form is called symmetric, if B(v',v) =
—B(v,v") it is antisymmetric.

The relation to tensor products is
Theorem 9.2. The space of bilinear forms on V is isomorphic to V* @ V*.

Proof. The map
a1 ®as €V V' = B: B(v,v) = ai(v)az(v))

provides, in a basis independent way, the isomorphism we are looking for. One
can show this is an isomorphism using a basis. Choosing a basis e; of V,
the coordinate functions v; = e; provide a basis of V*, so the v; ® vy, will
be a basis of V* ® V*. The map above takes linear combinations of these to
bilinear forms, and is easily seen to be one-to-one and surjective for such linear
combinations. O

Given a basis e; of V and dual basis v; of V* (the coordinates), the element
of V* ® V* corresponding to B can be written as the sum

Z Bjk’l)j & vk
gk

This expresses the bilinear form B in terms of a matrix B with entries Bjy,

which can be computed as
Bjr = B(ej, ex)
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In terms of the matrix B, the bilinear form is computed as
Bll e Bld ’U/l
Bw,v)=(v1 ... wa)| : : D =v-BY
Bdl . de ’U,d

9.6 Symmetric and antisymmetric multilinear forms

The symmetric bilinear forms lie in S?(V*) C V* ® V* and correspond to
symmetric matrices. Elements of V* give linear functions on V', and one can
get quadratic functions on V from elements B € S?(V*) by taking

veV = Bv,v)=v-Bv
Equivalently, in terms of tensor products, one gets quadratic functions as the
product of linear functions by taking

1
(a1,0) VI X V* — 5(041 ® g+ ®ay) € S*(V)

and then evaluating at v € V' to get the number

%(041(0)042(0) + az(v)ai(v)) = a1(v)as(v)

This multiplication can be extended to a product on the space
S*(V*) =@, 5"(V")
(called the space of symmetric multilinear forms) by defining
(1@ @ay)(aj @ - @an) =PT (a1 @ @ ay)

1
== ) G @ B (93)
" oES,

One can show that S*(V*) with this product is isomorphic to the algebra
of polynomials on V. For a simple example of how this works, take v; € V* to
be the jth coordinate function. Then the correspondence between monomials
in v; and elements of S*(V*) is given by

v e (v QU Q- ®uy) (9.4)

n-times

Both sides can be thought of as the same function on V, given by evaluating
the jth coordinate of v € V' and multiplying it by itself n-times.

We will later find useful the fact that S*(V*) and (S*(V))* are isomorphic,
with the tensor product

(041 ® "'®Oéj) e S*(V™")
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corresponding to the linear map
e, ® --®e; —ai(e,) -aje;)

Antisymmetric bilinear forms lie in A%2(V*) C V* ® V* and correspond to
antisymmetric matrices. A multiplication (called the “wedge product”) can be
defined on V* that takes values in A?(V*) by

1
(a1,02) EVIXV* 5> a1 Aag = 5(041 @y — g @ ay) € A2(VF) (9.5)

This multiplication can be extended to a product on the space
AT (V) = &n A" (V)
(called the space of antisymmetric multilinear forms) by defining

(1 ® - Raj) N(aj1® - Rap) =P (1 @ @ ay)
1
= (D)) ® -+ @ agm) (9.6)

" o€eS,
This can be used to get a product on the space of antisymmetric multilinear
forms of different degrees, giving something in many ways analogous to the
algebra of polynomials (although without a notion of evaluation at a point v).
This plays a role in the description of fermions and will be considered in more
detail in chapter Much like in the symmetric case, there is an isomorphism
between A*(V*) and (A*(V))*.

9.7 For further reading

For more about the tensor product and tensor product of representations, see
section 6 of [96], or appendix B of [85]. Almost every quantum mechanics text-
book will contain an extensive discussion of the Clebsch-Gordan decomposition
for the tensor product of two irreducible SU(2) representations.

A complete discussion of bilinear forms, together with the algebra of sym-
metric and antisymmetric multilinear forms, can be found in [36].
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Chapter 10

Momentum and the Free
Particle

We'll now turn to the problem that conventional quantum mechanics courses
generally begin with: that of the quantum system describing a free particle
moving in physical space R3. This is something quite different from the classical
mechanical description of a free particle, which will be reviewed in chapter
A common way of motivating this is to begin with the 1924 suggestion by de
Broglie that, just as photons may behave like either particles or waves, the
same should be true for matter particles. Photons were known to carry an
energy given by F = hw, where w is the angular frequency of the wave. De
Broglie’s proposal was that matter particles with momentum p = fk can also
behave like a wave, with dependence on the spatial position q given by

eik~q

This proposal was realized in Schrédinger’s early 1926 discovery of a version
of quantum mechanics in which the state space is

H = L2(R%)

which is the space of square-integrable complex-valued functions on R3, called
“wavefunctions”. The operator

P = —ihV

will have eigenvalues fik, the de Broglie momentum, so it can be identified as
the momentum operator.

In this chapter our discussion will emphasize the central role of the momen-
tum operator. This operator will have the same relationship to spatial trans-
lations as the Hamiltonian operator does to time translations. In both cases,
the operators are the Lie algebra representation operators corresponding to a
unitary representation on the quantum state space H of groups of translations
(translations in the three space and one time directions respectively).
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One way to motivate the quantum theory of a free particle is that, whatever
it is, it should have analogous behavior to that of the classical case under trans-
lations in space and time. In chapter[I4]we will see that in the Hamiltonian form
of classical mechanics, the components of the momentum vector give a basis of
the Lie algebra of the spatial translation group R3, the energy a basis of the
Lie algebra of the time translation group R. Invoking the classical relationship
between energy and momentum

2
o loP
2m

used in non-relativistic mechanics relates the Hamiltonian and momentum op-
erators by

_ PP

T 2m

H

On wavefunctions, for this choice of H the abstract Schrodinger equation
becomes the partial differential equation

) w2,
Zhaﬂ)(q, t) = %V Y(q,t)

for the wavefunction of a free particle.

10.1 The group R and its representations

Some of the most fundamental symmetries of nature are translational symme-
tries, and the basic example of these involves the Lie group R, with the group
law given by addition. Note that R can be treated as a matrix group with a
multiplicative group law by identifying it with the group of matrices of the form

b 3)
GG D=6

multiplication of matrices corresponds to addition of elements of R. Using the
matrix exponential one finds that

for a € R. Since

(o) (o)

0 1

so the Lie algebra of the matrix group R is matrices of the form

()
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with Lie bracket the matrix commutator (which is zero here). Such a Lie algebra
can be identified with the Lie algebra R (with trivial Lie bracket).

We will sometimes find this way of expressing elements of R as matrices
useful, but will often instead label elements of the group by scalars a, and use
the additive group law. The same scalars a are also used to label elements of
the Lie algebra, with the exponential map from the Lie algebra to the Lie group
now just the identity map. Recall that the Lie algebra of a Lie group can be
thought of as the tangent space to the group at the identity. For examples of
Lie groups like R that are linear spaces, the space and its tangent space can be
identified, and this is what we are doing here.

The irreducible representations of the group R are the following:

Theorem 10.1. Irreducible representations of R are labeled by ¢ € C and given

by
m.(a) = e“

Such representations are unitary (in U(1)) when c is purely imaginary.

The proof of this theorem is the same as for the G = U(1) case (theorem [2.3)),
dropping the final part of the argument, which shows that periodicity (U(1) is
just R with @ and a + N27 identified) requires ¢ to be ¢ times an integer.

The representations of R that we are interested in are on spaces of wave-
functions, and thus infinite dimensional. The simplest case is the representation
induced on functions on R by the action of R on itself by translation. Here
a € R acts on ¢ € R (where ¢ is a coordinate on R) by

qg—a-q=q+a

and the induced representation 7 on functions (see equation [1.3)) is

which for this case will be

m(a)f(q) = flg—a) (10.1)

To get the Lie algebra version of this representation, the above can be dif-

ferentiated, finding
d
m'(a) = 0 (10.2)
In the other direction, knowing the Lie algebra representation, exponentiation
give
/ d, 2 d?
w(@)f = e = flg) = flg) — oy + 5 G5 4= fla =

which is just Taylor’s formula[l]

IThis requires restricting attention to a specific class of functions for which the Taylor
series converges to the function.
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In chapter [5] for finite dimensional unitary representations of a Lie group
G we found corresponding Lie algebra representations in terms of self-adjoint
matrices. For the case of G = R, even for infinite dimensional representations
on H = L?(R3) one gets an equivalence of unitary representations and self-
adjoint operatorsﬂ although now this is a non-trivial theorem in analysis, not
just a fact about matrices.

10.2 Translations in time and space

10.2.1 Energy and the group R of time translations

We have seen that it is a basic axiom of quantum mechanics that the observ-
able operator responsible for infinitesimal time translations is the Hamiltonian
operator H, a fact that is expressed as the Schrodinger equation

L d
i) = H|)

When H is time-independent, this equation can be understood as reflecting the
existence of a unitary representation (U(t),H) of the group R of time transla-
tions on the state space H.

When H is finite dimensional, the fact that a differentiable unitary repre-
sentation U(t) of R on H is of the form

Ut) = e #tH

for H a self-adjoint matrix follows from the same sort of argument as in theorem
Such a U(t) provides solutions of the Schrédinger equation by

[9(8)) = U()]4(0))

The Lie algebra of R is also R and we get a Lie algebra representation of R
by taking the time derivative of U(t), which gives us
d ;
h@U(t)“:O = —iH
Because this Lie algebra representation comes from taking the derivative of a
unitary representation, —iH will be skew-adjoint, so H will be self-adjoint.

10.2.2 Momentum and the group R? of space translations

Since we now want to describe quantum systems that depend not just on time,
but on space variables q = (q1, 2, g3), we will have an action by unitary trans-
formations of not just the group R of time translations, but also the group R?
of spatial translations. We will define the corresponding Lie algebra representa-
tions using self-adjoint operators Py, P, P3 that play the same role for spatial
translations that the Hamiltonian plays for time translations:

2For the case of H infinite dimensional, this is known as Stone’s theorem for one-parameter
unitary groups, see for instance chapter 10.2 of [4I] for details.
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Definition (Momentum operators). For a quantum system with state space
H = L*(R3) given by complex-valued functions of position variables qi,qz,qs3,
momentum operators Py, P, Py are defined by

P = —ihi, P = —ihi, P = —ihi
Oq1 g2 Jqs
These are given the name “momentum operators” since we will see that their
eigenvalues have an interpretation as the components of the momentum vector
for the system, just as the eigenvalues of the Hamiltonian have an interpretation
as the energy. Note that while in the case of the Hamiltonian the factor of i kept
track of the relative normalization of energy and time units, here it plays the
same role for momentum and length units. It can be set to one if appropriate
choices of units of momentum and length are made.
The differentiation operator is skew-adjoint since, using integration by partsEI
one has for each variable, for ¥, 19 € H

te_ /4 ted — d—
G (wz) dgq =/ ((w P2) — (w >¢2) dq
/_oo '\ dg —eo \dg ! dg"!
+oo d—
=— — d
| () vad
(assuming that the ¢;(g) go to 0 at 00). The P; are thus self-adjoint operators,
with real eigenvalues as expected for an observable operator. Multiplying by

—i to get the corresponding skew-adjoint operator of a unitary Lie algebra
representation we find

0
—iP; = —h—
8%‘
Up to the & factor that depends on units, these are exactly the Lie algebra
representation operators on basis elements of the Lie algebra, for the action of

R3 on functions on R? induced from translation:

m(a1,az,a3) f(q1,q2,q3) = flq1 — a1,q2 — az,q3 — as)

0 0
ﬂ'/(al, as, a3) = a1(—iP1)+a2(—iP2)+a3(—iP3) =—h (a + ag— + a3>

0
1=
oq 992 Jgs3
Note that the convention for the sign choice here is the opposite from the
case of the Hamiltonian (—iP = —h-% vs. —iH = h). This means that the
conventional sign choice we have been using for the Hamiltonian makes it minus
the generator of translations in the time direction. The reason for this comes
from considerations of special relativity (which will be discussed in chapter ,
where the inner product on space-time has opposite signs for the space and time
dimensions.

3We are here neglecting questions of whether these integrals are well-defined, which require
more care in specifying the class of functions involved.
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10.3 The energy-momentum relation and the Sch-
rodinger equation for a free particle

We will review this subject in chapter 0] but for now we just need the rela-
tionship special relativity posits between energy and momentum. Space and
time are put together in “Minkowski space”, which is R* with indefinite inner
product

((uo,u1,u2,u3), (Vo,v1,v2,v3)) = —UgUo + U1V1 + U2V2 + U3V3

Energy and momentum are the components of a Minkowski space vector (pg =
E, p1,p2,p3) with norm-squared given by minus the mass-squared:

((E,p1,p2.p3); (E,p1,p2,p3)) = —E* + |p|* = —m®

This is the formula for a choice of space and time units such that the speed of
light is 1. Putting in factors of the speed of light ¢ to get the units right one
has

E2 _ ‘p‘202 _ m204

Two special cases of this are:
e For photons, m = 0, and one has the energy momentum relation E = |p|c

e For velocities v small compared to ¢ (and thus momenta |p| small com-
pared to mc), one has

E = /[pP® + m2ct = ¢\/|p[F + m22 ~ c/p/? 4 = p|® b me?
2mec 2m
In the non-relativistic limit, we use this energy-momentum relation to
describe particles with velocities small compared to ¢, typically dropping
the momentum-independent constant term mc?.

In later chapters we will discuss quantum systems that describe photons,
as well as other possible ways of constructing quantum systems for relativistic
particles. For now though, we will just consider the non-relativistic case. To
describe a quantum non-relativistic particle we choose a Hamiltonian operator
H such that its eigenvalues (the energies) will be related to the momentum
operator eigenvalues (the momenta) by the classical energy-momentum relation

E:%‘n:
1 1 -2 [0 09* 02
H=—(P?+P}+P)=—|PP=—
Zm(1Jr 2+ 1) QmH 2m 8q%+8q§+8q§

The Schrodinger equation then becomes:

9 w2l 92 o _n2_,
Zhaiﬁ(q’ t) = o (8(1% + 92 + 3(13) Y(q,t) = %V ¥(q,t)
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This is an easily solved simple constant coefficient second-order partial differ-
ential equation. One method of solution is to separate out the time-dependence,
by first finding solutions ¢g to the time-independent equation

—h?
Hyp(q) = %VQME(Q) = EYgp(a) (10.3)
with eigenvalue E for the Hamiltonian operator. Then

b(a,t) = Pp(q)e 7P

will give solutions to the full time-dependent equation

iho(a, 1) = H(a, 1)

The solutions g (q) to the time-independent equation are complex expo-
nentials proportional to

etFiait+kzqz+kags) _ ikq

satisfying
—h?
——i’k]* =
2m

h2|k|2
=F
2m

We have thus found that solutions to the Schrédinger equation are given by
linear combinations of states |k) labeled by a vector k, which are eigenstates of
the momentum and Hamiltonian operators with

h2
Pilk) = s k), HIK) = o [k[2[K)

These are states with well-defined momentum and energy

2
p; = hkj, E= %
so they satisfy exactly the same energy-momentum relations as those for a clas-
sical non-relativistic particle.
While the quantum mechanical state space H contains states with the clas-
sical energy-momentum relation, it also contains much, much more since it
includes linear combinations of such states. At ¢ = 0 the state can be a sum

) = ae™a
k

where cx are complex numbers. This state will in general not have a well-
defined momentum, but measurement theory says that an apparatus measuring
the momentum will observe value hk with probability

|cx|?

e e ?
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The time-dependent state will be

) . 2
() = 3 et emithE:
k

Since each momentum eigenstate evolves in time by the phase factor

e
e ith

2m

the probabilities of observing a momentum value stay constant in time.

10.4 For further reading

Every book about quantum mechanics covers this example of the free quantum
particle somewhere very early on, in detail. Our discussion here is unusual
just in emphasizing the role of the spatial translation group and its unitary
representations.
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Chapter 11

Fourier Analysis and the
Free Particle

The quantum theory of a free particle requires not just a state space H, but also
an inner product on H, which should be translation invariant so that translations
act as unitary transformations. Such an inner product will be given by the
integral

W) =C | Ti@iin(@ia

for some choice of normalization constant C, usually taken to be C' = 1. H will
be the space L?(R?) of square-integrable complex-valued functions on R3.

A problem arises though if we try and compute the norm-squared of one of
our momentum eigenstates |k). We find

kk)=C [ (e (ekg3q=C 1 d*q = o0

R3 R3
As a result there is no value of C' which will give these states a finite norm, and
they are not in the expected state space. The finite dimensional spectral theorem
4.1| assuring us that, given a self-adjoint operator, we can find an orthonormal
basis of its eigenvectors, will no longer hold. Other problems arise because our
momentum operators P; may take states in H to states that are not in H (i.e.,
not square-integrable).

We'll consider two different ways of dealing with these problems, for sim-
plicity treating the case of just one spatial dimension. In the first, we impose
periodic boundary conditions, effectively turning space into a circle of finite ex-
tent, leaving for later the issue of taking the size of the circle to infinity. The
translation group action then becomes the U(1) group action of rotation about
the circle. This acts on the state space H = L?(S'), a situation which can be
analyzed using the theory of Fourier series. Momentum eigenstates are now in
H, and labeled by an integer.
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While this deals with the problem of eigenvectors not being in #, it ruins
an important geometrical structure of the free particle quantum system, by
treating positions (taking values in the circle) and momenta (taking values in
the integers) quite differently. In later chapters we will see that physical systems
like the free particle are best studied by treating positions and momenta as real-
valued coordinates on a single vector space, called phase space. To do this, a
formalism is needed that treats momenta as real-valued variables on a par with
position variables.

The theory of Fourier analysis provides the required formalism, with the
Fourier transform interchanging a state space L?(R) of wavefunctions depending
on position with a unitarily equivalent one using wavefunctions that depend on
momenta. The problems of the domain of the momentum operator P and its
eigenfunctions not being in L?(R) still need to be addressed. This can be done
by introducing

e a space S(R) C L%(R) of sufficiently well-behaved functions on which P
is well-defined, and

e a space S’'(R) D L?(R) of “generalized functions”, also known as distri-
butions, which will include the eigenvectors of P.

Solutions to the Schrodinger equation can be studied in any of the three
S(R)Cc L*(R) c S'(R)

contexts, each of which will be preserved by the Fourier transform and allow
one to treat position and momentum variables on the same footing.

11.1 Periodic boundary conditions and the group

U(1)

In this section we’ll describe one way to deal with the problems caused by non-
normalizable eigenstates, considering first the simplified case of a single spatial
dimension. In this one dimensional case, the space R is replaced by the circle
S1. This is equivalent to the physicist’s method of imposing “periodic boundary
conditions”, meaning to define the theory on an interval, and then identify the
ends of the interval. The position variable ¢ can then be thought of as an angle
¢ and one can define the inner product as

2m

Wava) = 5= [ Bil@nvao)ds

The state space is then
H = L*(SY)

the space of complex-valued square-integrable functions on the circle.
Instead of the group R acting on itself by translations, we have the standard
rotation action of the group SO(2) on the circle. Elements g(#) of the group
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are rotations of the circle counterclockwise by an angle 6, or if we parametrize
the circle by an angle ¢, just shifts

o—>¢+0

By the same argument as in the case G = R, we can use the representation on
functions given by equation [I.3] to get a representation on H

m(9(0))¢(d) = (¢ - )

If X is a basis of the Lie algebra s0(2) (for instance taking the circle as the

unit circle in R?, rotations 2 by 2 matrices, X = <(1) _01>, g(0) = €%X) then

the Lie algebra representation is given by taking the derivative

/ d d
w(0X)£(8) = /6~ B0 = ~a.3: £ ()
so we have (as in the R case, see equation
'(aX) = —a%

This operator is defined on a dense subspace of H = L?(S!) and is skew-adjoint,
since (using integration by parts)

d 1 [ _d
<¢17%¢2> =5 | 1111%1/)20@
1 [ /(d — d—
=5 ; <d¢)(¢11/)2) - <d¢¢1> 1/12> do
=— %ww

The eigenfunctions of 7/(X) are the ¢™?, for n € Z, which we will also write
as state vectors |n). These are orthonormal

(nlm) = dpm (11.1)

and provide a countable basis for the space L?(S!). This basis corresponds to
the decomposition into irreducibles of H as a representation of SO(2) described
above. One has

(7, 3(8")) = ez (mn, C) (11.2)

where 7, are the irreducible one dimensional representations given by the mul-
tiplication action A
m(9(6)) = ™’

The theory of Fourier series for functions on S* says that any function ¢ €
L?(S!) can be expanded in terms of this basis:

131



Theorem 11.1 (Fourier series). If 1 € L?(S1), then

+oo “+o0
) = (@)= D €™ =Y caln)

where

2m
o= (o) = 5= [ e (o)

This is an equality in the sense of the norm on L*(SY), i.e.,

N —o0

+N
lim |y — Z cne™| =0
n=—N

The condition that ¢ € L*(S') corresponds to the condition

—+o0

Z len]? < 00

n=—oo
on the coefficients c,.

One can easily derive the formula for ¢, using orthogonality of the |n). For
a detailed proof of the theorem see for instance [27] and [84]. The theorem
gives an equivalence (as complex vector spaces with a Hermitian inner product)
between square-integrable functions on S' and square-summable functions on
Z. As unitary SO(2) representations this is the equivalence of equation

The Lie algebra of the group S! is the same as that of the additive group
R, and the 7/(X) we have found for the S action on functions is related to the
momentum operator in the same way as in the R case. So, we can use the same
momentum operator

. d
P = _’Lh@
which satisfies
P|n) = hin|n)

By changing space from the non-compact R to the compact S' we now have
momenta that instead of taking on any real value, can only be integral numbers
times h.

Solving the Schrodinger equation

.0 p? —h? 9?
lhal/f(ﬁbat) = %w(@ t) = %67521/)((;5’ t)
as before, we find
—h? d?
EwE(Qi’) = %?&wE(¢)
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as the eigenvector equation. This has an orthonormal basis of solutions |n),
with
h%n?

2m
The Schrodinger equation is first-order in time, and the space of possible
solutions can be identified with the space of possible initial values at a fixed
time. Elements of this space of solutions can be characterized by

e The complex-valued square-integrable function (¢,0) € L?(S!), a func-
tion on the circle S*.

e The square-summable sequence ¢,, of complex numbers, a function on the
integers Z.

The ¢,, can be determined from the (¢, 0) using the Fourier coefficient formula

1 2

e~ (¢, 0)de

Cp = —
" 271'0

Given the ¢,, the corresponding solution to the Schrédinger equation will be

+oo . 2
(g, t) = D cpemPe T m

n=—oo

To get something more realistic, we need to take our circle to have an arbi-
trary circumference L, and we can study our original problem with space R by
considering the limit L — co. To do this, we just need to change variables from
¢ to ¢, where

L
oL = géf)
The momentum operator will now be
d
P=—ih—
dor

and its eigenvalues will be quantized in units of ? The energy eigenvalues
will be
272h%n?

mL?
Note that these values are discrete (as long as the size L of the circle is finite)
and non-negative.

E =

11.2 The group R and the Fourier transform
In the previous section, we imposed periodic boundary conditions, replacing

the group R of translations by the circle group S', and then used the fact
that unitary representations of this group are labeled by integers. This made
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the analysis relatively easy, with H = L?(S') and the self-adjoint operator
P = —ih% behaving much the same as in the finite dimensional case: the
eigenvectors of P give a countable orthonormal basis of H and P can be thought
of as an infinite dimensional matrix.

Unfortunately, in order to understand many aspects of quantum mechanics,
one can’t get away with this trick, but needs to work with R itself. One reason
for this is that the unitary representations of R are labeled by the same group,
R, and it will turn out (see the discussion of the Heisenberg group in chapter
to be important to be able to exploit this and treat positions and momenta
on the same footing. What plays the role then of |n) = ¢™? n € Z will be
the |k) = e*9 k € R. These are functions on R that are one dimensional
irreducible representations under the translation action on functions (as usual

using equation |1.3))

ﬂ_(a)equ — elk(q—a) — e—lkaequ

One can try and mimic the Fourier series decomposition, with the coefficients

¢n, that depend on the labels of the irreducibles replaced by a function f(k)
depending on the label k of the irreducible representation of R:

Definition (Fourier transform). The Fourier transform of a function v is given
by a function denoted F1 or v, where

FO) =50 = = / e ka(g)dg (11.3)

This integral is not well-defined for all elements of L?(R), so one needs to
specify a subspace of L?(R) to study for which it is well-defined, and then extend
the definition to L?(R) by considering limits of sequences. In our case a good
choice of such a subspace is the Schwartz space S(R) of functions 1 such that
the function and its derivatives fall off faster than any power at infinity. We
will not try and give a more precise definition of S(R) here, but a good class of
examples of elements of S(R) to keep in mind are products of polynomials and
a Gaussian function. The Schwartz space has the useful property that we can
apply the momentum operator P an indefinite number of times without leaving
the space.

Just as a function on S' can be recovered from its Fourier series coefficients
¢n, by taking a sum, given the Fourier transform (k) of v, v itself can be
recovered by an integral, with the following theorem

Theorem (Fourier Inversion). For ¢ € S(R) one has ¢ € S(R) and
~— 1 +oo o~
v = Fi= == [ e (11.9)

Note that F is the same linear operator as JF, with a change in sign of the
argument of the function it is applied to. Note also that we are choosing one
of various popular ways of normalizing the definition of the Fourier transform.
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In others, the factor of 27 may appear instead in the exponent of the complex
exponential, or just in one of F or F and not the other.
The operators F and F are thus inverses of each other on S(R). One has

Theorem (Plancherel). F and F extend to unitary isomorphisms of L2(R)
with itself. In particular

| wrd= [~ 17wra (115)

Note that we will be using the same inner product on functions on R

(V1,12) = /_OO ¥1(q)2(q)dg

both for functions of ¢ and their Fourier transforms, functions of k, with our
normalizations chosen so that the Fourier transform is a unitary transformation.
An important example is the case of Gaussian functions where

2 1 (e a2
Fe *2 =T / e~k dg
V4T J —co

& a kN2 ik 2
6—5(((1-"-13) —(5) )dq

SN

1 K2 Foo a 12
= e 2a e 29 dql
V2T /_oo

=——¢e 2a (116)

A crucial property of the unitary operator F on H is that it diagonalizes the
differentiation operator and thus the momentum operator P. Under the Fourier
transform, constant coefficient differential operators become just multiplication
by a polynomial, giving a powerful technique for solving differential equations.
Computing the Fourier transform of the differentiation operator using integra-
tion by parts, we find

__ oo
% :71 / e‘ikq@dq
dg 27 J_ dq

1 oo/ d . d _.
=7 [ (G- (o) v)

1 oo
=ik e "yd
V2T [m vdg

=ik (k) (11.7)

So, under Fourier transform, differentiation by ¢ becomes multiplication by k.
This is the infinitesimal version of the fact that translation becomes multiplica-
tion by a phase under the Fourier transform, which can be seen as follows. If
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Ya(q) = ¥(q + a) then

Gt == | " ethag(q + a)d
a _\/ﬁ - € q+—a)aq

Y R
_ —ik(q'—a) “Ndd'
o /_ e ¥(q')dq
=c™ (k)

Since p = hk, one can easily change variables and work with p instead of k.
As with the factors of 27, there’s a choice of where to put the factors of 7 in the
normalization of the Fourier transform. A common choice preserving symmetry
between the formulas for Fourier transform and inverse Fourier transform is

~ 1 oo we
o) = / gy

¥(q YR (p)dp

1 too
L
V2rmh J-x
We will however mostly continue to set 4 = 1, in which case the distinction

between k and p vanishes.

11.3 Distributions

While the use of the subspace S(R) C L%(R) as state space gives a well-behaved
momentum operator P and a formalism symmetric between positions and mo-
menta, it still has the problem that eigenfunctions of P are not in the state
space. Another problem is that, unlike the case of L?(R) where the Riesz rep-
resentation theorem provides an isomorphism between this space and its dual
just like in the finite dimensional case (see , such a duality no longer holds
for S(R).

For a space dual to S(R) one can take the space of linear functionals on
S(R) called the Schwartz space of tempered distributions (a certain continuity
condition on the functionals is needed, see for instance [89]), which is denoted
by §'(R). An element of this space is a linear map

T:feSR)—-T[fleC

S(R) can be identified with a subspace of §’'(R), by taking ¢ € S(R) to the
linear functional T3, given by

—+o00
Ty : f € SR) = Ty[f] = ¥(q)f(q)dq (11.8)

Note that taking ¢» € S(R) to T}, € S'(R) is a complex linear map.
There are however elements of §'(R) that are not of this form, with three
important examples
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e The linear functional that takes a function to its Fourier transform at k:

feSR) = f(k)
e The linear functional that takes a function to its value at ¢:
feSR)— f(qg)

e The linear functional that takes a function to the value of its derivative
at ¢:
feSM)— f(q)

We would like to think of these as “generalized functions”, corresponding to Ty
given by the integral in equation [T1.8] for some ¢ which is a generalization of a
function.
From the formula [[1.3] for the Fourier transform we have
FR) =Tyl
so the first of the above linear functionals corresponds to

_ L kg

which is a function, but “generalized” in the sense that it is not in S(R) (or
even in L?(R)). This is an eigenfunction for the operator P, and we see that
such eigenfunctions, while not in S(R) or L?(R), do have a meaning as elements
of S'(R).

The second linear functional described above can be written as Ts with the
corresponding generalized function the “d-function”, denoted by the symbol
0(q¢ — ¢'), which is taken to have the property that

“+oo
/ o(q—4')f(d")dg" = f(q)
— 00

d(q — ¢') is manipulated in some ways like a function, although such a function
does not exist. It can however be made sense of as a limit of actual functions.
Consider the limit as € — 0 of functions

These satisfy

for all € > 0 (using equation [11.6).
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Heuristically (ignoring problems of interchange of integrals that don’t make
sense), the Fourier inversion formula can be written as follows

_ 1 oo ikq,)
¥(q) —E /_Oo e (k)dk

_1 /+°o ik < L /m e~ *1'y(q')d ’> dk
7\/27r o V2T J_so 7)04
1 +oo +oo ,
([ emooir) ay

:% —0o0 —0o0
+oo
=/ (q —¢')v(d)dq'
— 00
Physicists interpret the above calculation as justifying the formula
no LT kaa)
0g—q¢)=— e IT gk
=) =5 [

and then go on to consider the eigenvectors

1
k _ ikq
k) = Z5=e

of the momentum operator as satisfying a replacement for the Fourier series
orthonormality relation (equation [11.1)), with the §-function replacing the d,,,:

’ e 1 k 1 ik 1 oo i(k—k') /
K'\k) = R ——e" | dg = — ek dg = 6(k — k
w0 = [ () (et [ e =i

11.4 Linear transformations and distributions

The definition of distributions as linear functionals on the vector space S(R)
means that for any linear transformation A acting on S(R), we can get a linear
transformation on &'(R) as the transpose of A (see equation [4.1]), which takes
T to

AT : f e S(R) — (A'T)[f] =T[Af] € C

This gives a definition of the Fourier transform on S'(R) as
F'T(f] = T[Ff]

and one can show that, as for S(R) and L?(R), the Fourier transform provides
an isomorphism of §’(R) with itself. Identifying functions ¢ with distributions
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Ty, one has
F'Tylf] =Tyl F f]

1 [ [ et
:%2? 1 :° o) ( [ :o e““qﬂq)dq) dk
-/ :” (\/127 / :” e%(k)dk) Fa)da

=Try|f]

showing that the Fourier transform is compatible with this identification.

As an example, the Fourier transform of the distribution \/%e“m is the

0-function 6(q — a) since

]—'tTﬁem[f] T/ et® (m/m e tkaf( )dq) dk

/ ( / —"“q—“)dk) f(@)da

- / 5q — a)f(q)dg

:Té(qfa) [f]

For another example of a linear transformation acting on S(R), consider the
translation action on functions f — A, f, where

(Aaf)(q) = flg—a)
The transpose action on distributions is
ATy(q) = Tiigra

since
—+oo +oo

A Tylf) = Tylfla—a)] = V(q)flg — a)dg = V(g +a)f(q)dq'

— 00

The derivative is an infinitesimal version of this, and one sees (using inte-
gration by parts), that

d\* d
<dq> Ty lf] =Ty q) [dqf]

+oo d



In order to have the standard derivative when one identifies functions and dis-
tributions, one defines the derivative on distributions by

srn-r[ ]

This allows one to define derivatives of a d-function, with for instance the first
derivative §'(q) of §(q) satisfying

Ty (qlf1 = —f'(0)

11.5 Solutions of the Schrodinger equation in
momentum space

Equation shows that under Fourier transformation the derivative opera-
tor di becomes the multiplication operator ik, and this property will extend
to distributions. The Fourier transform takes constant coefficient differential
equations in ¢ to polynomial equations in k, which can often much more readily
be solved, including the possibility of solutions that are distributions. The free
particle Schrodinger equation

82

0
¥(g,t) = Tm g

becomes after Fourier transformation in the ¢ variable the simple ordinary dif-
ferential equation
d ~ 1 5~
i—(k,t) = —k*p(k,t
ldtw( ) 2m vk, ?)
with solutions _ Lo
Y(k,t) = e "2k (K, 0)

Solutions that are momentum and energy eigenstates will be distributions,

with initial value _
¥(k,0) = 0(k — k')

These will have momentum k' and energy E = % The space of solutions can
be identified with the space of initial value data 1 (k, 0), which can be taken to
be in S(R), L?(R) or S’'(R).

Instead of working with time-dependent momentum space solutions ¥ (k, t),
one can Fourier transform in the time variable, defining

Dk, w) = \/% /_ GOt (e, )t

Just as the Fourier transform in ¢ takes d% to multiplication by ik, here the
d

Fourier transform in ¢ takes 7 to multiplication by —iw. Note the opposite

sign convention in the phase factor from the spatial Fourier transform, chosen
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to agree with the opposite sign conventions for spatial and time translations in
the definitions of momentum and energy.
One finds for free particle solutions

D(k,w) =¢% /_Oo eretmak (I, 0)dt
5w — %kj)\/ﬂi(k@ 0)

SO @(k,w) will be a distribution on k& — w space that is non-zero only on the
parabola w = ﬁk? The space of solutions can be identified with the space of
functions (or distributions) supported on this parabola. Energy eigenstates of

energy E will be distributions with a dependence on w of the form

Ve lk,w) = 8w — B)bp(k)

For free particle solutions one has E = 2. Vg (k) will be a distribution in k&

> 2m
with a factor 6(E — £-).

For any function f(k), the delta function distribution §(f(k)) depends only
on the behavior of f near its zeros. If f/ # 0 at such zeros, one has (using linear

approximation near zeros of f)

S(fR) = D S(f(k)k—k) = > #5(’%%) (11.9)

/ .
kj:f(k;j)=0 kj:f(k;)=0 £ (k3]

Applying this to the case of f(k) = E — %, with a graph that has two zeros,
at k = £v2mFE and looks like
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we find that

S(E — %) = \/g(é(k —V2mE) +6(k + V2mE))

and

Vi (k) = cp6(k — V2mE) + c_8(k + V2mE) (11.10)

The two complex numbers ¢y, c_ give the amplitudes for a free particle solution
of energy E to have momentum ++v/2mFE.
In the physical case of three spatial dimensions, one gets solutions

1) = 'm0, 0)
and the space of solutions is a space of functions (or distributions) (k,0) on
R3. Energy eigenstates with energy E will be given by distributions that are
non-zero only on the sphere |k|?/2m = E of radius v2mFE in momentum space
(these will be studied in detail in chapter [L9).

11.6 For further reading

The use of periodic boundary conditions, or “putting the system in a box”, thus
reducing the problem to that of Fourier series, is a conventional topic in quan-
tum mechanics textbooks. Two good sources for the mathematics of Fourier
series are [84] and [27]. The use of the Fourier transform to solve the free parti-
cle Schrodinger equation is a standard topic in physics textbooks, although the
function space used is often not specified and distributions are not explicitly
defined (although some discussion of the d-function is always present). Stan-
dard mathematics textbooks discussing the Fourier transform and the theory of
distributions are [89] and [27]. Lecture 6 in the notes on physics by Dolgachev
[18] contains a more mathematically careful discussion of the sort of calcula-
tions with the d-function described in this chapter and common in the physics
literature.

For some insight into, and examples of, the problems that can appear when
one ignores (as we generally do) the question of domains of operators such as the
momentum operator, see [34]. Section 2.1 of [91] or Chapter 10 of [41] provide a
formalism that includes a spectral theorem for unbounded self-adjoint operators,
generalizing appropriately the spectral theorem of the finite dimensional state
space case.
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Chapter 12

Position and the Free
Particle

Our discussion of the free particle has so far been largely in terms of one observ-
able, the momentum operator. The free particle Hamiltonian is given in terms
of this operator (H = P?/2m) and we have seen in section that solutions
of the Schrodinger equation behave very simply in momentum space. Since
[P, H] = 0, momentum is a conserved quantity, and momentum eigenstates will
remain momentum eigenstates under time evolution.

The Fourier transform interchanges momentum and position space, and a
position operator ) can be defined that will play the role of the Fourier trans-
form of the momentum operator. Position eigenstates will be position space
d-functions, but [@, H] # 0 and the position will not be a conserved quantity.
The time evolution of a state initially in a position eigenstate can be calculated
in terms of a quantity called the propagator, which we will compute and study.

12.1 The position operator

On a state space H of functions (or distributions) of a position variable ¢, one
can define:

Definition (Position operator). The position operator Q is given by

QY(q) = q¥(q)

Note that this operator has similar problems of definition to those of the
momentum operator P: it can take a function in L?(R) to one that is no longer
square-integrable. Like P, it is well-defined on the Schwartz space S(R), as well
as on the distributions S’(R). Also like P, it has no eigenfunctions in S(R) or
L?(R), but it does have eigenfunctions in &’(R). Since

+oo

+oo
/ 46— ) f(@)da = ¢ F(q') = / ¢8(a— ) (@)dg

— 00 — 00
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one has the equality of distributions
99 —4q')=4dd(¢—q)

s0 0(g — ¢') is an eigenfunction of @ with eigenvalue ¢'.
The operators ) and P do not commute, since

[@sz—m%f+%%wvzﬁ

and we get (reintroducing % for a moment) the fundamental operator commu-
tation relation

[Q, P] =ihl
the Heisenberg commutation relation. This implies that (Q and the free parti-
cle Hamiltonian H = ﬁPQ also do not commute, so the position, unlike the
momentum, is not a conserved quantity.

For a finite dimensional state space, recall that the spectral theorem
for a self-adjoint operator implied that any state could be written as a linear
combination of eigenvectors of the operator. In this infinite dimensional case,
the formula

+oo
¥(q) =/_ 5(q — q")v(q")dq (12.1)

can be interpreted as an expansion of an arbitrary state in terms of a continuous
linear combination of eigenvectors of @ with eigenvalue ¢, the d-functions §(g —
q’). The Fourier inversion formula ([11.4)

_ 1 e ikq,),
wwﬁﬁ;ewm

similarly gives an expansion in terms of eigenvectors \/%eikq of P, with eigen-
value k.

12.2 Momentum space representation

We began our discussion of the state space H of a free particle by taking states
to be wavefunctions (q) defined on position space, thought of variously as
being in S(R), L?(R) or §’(R). Using the Fourier transform, which takes such

functions to their Fourier transforms
~ 1 +oo "
k)=Fi=— / et d
P(k) = Fy ) ¥(q)dq
in the same sort of function space, we saw in section that the state space

‘H can instead be taken to be a space of functions (k) on momentum space.
We will call such a choice of H, with the operator P now acting as

Py (k) = ki(k)
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the momentum space representation, as opposed to the previous position space
representation. By the Plancherel theorem these are unitarily equivalent
representations of the group R, which acts in the position space case by transla-
tion by a in the position variable, in the momentum space case by multiplication
by a phase factor e**¢.

In the momentum space representation, the eigenfunctions of P are the dis-
tributions §(k — k'), with eigenvalue k’, and the expansion of a state in terms
of eigenvectors is

~ +oo ~
Y(k) = / S(k — Kk )dk' (12.2)
The position operator is
Q=is
T dk
which has eigenfunctions
1
e "M

V2T
and the expansion of a state in terms of eigenvectors of @) is just the Fourier
transform formula IT.3

12.3 Dirac notation

In the Dirac bra-ket formalism, position and momentum eigenstates will be
denoted |g) and |k) respectively, with

Qlg) = dqlg), Plk) = k[k)

Arbitrary states |¢) can be thought of as determined by coefficients

(alv) = ¥(a), (kly) = (k) (12.3)

with respect to either the |g) or |k) basis. The use of the bra-ket formalism
requires some care however since states like |g) or |k) are elements of S'(R) that
do not correspond to any element of S(R). Given elements [¢) in S(R), they
can be paired with elements of S’(R) like (¢| and (k| as in equation to get
numbers. When working with states like |¢’) and |k’), one has to invoke and
properly interpret distributional relations such as

(ala’) =d0(a—d"), (klk')=d(k—K)
Equation [12.1] is written in Dirac notation as

) = / " |ty

and [[2.2] as -
) = / k) (k1) dk

— 00
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The resolution of the identity operator of equation here is written
oo (oo}
1= [ lataida = [ ko

The transformation between the |¢) and |k) bases is given by the Fourier
transform, which in this notation is

o) - [ " (klg) (alv)dq
where

(klq) =

and the inverse Fourier transform
()= | (alk) bl

where
1

V2r

ikq

(qlk) =

(&

12.4 Heisenberg uncertainty

We have seen that, describing the state of a free particle at a fixed time, one
has J-function states corresponding to a well-defined position (in the position
representation) or a well-defined momentum (in the momentum representation).
But @Q and P do not commute, and states with both well-defined position and
well-defined momentum do not exist. An example of a state peaked at ¢ = 0
will be given by the Gaussian wavefunction

P(g) =e %

which becomes narrowly peaked for « large. By equation the corresponding
state in the momentum space representation is

which becomes uniformly spread out as « gets large. Similarly, as a goes to zero,
one gets a state narrowly peaked at £ = 0 in momentum space, but uniformly
spread out as a position space wavefunction.

For states with expectation value of () and P equal to zero, the width of
the state in position space can be quantified by the expectation value of @2,
and its width in momentum space by the expectation value of P2. One has the
following theorem, which makes precise the limit on simultaneously localizability
of a state in position and momentum space
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Theorem (Heisenberg uncertainty).

WIQ7[Y) WP _ 1
W) (W) 4

Proof. For any real A one has
((Q +iAP)Y|(Q +iAP)Y) > 0
but, using self-adjointness of @ and P, as well as the relation [@, P] = i one has
(Q +iAP)Y|(Q + iAP)) =X (| P) + iMW]|QPY) — iMy|PQY) + (¥]Q%)
=N (I P2Y) + M= (0lv)) + (¥]Q%*Y)
This will be non-negative for all A if

(Wl9)* < 4| P*)(v|Q*Y)

12.5 The propagator in position space

Free particle states with the simplest physical interpretation are momentum
eigenstates. They describe a single quantum particle with a fixed momentum
k', and this momentum is a conserved quantity that will not change. In the
momentum space representation (see section such a time-dependent state
will be given by

Gk, t) = e izt (k — k)

In the position space representation such a state will be given by

(1) = ezt ik

Ver

a wave with (restoring temporarily factors of i and using p = hk) wavelength
2

27h p
o and angular frequency 5 —.

As for any quantum system, time evolution of a free particle from time 0 to
time ¢ is given by a unitary operator U(t) = e~*#. In the momentum space
representation this is just the multiplication operator

U(t) = e 'zt

In the position space representation it is given by an integral kernel called the
“propagator”:

Definition (Position space propagator). The position space propagator is the
kernel U(t, q:, qo) of the time evolution operator acting on position space wave-
functions. It determines the time evolution of wavefunctions for all times t

by .
Blant) = / Ut 40, 40t (a0, 0)dao (12.4)

— 00

where (qo, 0) is the initial value of the wavefunction at time 0.
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In the Dirac notation one has

P(ge,t) = (@ () = (@le” M (0)) = (gi|e /Oo |90) (g0|%(0))dgo

—00

and the propagator can be written as

U(t7 qt, QO) = <qt\e_th|q0>

U(t,qt,q0) can be computed for the free particle case by Fourier transform
of the momentum space multiplication operator:

“+o0 _
(g, t) :\/%/_ eFap(k,t)dk

1 e ikq —iLth{E(k O)dk
e _ e te 2m
V2T J_so ’

L[t e (T,
:%/ elkqte_zmk t (/ e_lkqow(q()vo)dq()) dk

“+o0 1 —+oo " . k2
:/ </ etk (at—a0) g =iz tdk) ¥ (go,0)dgo
SO
IR R 1
U(t,qt,90) = U(t, gt — q0) = g/ k(=00 iz Kt g, (12.5)
— 00

Note that (as expected due to translation invariance of the Hamiltonian opera-
tor) this only depends on the difference ¢; — go. Equation can be rewritten
as an inverse Fourier transform with respect to this difference

1 too ~
U(t,qr — qo) = 7\/%/ elk(qt*qo)U(t, k)dk

where

-~ 1 s 1 2
Ut k) = Ee—%k ¢ (12.6)

To make sense of the integral the product it can be replaced by a
complex variable z = 74 4t. The integral becomes well-defined when 7 = Re(z)
(“imaginary time”) is positive, and then defines a holomorphic function in z.
Doing the integral by the same method as in equation [11.6] one finds

U(z =7 +it,q — qo) = @6_5@("‘_%)2 (12.7)

For z = 7 real and positive, this is the kernel function for solutions to the
partial differential equation

2

0 1
Ew(% 7') = %afqzw(% 7')
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known as the “heat equation”. This equation models the way temperature

diffuses in a medium, it also models the way probability of a given position

diffuses in a random walk. Note that here it is ¢ (¢q) that gives the probability

density, something quite different from the way probability occurs in measure-

ment theory for the free particle quantum system. There it is 1| that gives

the probability density for the particle to have position observable eigenvalue q.
Taking as initial condition

¥(g0,0) = (g0 — ¢')
the heat equation will have as solution at later times

B
Uer,7) =[5 €2 (12.8)
This is physically reasonable: at times 7 > 0, an initial source of heat localized
at a point ¢’ diffuses as a Gaussian about ¢’ with increasing width. For 7 < 0,
one gets something that grows exponentially at +00, and so is not in L?(R) or
even §'(R).
In real time ¢ as opposed to imaginary time 7 (i.e., z = it, interpreted as the
limit lim,_,q+ (€ + it)), equation becomes

m m
U(t,qt — qo0) = \/—izﬂe*m(qt*qo)2 (12.9)

Unlike the case of imaginary time, this expression needs to be interpreted as a
distribution, and as such equation makes sense for 9(gop,0) € S(R). One
can show that, for ¥(gp,0) with amplitude peaked around a position ¢’ and with
amplitude of its Fourier transform peaked around a momentum &', at later times
(g, t) will become less localized, but with a maximum amplitude at ¢’ + %t.

v Wla.1

-

— , K
q9=9q qg=gq + —t
. ' m

Figure 12.1: Time evolution of an initially localized wavefunction.
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This is what one expects physically, since % is the velocity corresponding to
momentum p’ for a classical particle.
Note that the choice of square root of i in is determined by the condition

that one get an analytic continuation from the imaginary time version for 7 > 0,

so one should take in [12.9
m _iz [ m
— = 4 -
127t 2nt

We have seen that an initial momentum eigenstate

1 e
Va0, 0) = =

evolves in time by multiplication by a phase factor. An initial position eigenstate

¥(q0,0) = d(q0 — ¢')

evolves to

PR £ p
qt, - - st q0 q0 q qo = i27Tt6 ’

Near ¢t = 0 this function has a rather peculiar behavior. It starts out local-
ized at gog at t = 0, but at any later time ¢ > 0, no matter how small, the
wavefunction will have constant amplitude extending out to infinity in position
space. Here one sees clearly the necessity of interpreting such a wavefunction
as a distribution.

For a physical interpretation of this calculation, note that while a momentum
eigenstate is a good approximation to a stable state one can create and then
study, an approximate position eigenstate is quite different. Its creation re-
quires an interaction with an apparatus that exchanges a very large momentum
(involving a very short wavelength to resolve the position). By the Heisenberg
uncertainty principle, a precisely known position corresponds to a completely
unknown momentum, which may be arbitrarily large. Such arbitrarily large
momenta imply arbitrarily large velocities, reaching arbitrarily far away in arbi-
trarily short time periods. In later chapters we will see how relativistic quantum
theories provide a more physically realistic description of what happens when
one attempts to localize a quantum particle, with quite different phenomena
(including possible particle production) coming into play.

12.6 Propagators in frequency-momentum space

The propagator defined by equation [[2.4] will take a wavefunction at time 0 and
give the wavefunction at any other time ¢, positive or negative. We will find it
useful to define a version of the propagator that takes into account causality,
only giving a non-zero result for ¢t > 0:
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Definition (Retarded propagator). The retarded propagator is given by

0 t<O0

Uy (t,qr — qo) =
+(t, a4t — q0) {U(t,qtqo) t50

This can also be written

Us(t, g —qo) = 0@)U(t, ¢t — qo)

where 6(t) is the step-function

o(t) = 1 t>0
0 t<0

We will use an integral representation of (t) given by

i [t ,
0(t) = lim — / — e Wiy (12.10)
oo W€
To derive this, note that as a distribution, 6(¢) has a Fourier transform given by
. 1 1
im —— .
e—0t /27 W + 1€

since the calculation

makes sense for w replaced by lim,_,q+(w + i€) (or, for real boundary values of
w complex, taking values in the upper half-plane). Fourier inversion then gives

equation [12.10]

Digression. The integral[I2.10] can also be computed using methods of complex
analysis in the variable w. Cauchy’s integral formula says that the integral about
a closed curve of a meromorphic function with simple poles is given by 2mwi times
the sum of the residues at the poles. Fort < 0, since e~ falls off exponentially
if w has a non-zero positive imaginary part, the integral along the real w axis will
be the same as for the semi-circle C closed in the upper half-plane (with the
radius of the semi-circle taken to infinity). Cy encloses no poles so the integral
15 0.
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Figure 12.2: Evaluating 6(¢) via contour integration.

For t > 0, one instead closes the path using C_ in the lower half-plane, and
finds that the integral can be evaluated in terms of the residue of the pole at
w = —ie (with the minus sign coming from orientation of the curve), giving

o(t) = —2mi (2;) =1

By similar arguments one can show that 6(—t) has (as a distribution) Fourier
transform

Taking 1/+4/27 times the sum of the Fourier transforms for 6(¢) and 6(—t) gives
the distribution

. ) 1 1 1 —21€
lim — — — — | = lim ———
e—0t+ 2T \w +ie  w — i€ e—0+ 21 w? 4 €2

I 1 €

= l11m ——-—-7

e—=0+ T w2 + €2

=6(w) (12.11)

as one expects since the delta-function 6(w) is the Fourier transform of

L (0(t) + 0(~1) =

1
V2 Var
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Returning to the propagator, as in section [L1.5| one can Fourier transform
with respect to time, and thus get a propagator that depends on the frequency
w. The Fourier transform of equation with respect to time is

“+o0
—12 k2t iwt g4 _L 2
Uw, k) \/%/ ( Wor )e dt = 6(w ka )

Using equations [12:5] and [I12.10] the retarded progagator in position space is
given by

1\? [t L 2
Us(t,gr — qo) = lim | — / / e wteiha—a0) =i Ko gy
e—0+ \ 2m oo Jeoo wWHE

1\? [t e
() L
e—0+ \ 2m oo J—oo w—i—ze

Shifting the integration variable by

z(w+2mk )t ik(qe— qo)dwdk

1
w— W =wt —k
2m

one finds

+o0
_ _ —iw’t Jik(qt—qo) /
Up(t,q — qo) = Elirgg (27r> / / - k2 - It e o) dw' dk

but this is the Fourier transform
+oo +oo ) )
Uy (t,q — qo) = 27/ / Uy (w, k)ewtetk(a=a0) gy (12.12)
T J—c0 —00

where ] .
~ )
U. k)= lim —— 12.13
k) = e L e (12.13)

Digression. By the same argument as the one above for the integral represen-
tation of O(t), but with pole now at

1
w=—k> —ie
2m

the w integral in equation can be evaluated by the Cauchy integral formula,
recovering formula|12.9 for U(t gt — qo)-

12.7 Green’s functions and solutions to the Schro-
dinger equations
The method of Green’s functions provides solutions ¢ to differential equations
Dy =J (12.14)

153



where D is a differential operator and J is a fixed function, by finding an inverse
D~ to D and then setting v = D~'J. For D a constant coefficient differential
operator, the Fourier transform will take D to multiplication by a polynomial
D and we define the Green’s function of D to be the function (or distribution)
with Fourier transform

G= (12.15)

o —

Since

DGT=1T

the inverse Fourier transform of GJ will be a solution to |J_2._14_l

Note that G and G are not uniquely determined by the condition
since D may have a kernel, and then solutions to are only determined up
to a solution 1 of the homogeneous equation Dy = 0. In terms of Fourier
transforms, D may have zeros, and then G is ambiguous up to functions on the
zero set.

For the case of the Schrédinger equation, we take

-~ k2
D =i(—iw) + T(zkj)Z =W
and .
G=—o
“Taom

A solution ¢ of [12.14] will be given by computing the inverse Fourier transform
of GJ

—+oo
q,t / / J(w, ke~ et dydk (12.16)
27r

Here D is zero on the set w = % and the non-uniqueness of the solution to

D1 = J is reflected in the ambiguity of how to treat the integration through
2

the points w = f—m

For solutions (g, t) of the Schrédinger equation with initial data (g, 0) at
time ¢t = 0, if we define 14 (q,t) = 0(t)¥(q,t) we get the “retarded” solution

+oo
Yy(g,t) :/ Uy (t,q — q0)¥(qo,0)dgo

— 00

where Uy (t,q — qo) is the retarded propagator given by equations [12.12| and
[[2.13 Since

Dipy(gq,t) = (DO(t)(q,t) + 0(t) Dip(g, t) = id(t)(q,t) = (1) (g, 0)
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¥4(g,t) is a solution of [12.14] with
‘ L
J(q,t) = i6(t)P(q,0), J(w, k) = mw(kﬁ)

Using [12.16| to get an expression for ¢4 (q,t) in terms of the Green’s function
we have

7

1 fFoo ptoo | ~ o
_ —iwt _ikq
¥y(gq,t) =5 /7 3 G(w, k) mw(k,O)e " dwdk

1 2 +oo +oo +oo . . ’
- <2> / </ / iG(w, k)ewhettla—a )dwdk> ¥(q',0)dq
I8 —00 — 00 — 00

Comparing this to equations and we find that the Green’s func-
tion that will give the retarded solution ¥4 (g,t) is

~ 1
Gi(w, k) = lim
+( ) e—>0+w7%+ie

and is related to the retarded propagator by
U(w,k) = =G (w,k)
27

One can also define an “advanced” Green’s function by

~ . 1
G_ = lm ————
k .
=0t w — 5= — i€

2m

and the inverse Fourier transform of G_J will also be a solution to Tak-

ing the difference between retarded and advanced Green’s functions gives an

operator ‘
—~ 7~ ~
A= 27T(GJr G_)

with the property that, for any choice of J, AJ will be a solution to the

Schrodinger equation (since it is the difference between two solutions of the

inhomogeneous equation [12.14]). The properties of A can be understood by

using to show that
k‘2

N L
0w o

)

12.8 For further reading

The topics of this chapter are covered in every quantum mechanics textbook,
with a discussion providing more physical motivation. For a mathematics text-
book that covers distributional solutions of the Schrédinger equation in detail,
see [72]. In the textbook [41] for mathematicians, see chapter 4 for a more
detailed mathematically rigorous treatment of the free particle, and chapter 12
for a careful treatment of the subtleties of Heisenberg uncertainty.

155



Chapter 13

The Heisenberg group and
the Schrodinger
Representation

In our discussion of the free particle, we used just the actions of the groups
R? of spatial translations and the group R of time translations, finding corre-
sponding observables, the self-adjoint momentum and Hamiltonian operators P
and H. We’ve seen though that the Fourier transform allows a perfectly sym-
metrical treatment of position and momentum variables and the corresponding
non-commuting position and momentum operators ; and P;.

The P; and @); operators satisfy relations known as the Heisenberg com-
mutation relations, which first appeared in the earliest work of Heisenberg and
collaborators on a full quantum-mechanical formalism in 1925. These were
quickly recognized by Hermann Weyl as the operator relations of a Lie algebra
representation, for a Lie algebra now known as the Heisenberg Lie algebra. The
corresponding group is called the Heisenberg group by mathematicians, with
physicists sometimes using the terminology “Weyl group” (which means some-
thing else to mathematicians). The state space of a quantum particle, either
free or moving in a potential, will be a unitary representation of this group,
with the group of spatial translations a subgroup.

Note that this particular use of a group and its representation theory in
quantum mechanics is both at the core of the standard axioms and much more
general than the usual characterization of the significance of groups as “symme-
try groups”. The Heisenberg group does not in any sense correspond to a group
of invariances of the physical situation (there are no states invariant under the
group), and its action does not commute with any non-zero Hamiltonian opera-
tor. Instead it plays a much deeper role, with its unique unitary representation
determining much of the structure of quantum mechanics.
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13.1 The Heisenberg Lie algebra

In either the position or momentum space representation the operators P; and
Q; satisfy the relation
Qj, Px] =011

Soon after this commutation relation appeared in early work on quantum me-
chanics, Weyl realized that it can be interpreted as the relation between oper-
ators one would get from a representation of a 2d + 1 dimensional Lie algebra,
now called the Heisenberg Lie algebra. Treating first the d = 1 case, we define:

Definition (Heisenberg Lie algebra, d = 1). The Heisenberg Lie algebra b3 is
the vector space R? with the Lie bracket defined by its values on a basis (X,Y, Z)
by

(X, Y]|=2, [X,Z]=[Y,Z]=0

Writing a general element of hs in terms of this basis as X + yY + 27,
and grouping the z,y coordinates together (we will see that it is useful to think
of the vector space hz as R? @ R), the Lie bracket is given in terms of the

coordinates by K@ Z) | ((j) Z)} _ ((8) xy_y:c>

Note that this is a non-trivial Lie algebra, but only minimally so. All Lie
brackets of Z with anything else are zero. All Lie brackets of Lie brackets are
also zero (as a result, this is an example of what is known as a “nilpotent” Lie
algebra).

The Heisenberg Lie algebra is isomorphic to the Lie algebra of 3 by 3 strictly
upper triangular real matrices, with Lie bracket the matrix commutator, by the
following isomorphism:

0 1
X< |0 0
0 0

o = O
N
o OO
o O O
o O =

and one has

The generalization of this to higher dimensions is:
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Definition (Heisenberg Lie algebra). The Heisenberg Lie algebra haqy1 is the
vector space R4 = R?? @ R with the Lie bracket defined by its values on a
basis X;,Y;,Z (j=1,...d) by

(X, Y| =012, [X;,Z]=[Y;,Z] =0

Writing a general element as Z?Zl z; X; + 22:1 yrYy + 2Z, in terms of coor-
dinates the Lie bracket is

(6)9(6) )~ (@vrm)

This Lie algebra can be written as a Lie algebra of matrices for any d. For
instance, in the physical case of d = 3, elements of the Heisenberg Lie algebra
can be written

0 21 29 x3 =z
0 0 0 0
0 0 0 0
0 0 0 0 wys
0 0 0 0 O
13.2 The Heisenberg group
Exponentiating matrices in h3 gives
0 = =z 1 =z z—&—%wy
exp|0 O y|=1(0 1 Y
0 0 O 0 0 1

so the group with Lie algebra h3 will be the group of upper triangular 3 by 3 real
matrices with 1 on the diagonal, and this group will be the Heisenberg group
Hj3. For our purposes though, it is better to work in exponential coordinates
(i.e., labeling a group element with the Lie algebra element that exponentiates
to it). In these coordinates the exponential map relating the Heisenberg Lie
algebra hog41 and the Heisenberg Lie group Hog41 is just the identity map, and

we will use the same notation
T
2
(¢)2)

for both Lie algebra and corresponding Lie group elements.
Matrix exponentials in general satisfy the Baker-Campbell-Hausdorff for-
mula, which says

cAeB = A+B+[ABI+ A4, B]— 5 [B,[A,B]+-

where the higher terms can all be expressed as repeated commutators. This
provides one way of showing that the Lie group structure is determined (for
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group elements expressible as exponentials) by knowing the Lie bracket. For
the full formula and a detailed proof, see chapter 5 of [42]. One can easily
check the first few terms in this formula by expanding the exponentials, but the
difficulty of the proof is that it is not at all obvious why all the terms can be
organized in terms of commutators.

For the case of the Heisenberg Lie algebra, since all multiple commutators
vanish, the Baker-Campbell-Hausdorff formula implies for exponentials of ele-
ments of h3

1
eAeB — oA+B+1[AB]

(a proof of this special case of Baker-Campbell-Hausdorff is in section 5.2 of [42]).

We can use this to explicitly write the group law in exponential coordinates:

Definition (Heisenberg group, d = 1). The Heisenberg group Hs is the space
R2 = R? ® R with the group law

(0= ((25)wser )

The isomorphism between R? @ R with this group law and the matrix form of

the group is given by
1
. 1z 2+ 5wy
21+ 10 1 Y
Y 00 1

Note that the Lie algebra basis elements X, Y, Z each generate subgroups
of H3 isomorphic to R. Elements of the first two of these subgroups generate
the full group, and elements of the third subgroup are “central”, meaning they
commute with all group elements. Also notice that the non-commutative nature
of the Lie algebra (equation or group (equation depends purely on
the factor zy’ — ya'.

The generalization of this to higher dimensions is:

Definition (Heisenberg group). The Heisenberg group Hag 1 is the space R24+1
with the group law

() () =)= (Grp)wrevsimy-vx)

where x,x" y,y' € R%.

13.3 The Schrodinger representation

Since it can be defined in terms of 3 by 3 matrices, the Heisenberg group Hs
has an obvious representation on C3, but this representation is not unitary and
not of physical interest. What is of great interest is the infinite dimensional
representation on functions of ¢ for which the Lie algebra version is given by
the @, P, and unit operators:
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Definition (Schrédinger representation, Lie algebra version). The Schridinger
representation of the Heisenberg Lie algebra by is the representation (I'g, L*(R))
satisfying

Ls(X)9(q) = —iQu(q) = —iqip(q), Ts(Y)p(q) = —iPip(q) = —d%w(Q)
L's(Z)(q) = —irp(q)

Factors of i have been chosen to make these operators skew-adjoint and the
representation thus unitary. They can be exponentiated, giving in the exponen-
tial coordinates on Hj3 of equation [13.2

rs (((§)0)) v = e@ut0) = vt

rs (((2) o)) $(a) = e PY(q) = e (g) = Y(g — )

rs(((0)#) ) via = vt

For general group elements of Hs one has:

Definition (Schrodinger representation, Lie group version). The Schrodinger
representation of the Heisenberg Lie group Hj is the representation (I's, L*>(R))

satisfying
b ((@) z)) b(g) = e e T e (g — y) (13.3)

To check that this defines a representation, one computes
T x’
e ((G)2)rs () ) v
Ty (((z) Z)) e~ T =iy (g o)

zy+a’y’

izt i B ixqe—ix’(q—y)wq —y—y)

el ity — (y 4 )

s ((250) 24 g - ) ) vt

The group analog of the Heisenberg commutation relations (often called the
“Weyl form” of the commutation relations) is the relation

:e—i(z-l-z/-i-%(wy'—yw'))ei

6—19:Qe—zyP _ e—zxye—zyPe—sz

This can be derived by using the explicit representation operators in equation
13.3| (or the Baker-Campbell-Hausdorff formula and the Heisenberg commuta-
tion relations) to compute

e~ 1R o—iyP _ —i(xQ+yP)+3[—iwQ,—iyP] _ —i% —i(zQ+yP)
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as well as the same product in the opposite order, and then comparing the
results.
Note that, for the Schrédinger representation, we have

s ((0) =) = ((6) <))

so the representation operators are periodic with period 27 in the z-coordinate.
Some authors choose to define the Heisenberg group Hs as not R? @ R, but
R? x S', building this periodicity automatically into the definition of the group,
rather than the representation.

We have seen that the Fourier transform F takes the Schrodinger represen-
tation to a unitarily equivalent representation of Hs, in terms of functions of p
(the momentum space representation). The equivalence is given by a change

Ts(g) = Ts(g) = F Ts(g)F

in the representation operators, with the Plancherel theorem (equation m
ensuring that F and F=F"1are unitary operators.

In typical physics quantum mechanics textbooks, one often sees calculations
made just using the Heisenberg commutation relations, without picking a spe-
cific representation of the operators that satisfy these relations. This turns out
to be justified by the remarkable fact that, for the Heisenberg group, once one
picks the constant with which Z acts, all irreducible representations are unitar-
ily equivalent. By unitarity this constant is —ic,c € R. We have chosen ¢ = 1,
but other values of ¢ would correspond to different choices of units.

In a sense, the representation theory of the Heisenberg group is very sim-
ple: there’s only one irreducible representation. This is very different from the
theory for even the simplest compact Lie groups (U(1) and SU(2)) which have
an infinity of inequivalent irreducibles labeled by weight or by spin. Represen-
tations of a Heisenberg group will appear in different guises (we’ve seen two,
will see another in the discussion of the harmonic oscillator, and there are yet
others that appear in the theory of theta-functions), but they are all unitarily
equivalent, a statement known as the Stone-von Neumann theorem. Some good
references for this material are [91], and [4I]. In depth discussions devoted to
the mathematics of the Heisenberg group and its representations can be found
in [51], [26] and [95].

In these references can be found a proof of the (not difficult)

Theorem. The Schridinger representation I's described above is irreducible.
and the much more difficult

Theorem (Stone-von Neumann). Any irreducible representation 7 of the group
Hs on a Hilbert space, satisfying

7'(Z) = —il

is unitarily equivalent to the Schridinger representation (I's, L?(R)).

161



Note that all of this can easily be generalized to the case of d spatial di-
mensions, for d finite, with the Heisenberg group now Hsy41 and the Stone-von
Neumann theorem still true. In the case of an infinite number of degrees of
freedom, which is the case of interest in quantum field theory, the Stone-von
Neumann theorem no longer holds and one has an infinity of inequivalent irre-
ducible representations, leading to quite different phenomena. For more on this
topic see chapter

It is also important to note that the Stone-von Neumann theorem is for-
mulated for Heisenberg group representations, not for Heisenberg Lie algebra
representations. For infinite dimensional representations in cases like this, there
are representations of the Lie algebra that are “non-integrable”: they aren’t
the derivatives of Lie group representations. For such non-integrable represen-
tations of the Heisenberg Lie algebra (i.e., operators satisfying the Heisenberg
commutation relations) there are counter-examples to the analog of the Stone
von-Neumann theorem. It is only for integrable representations that the theo-
rem holds and one has a unique sort of irreducible representation.

13.4 For further reading

For a lot more detail about the mathematics of the Heisenberg group, its Lie
algebra and the Schrodinger representation, see [§], [51], [26] and [95]. An ex-
cellent historical overview of the Stone-von Neumann theorem [74] by Jonathan
Rosenberg is well worth reading. For not just a proof of Stone-von Neumann,
but some motivation, see the discussion in chapter 14 of [4I].

162



Chapter 14

The Poisson Bracket and
Symplectic Geometry

We have seen that the quantum theory of a free particle corresponds to the con-
struction of a representation of the Heisenberg Lie algebra in terms of operators
Q@ and P, together with a choice of Hamiltonian H = ﬁP? One would like to
use this to produce quantum systems with a similar relation to more non-trivial
classical mechanical systems than the free particle. During the earliest days of
quantum mechanics it was recognized by Dirac that the commutation relations
of the () and P operators somehow corresponded to the Poisson bracket rela-
tions between the position and momentum coordinates on phase space in the
Hamiltonian formalism for classical mechanics. In this chapter we’ll give an out-
line of the topic of Hamiltonian mechanics and the Poisson bracket, including
an introduction to the symplectic geometry that characterizes phase space.

The Heisenberg Lie algebra hog41 is usually thought of as quintessentially
quantum in nature, but it is already present in classical mechanics, as the Lie
algebra of degree zero and one polynomials on phase space, with Lie bracket
the Poisson bracket. In chapter [L6] we will see that degree two polynomials on
phase space also provide an important finite dimensional Lie algebra.

The full Lie algebra of all functions on phase space (with Lie bracket the
Poisson bracket) is infinite dimensional, so not the sort of finite dimensional Lie
algebra given by matrices that we have studied so far. Historically though, it
is this kind of infinite dimensional Lie algebra that motivated the discovery of
the theory of Lie groups and Lie algebras by Sophus Lie during the 1870s. It
also provides the fundamental mathematical structure of the Hamiltonian form
of classical mechanics.

14.1 Classical mechanics and the Poisson bracket

In classical mechanics in the Hamiltonian formalism, the space M = R?2?
that one gets by putting together positions and the corresponding momenta
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is known as “phase space”. Points in phase space can be thought of as uniquely
parametrizing possible initial conditions for classical trajectories, so another in-
terpretation of phase space is that it is the space that uniquely parametrizes
solutions of the equations of motion of a given classical mechanical system. The
basic axioms of Hamiltonian mechanics can be stated in a way that parallels
the ones for quantum mechanics.

Axiom (States). The state of a classical mechanical system is given by a point
in the phase space M = R?¢, with coordinates q;,p;j, for j =1,...,d.

Axiom (Observables). The observables of a classical mechanical system are the
functions on phase space.

Axiom (Dynamics). There is a distinguished observable, the Hamiltonian func-
tion h, and states evolve according to Hamilton’s equations

. _ oh
QJ—apj
. _oh
p; = 8(]]‘

Specializing to the case d = 1, for any observable function f, Hamilton’s
equations imply

df _8fdg _9fdp 0f0h 0f Oh

dt_(f?ith_k(?ipdt_aq@p dp Oq

We can define:

Definition (Poisson bracket). There is a bilinear operation on functions on the
phase space M = R? (with coordinates (q,p)) called the Poisson bracket, given

by
R _ a.fl af2 afl 3f2
(flva) {f17f2}_87qaip—67p87q

An observable f evolves in time according to

df
“ ={fh

This relation is equivalent to Hamilton’s equations since it implies them by
taking f =qgand f=p

. oh
¢={q,h} = i
oh
p={p,h} =— Bq
For a non-relativistic free particle, h = % and these equations become
p .
¢=—, p=0
m



which says that the momentum is the mass times the velocity, and is conserved.
For a particle subject to a potential V(g) one has

2
h=2—+V(g)

 2m
and the trajectories are the solutions to

._p . OV
Q—m, p= aq

This adds Newton’s second law
oV

=—— =ma=mg
0q 1
to the relation between momentum and velocity.
One can easily check that the Poisson bracket has the properties

e Antisymmetry

{f1. fo} = —{f2; fr}
e Jacobi identity

S, fols f3} +{{fs, fu}s fo} +{{f2, f3}, 1} =0

These two properties, together with the bilinearity, show that the Poisson
bracket fits the definition of a Lie bracket, making the space of functions on
phase space into an infinite dimensional Lie algebra. This Lie algebra is respon-
sible for much of the structure of the subject of Hamiltonian mechanics, and it
was historically the first sort of Lie algebra to be studied.

From the fundamental dynamical equation

af
we see that J
{f,h}=0 = d—{zO

and in this case the function f is called a “conserved quantity”, since it does
not change under time evolution. Note that if we have two functions f; and fs
on phase space such that

{f1,n} =0, {fa;h} =0

then using the Jacobi identity we have

S fo} 0} = ={{h, fr}, fo} — {{f2, h}, 1} =0

This shows that if f; and fo are conserved quantities, so is {f1, fo}. As a
result, functions f such that {f, h} = 0 make up a Lie subalgebra. It is this Lie
subalgebra that corresponds to “symmetries” of the physics, commuting with
the time translation determined by the dynamical law given by h.
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14.2 The Poisson bracket and the Heisenberg
Lie algebra

A third fundamental property of the Poisson bracket that can easily be checked
is the

e Leibniz rule

{fifa, £y ={f1, fife + fudfo, £ AL fufel = {F, fud fo + fiS) f2)

This property says that taking Poisson bracket with a function f acts on a
product of functions in a way that satisfies the Leibniz rule for what happens
when you take the derivative of a product. Unlike antisymmetry and the Ja-
cobi identity, which reflect the Lie algebra structure on functions, the Leibniz
property describes the relation of the Lie algebra structure to multiplication of
functions. At least for polynomial functions, it allows one to inductively reduce
the calculation of Poisson brackets to the special case of Poisson brackets of the
coordinate functions ¢ and p, for instance:

{¢, ap} = &, p} +{, a}p = {4, p} + {a. p}a = 2¢°{q. p} = 2¢°

The Poisson bracket is thus determined by its values on linear functions
(thus by the relations {q,q} = {p,p} = 0,{q,p} = 1). We will define:

Definition. Q(-,-) is the restriction of the Poisson bracket to M*, the linear
functions on M. Taking as basis vectors of M* the coordinate functions q and
p, § is given on basis vectors by

Qq,q) =Q(p,p) =0, Qq,p) =—-Qp,q) =1
A general element of M* will be a linear combination c;q + ¢,p for some
constants cq, c,. For general pairs of elements in M™*, Q will be given by
Q(cqq + cpp, cq + pp) = ¢4, — cpc,, (14.1)

We will often write elements of M™ as the column vector of their coefficients

¢q, Cp, identifying
c
Cqq + Cpp < <Cq>
P

/
C C ’ ’
e aCp ~ EpCyq

Cp Cp

Taking together linear functions on M and the constant function, one gets
a three dimensional space with basis elements ¢, p, 1, and this space is closed
under Poisson bracket. This space is thus a Lie algebra, and is isomorphic to
the Heisenberg Lie algebra b3 (see section 7 with the isomorphism given on
basis elements by

Then one has

X<q Yeop Zo1
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This isomorphism preserves the Lie bracket relations since
[(X,Y]=Z < {qp}=1

It is convenient to choose its own notation for the dual phase space, so we
will often write M* = M. The three dimensional space we have identified with
the Heisenberg Lie algebra is then

MOR

We will denote elements of this space in two different ways

o As functions cqq + cpp + ¢, with Lie bracket the Poisson bracket

/

{cqq+ cop + ¢, cq+ cp+ €'} = ¢y, — cpc

e As pairs of an element of M and a real number
Cp
In this second notation, the Lie bracket is

(2)-) (@) )] = () () (2)

which is identical to the Lie bracket for b3 of equation Notice that
the Lie bracket structure is determined purely by 2.

~a~

In higher dimensions, coordinate functions ¢1,--- ,qq,p1, - ,Ppq o0 M pro-
vide a basis for the dual space M. Taking as an additional basis element the
constant function 1, we have a 2d + 1 dimensional space with basis

qi, " ,4d,P1," - 7pd71

The Poisson bracket relations

{5, @}y = {pj,pe} =0, {qj,pr} = s

turn this space into a Lie algebra, isomorphic to the Heisenberg Lie algebra
hoa+1. On general functions, the Poisson bracket will be given by the obvious
generalization of the d = 1 case

14.2
8qj 8pj 5'pj an ( )

d
(F1, o} = Z <5f1 dfa  0fi af2>

j=1
Elements of hyqy 1 are functions on M = R2? of the form

Cq1+ - +cquqatcpp1+ -+ Cppatc=c4-qt+cy,-ptc
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(using the notation c; = (¢qys---,Cq)s Cp = (Cpys---5Cpy)). We will often
denote these by

This Lie bracket on hog41 is given by

(@) (@))]= (@) 2 (E)(2) e

which depends just on the antisymmetric bilinear form

c c
Q ((CZ> , (J))) =¢Cq-C,—Cp-C, (14.4)

14.3 Symplectic geometry

~a '~

We saw in chapter @tha‘c given a basis e; of a vector space V, a dual basis €]
of V* is given by taking e} = v;, where v; are the coordinate functions. If one
instead is initially given the coordinate functions v;, a dual basis of V = (V*)*
can be constructed by taking as basis vectors the first-order linear differential
operators given by differentiation with respect to the v;, in other words by
taking

0

B a’Uj

Elements of V are then identified with linear combinations of these operators.
In effect, one is identifying vectors v with the directional derivative along the
vector

€j

vev-V

We also saw in chapter 4| that an inner product (-,-) on V provides an
isomorphism of V' and V* by

VeV o l()=(v,) €V (14.5)

Such an inner product is the fundamental structure in Euclidean geometry,
giving a notion of length of a vector and angle between two vectors, as well
as a group, the orthogonal group of linear transformations preserving the inner
product. It is a symmetric, non-degenerate bilinear form on V.

A phase space M does not usually come with a choice of inner product.
Instead, we have seen that the Poisson bracket gives us not a symmetric bi-
linear form, but an antisymmetric bilinear form (2, defined on the dual space
M. We will define an analog of an inner product, with symmetry replaced by
antisymmetry:

Definition (Symplectic form). A symplectic form w on a vector space V is a
bilinear map
w:VxV >R

such that
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e w is antisymmetric: w(v,v’) = —w(v',v)
e w is nondegenerate: if v # 0, then w(v,-) € V* is non-zero.

A vector space V' with a symplectic form w is called a symplectic vector
space. The analog of Euclidean geometry, replacing the inner product by a
symplectic form, is called symplectic geometry. In this sort of geometry, there
is no notion of length (since antisymmetry implies w(v,v) = 0). There is an
analog of the orthogonal group, called the symplectic group, which consists of
linear transformations preserving w, a group we will study in detail in chapter
110l

Just as an inner product gives an identification of V and V*, a symplectic
form can be used in a similar way, giving an identification of M and M. Using
the symplectic form Q on M, we can define an isomorphism by identifying basis
vectors by

0
q; EMHQ(',QJ')Z—Q(QJ‘,'):—T eM
Dj
0
Dj eEM Q(',pj) :7Q(pj,') = 87 eM
4qj
and in general
ueMe Q(yu)=-Qu,) e M (14.6)

Note that unlike the inner product case, a choice of convention of minus sign
must be made and is done here.

Recalling the discussion of bilinear forms from section a bilinear form on
a vector space V' can be identified with an element of V* @ V*. Taking V. = M*
we have V* = (M*)* = M, and the bilinear form  on M* is an element of

M ® M given by
(o 3o )
= Z = 9=
0q; 3pj Op; ~ 0g;

Under the identlﬁcatlon [4.6]of M and M*, Q € M ® M corresponds to
d
:Z(qj@@pj—pj@qj)eM*@M* (14.7)
j=1
Another version of the identification of M and M is then given by
veM — w,)eM

In the case of Euclidean geometry, one can show by Gram-Schmidt orthog-
onalization that a basis e; can always be found that puts the inner product
(which is a symmetric element of V* ® V*) in the standard form

n
E V; Qv;
j=1
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in terms of basis elements of V*, the coordinate functions v;. There is an anal-
ogous theorem in symplectic geometry (for a proof, see for instance Proposition
1.1 of [§]), which says that a basis of a symplectic vector space V' can always be
found so that the dual basis coordinate functions come in pairs g;, p;, with the
symplectic form w the same one we have found based on the Poisson bracket,
that given by equation Note that one difference between Euclidean and
symplectic geometry is that a symplectic vector space will always be even di-
mensional.

Digression. For those familiar with differential manifolds, vector fields and
differential forms, the notion of a symplectic vector space can be extended to:

Definition (Symplectic manifold). A symplectic manifold M is a manifold with
a differential two-form w(-,-) (called a symplectic two-form) satisfying the con-
ditions

e w is non-degenerate (i.e., for a nowhere zero vector field X, w(X,-) is a
nowhere zero one-form,).

e dw =0, in which case w is said to be closed.

The cotangent bundle T*N of a manifold N (i.e., the space of pairs of a
point on N together with a linear function on the tangent space at that point)
provides one class of symplectic manifolds, generalizing the linear case N = R?,
and corresponding physically to a particle moving on N. A simple example that
is neither linear nor a cotangent bundle is the sphere M = S?, with w the area
two-form. The Darboux theorem says that, by an appropriate choice of local
coordinates qj,p; on M, symplectic two-forms w can always be written in such
local coordinates as

d
w = Z dg; N dp;
j=1

Unlike the linear case though, there will in general be no global choice of coor-
dinates for which this true. Later on, our discussion of quantization will rely
crucially on having a linear structure on phase space, so will not apply to general
symplectic manifolds.

Note that there is no assumption here that M has a metric (i.e., it may
not be a Riemannian manifold). A symplectic two-form w is a structure on a
manifold analogous to a metric but with opposite symmetry properties. Whereas
a metric is a symmetric non-degenerate bilinear form on the tangent space at
each point, a symplectic form is an antisymmetric non-degenerate bilinear form
on the tangent space.

14.4 For further reading

Some good sources for discussions of symplectic geometry and the geometrical
formulation of Hamiltonian mechanics are [2], [8] and [13].
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Chapter 15

Hamiltonian Vector Fields
and the Moment Map

A basic feature of Hamiltonian mechanics is that, for any function f on phase
space M, there are parametrized curves in phase space that solve Hamilton’s

equations
of . of

(Ij:@ p; = 8%

and the tangent vectors of these parametrized curves provide a vector field on
phase space. Such vector fields are called Hamiltonian vector fields. There is a
distinguished choice of f, the Hamiltonian function h, which gives the velocity
vector fields for time evolution trajectories in phase space.

More generally, when a Lie group G acts on phase space M, the infinitesimal
action of the group associates to each element L € g a vector field X on phase
space. When these are Hamiltonian vector fields, there is (up to a constant) a
corresponding function pr. The map from L € g to the function pup on M is
called the moment map, and such functions play a central role in both classical
and quantum mechanics. For the case of the action of G = R3 on M = RS by
spatial translations, the components of the momentum arise in this way, for the
action of G = SO(3) by rotations, the angular momentum.

Conventional physics discussions of symmetry in quantum mechanics focus
on group actions on configuration space that preserve the Lagrangian, using
Noether’s theorem to provide corresponding conserved quantities (see chapter
. In the Hamiltonian formalism described here, these same conserved quan-
tities appear as moment map functions. The operator quantizations of these
functions provide quantum observables and (modulo the problem of indetermi-
nacy up to a constant) a unitary representation of G on the state space H. The
use of moment map functions rather than Lagrangian-derived conserved quanti-
ties allows one to work with cases where G acts not on configuration space, but
on phase space, mixing position and momentum coordinates. It also applies to
cases where the group action is not a “symmetry” (i.e., does not commute with
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time evolution), with the functions p;, having non-zero Poisson brackets with
the Hamiltonian function.

15.1 Vector fields and the exponential map

A vector field on M = R? can be thought of as a choice of a two dimensional
vector at each point in R?, so given by a vector-valued function

Fy(q p))
F(¢,p) = 7
wn=(Ein
Such a vector field determines a system of differential equations

dg _p b

= L =F
dt Cqt P

Once initial conditions
q(0) = qo, p(0) =po

are specified, if F, and F}, are differentiable functions these differential equa-
tions have a unique solution ¢(t), p(t), at least for some neighborhood of ¢ = 0
(from the existence and uniqueness theorem that can be found for instance in
[48]). These solutions q(t),p(t) describe trajectories in R? with velocity vector
F(q(t),p(t)) and such trajectories can be used to define the “flow” of the vector
field: for each ¢ this is the map that takes the initial point (¢(0),p(0)) € R? to
the point (q(t),p(t)) € R%

Another equivalent way to define vector fields on R? is to use instead the
directional derivative along the vector field, identifying

F(q,p) < Flg,p)-V = Fq(q,p)a% + Fp(qyp)a%
The case of F a constant vector is just our previous identification of the vector
space M with linear combinations of a@ and ai'
An advantage of defining vector fields in this way as first-order linear differ-
ential operators is that it shows that vector fields form a Lie algebra, where one
takes as Lie bracket of vector fields X1, X5 the commutator

(X1, Xo] = X1 X2 — Xo X3 (15.1)

of the differential operators. The commutator of two first-order differential op-
erators is another first-order differential operator since second-order derivatives
will cancel, using equality of mixed partial derivatives. In addition, such a
commutator will satisfy the Jacobi identity.

Given this Lie algebra of vector fields, one can ask what the corresponding
group might be. This is not a finite dimensional matrix Lie algebra, so expo-
nentiation of matrices will not give the group. The flow of the vector field X
can be used to define an analog of the exponential of a parameter ¢ times X:
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Definition (Flow of a vector field and the exponential map). The flow of the
vector field X on M is the map

Dy : (t,m) GRXM—)CI)X(t,m) eM

satisfying

Sx(t,m) = X(@x(t,m)

Ox(0,m)=m
In words, ®x (t,m) is the trajectory in M that passes through m € M att =0,

with velocity vector given by the vector field X evaluated along the trajectory.
The flow can be written as a map

exp(tX):me M — ®x(t,m)e M
called the exponential map.

If the vector field X is differentiable (with bounded derivative), exp(¢X) will
be a well-defined map for some neighborhood of ¢t = 0, and satisfy

exp(t1X) exp(t2 X) = exp((t1 + t2)X)

thus providing a one-parameter group of maps from M to itself, with derivative
X at the identity.

Digression. For any manifold M, there is an infinite dimensional Lie group,
the group of invertible maps from M to itself, such that the maps and their
inverses are both differentiable. This group is called the diffeomorphism group
of M and written Diff(M). Its Lie algebra is the Lie algebra of vector fields.
The Lie algebra of vector fields acts on functions on M by differentiation.
This is the differential of the representation of Diff(M) on functions induced in
the usual way (see equation from the action of Diff(M) on the space M.
This representation however is not one of relevance to quantum mechanics, since
it acts on functions on phase space, whereas the quantum state space is given
by functions on just half the phase space coordinates (positions or momenta,).

15.2 Hamiltonian vector fields and canonical trans-
formations

Our interest is not in general vector fields, but in vector fields corresponding to
Hamilton’s equations for some Hamiltonian function f, e.g., the case

of of
oy T

We call such vector fields Hamiltonian vector fields, defining:
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Definition (Hamiltonian vector field). A wvector field on M = R? given by
of 9 of 0

for some function f on M = R? is called a Hamiltonian vector field and will be
denoted by Xy. In higher dimensions, Hamiltonian vector fields will be those of
the form

‘L raf 9 of 9
=2, (G2~ ;) =10+ 12

for some function f on M = R2%.

The simplest non-zero Hamiltonian vector fields are those for f a linear
function. For ¢4, ¢, constants, if

f= Cqq + Cpp
then 5 5
Xf = Cpaiq - anip
and the map
f — Xf

is the isomorphism of M and M of equation [14.6
For example, taking f = p, we have X, = 0%' The exponential map for this
vector field satisfies

q(exp(tXp)(m)) = q(m) +t, plexp(tXp)(m)) = p(m) (15.3)
Similarly, for f = ¢ one has X, = —6% and
q(exp(tXy)(m)) = q(m), plexp(tXy)(m)) =p(m) —t (15.4)

Quadratic functions f give vector fields X with components linear in the
coordinates. An important example is the case of the quadratic function

1
h = 5((12 +p°)
which is the Hamiltonian function for a harmonic oscillator, a system that will

be treated in much more detail beginning in chapter The Hamiltonian vector
field for this function is

0
Xp=p— —q—
h Paq q@p
The trajectories satisfy
dg _ ~ dp _
at ~ U oar 1

174



and are given by
q(t) = q(0) cost + p(0) sint, p(t) = p(0)cost — q(0)sint
The exponential map is given by clockwise rotation through an angle ¢

q(exp(tXp)(m)) =q(m) cost + p(m)sint
p(exp(tXp)(m)) = — q(m)sint + p(m) cost

The vector field X, and the trajectories in the gp plane look like this

Figure 15.1: Hamiltonian vector field for a simple harmonic oscillator.

and describe a periodic motion in phase space.
The relation of vector fields to the Poisson bracket is given by (see equation
15.2))

{flan} = Xf2(f1) = _Xfl (fQ)
and in particular
of af
{Q7f} - %a {pvf} - _(97(]

The definition we have given here of Xy (equation [15.2) carries with it a
choice of how to deal with a confusing sign issue. Recall that vector fields on M
form a Lie algebra with Lie bracket the commutator of differential operators. A
natural question is that of how this Lie algebra is related to the Lie algebra of
functions on M (with Lie bracket the Poisson bracket).

The Jacobi identity implies

(£ A0 L3 =H Ak b+ (e £ ) = AL 22 = S 20 A
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SO
X{f11f2} = XfZXfl - Xlefz = _[Xwafz} (15'5)

This shows that the map f — Xy of equation that we defined between
these Lie algebras is not quite a Lie algebra homomorphism because of the -
sign in equationm (it is called a Lie algebra “antihomomorphism”). The map
that is a Lie algebra homomorphism is

fo =X (15.6)

To keep track of the minus sign here, one needs to keep straight the difference
between

e The functions on phase space M are a Lie algebra, with a function f acting
on the function space by the adjoint action

ad(f)(-) ={f,}
and

e The functions f provide vector fields X acting on functions on M, where
X ={rt=-Af"1
As a simple example, the function p satisfies

{p, Flg,p)} = ——~

{pv'} = aa(q) =

Note that acting on functions with p in this way is the Lie algebra version
of the representation of the translation group on functions induced from the
translation action on the position (see equations and [10.2)).

It is important to note that the Lie algebra homomorphism from func-
tions to vector fields is not an isomorphism, for two reasons:

p

e It is not injective (one-to-one), since functions f and f+C for any constant
C correspond to the same X;.

e It is not surjective since not all vector fields are Hamiltonian vector fields
(i.e., of the form X for some f). One property that a vector field X must
satisfy in order to possibly be a Hamiltonian vector field is

X{91,92} = {Xg1,92} + {91, X g2} (15.7)

for g1 and g2 on M. This is the Jacobi identity for f, g1, g2, when X = X.
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Digression. For a general symplectic manifold M, the symplectic two-form w
gives us an analog of Hamilton’s equations. This is the following equality of
one-forms, relating a Hamiltonian function h and a vector field Xy, determining
time evolution of trajectories in M

iXho.) = w(X;“ ) =dh

(here ix is interior product with the vector field X ). The Poisson bracket in
this context can be defined as

{1, f2} = w(Xpy, X )

Recall that a symplectic two-form is defined to be closed, satisfying the equa-
tion dw = 0, which is then a condition on a three-form dw. Standard differential
form computations allow one to express dw(Xy,, Xys,,Xy,) in terms of Poisson
brackets of functions f1, f2, f3, and one finds that dw = 0 is the Jacobi identity
for the Poisson bracket.

The theory of “prequantization” (see [52], [{1]]) enlarges the phase space M
to a U(1) bundle with connection, where the curvature of the connection is the
symplectic form w. Then the problem of lack of injectivity of the Lie algebra
homomorphism

f — —Xf

1s resolved by instead using the map
f—=-Vx, +if (15.8)

where V x is the covariant derivative with respect to the connection. For details
of this, see [52] or [{1]].

In our treatment of functions on phase space M, we have always been taking
such functions to be time-independent. M can be thought of as the space of
trajectories of a classical mechanical system, with coordinates ¢, p having the
interpretation of initial conditions ¢(0),p(0) of the trajectories. The exponential
maps exp(tX},) give an action on the space of trajectories for the Hamiltonian
function h, taking the trajectory with initial conditions given by m € M to the
time-translated one with initial conditions given by exp(tXp)(m). One should
really interpret the formula for Hamilton’s equations

af

as meaning
@ fexpt0) (m)lzo = {£(m), hm))

for each m € M.
Given a Hamiltonian vector field Xy, the maps

exp(tXy): M — M
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are known to physicists as “canonical transformations”, and to mathematicians
as “symplectomorphisms”. We will not try and work out in any more detail
how the exponential map behaves in general. In chapter we will see what
happens for f an order-two homogeneous polynomial in the g;, p;. In that case
the vector field Xy will take linear functions on M to linear functions, thus
acting on M, in which case its behavior can be studied using the matrix for the
linear transformation with respect to the basis elements g;, p;.

Digression. The exponential map exp(tX) can be defined as above on a general
manifold. For a symplectic manifold M, Hamiltonian vector fields X ¢ will have
the property that they preserve the symplectic form, in the sense that

exp(tXs)'w=w
This s because
EXfw = (din + ind)w = dinw = dw(Xf, ) =ddf =0 (15.9)

where Lx, is the Lie derivative along Xy.

15.3 Group actions on M and the moment map

Our fundamental interest is in studying the implications of Lie group actions
on physical systems. In classical Hamiltonian mechanics, with a Lie group G
acting on phase space M, such actions are characterized by their derivative,
which takes elements of the Lie algebra to vector fields on M. When these
are Hamiltonian vector fields, equation |[15.6| can often be used to instead take
elements of the Lie algebra to functions on M. This is known as the moment
map of the group action, and such functions on M will provide our central
tool to understand the implications of a Lie group action on a physical system.
Quantization then takes such functions to operators which will turn out to be
the important observables of the quantum theory.
Given an action of a Lie group G on a space M, there is a map

Leg— X
from g to vector fields on M. This takes L to the vector field X; which acts on
functions on M by
X[ F(m) = %F(ew £ ) 10 (15.10)
This map however is not a homomorphism (for the Lie bracket on vector

fields), but an antihomomorphism. To see why this is, recall that when a group
G acts on a space, we get a representation 7 on functions F' on the space by

m(g)F(m) = F(g~" - m)
The derivative of this representation will be the Lie algebra representation

d

' (L)F(m) = —

F(e_tL “m) =0 = —XF(m)
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so we see that it is the map
L—7'(L)=-Xy

that will be a homomorphism.
When the vector field Xy, is a Hamiltonian vector field, we can define:

Definition (Moment map). Given an action of G on phase space M, a Lie
algebra homomorphism
L—pp

from g to functions on M is said to be a moment map if
X=X,
Equivalently, for functions F' on M, uy, satisfies

d _
{pr, F}(m) = =X F = aF(e tL . m)|i—o (15.11)
This is sometimes called a “co-moment map”, with the term “moment map”

referring to a repackaged form of the same information, the map
w:M—g*

where
(1(m))(L) = pr(m)

A conventional physical terminology for the statement[I5.11]is that “the function
w1, generates the symmetry L7, giving its infinitesimal action on functions.

Only for certain actions of G on M will the X be Hamiltonian vector fields
and an identity Xy = X, possible. A necessary condition is that X satisfy
equation [15.7]

Xr{91,92} = { X191, 92} + {91, X192}

Even when a function p, exists such that X,, = X, it is only unique up to a
constant, since py, and py + C will give the same vector field. To get a moment
map, we need to be able to choose these constants in such a way that the map

L— g

is a Lie algebra homomorphism from g to the Lie algebra of functions on M.
When this is possible, the G-action is said to be a Hamiltonian G-action. When
such a choice of constants is not possible, the G-action on the classical phase
space is said to have an “anomaly”.

Digression. For the case of M a general symplectic manifold, the moment map
can still be defined, whenever one has a Lie group G acting on M, preserving
the symplectic form w. The infinitesimal condition for such a G action is (see

equation
.CXw =0
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Using the formula
Lx=(d+ix)*=dix+ixd

for the Lie derivative acting on differential forms (ix is interior product with
the vector field X ), one has

(dix + ixd)w =0
and since dw = 0 we have
din =0
When M is simply-connected, one-forms ixw whose differential is 0 (called
“closed”) will be the differentials of a function (and called “exact”). So there
will be a function p such that

ixw(:) = w(X,-) = du()

although such a p is only unique up to a constant.

Given an element L € g, a G action on M gives a vector field X, by equation
[75.70 When we can choose the constants appropriately and find functions pr,
satisfying

ix,w(-) =dpr(")
such that the map
L= pr

taking Lie algebra elements to functions on M (with Lie bracket the Poisson
bracket) is a Lie algebra homomorphism, then this is called the moment map.
One can equivalently work with

w:M— g
by defining
((m))(L) = pr(m)
15.4 Examples of Hamiltonian group actions

Some examples of Hamiltonian group actions are the following:

e For d = 3, an element a of the translation group G = R? acts on the
phase space M = RS by translation

meM —>a-meM

such that the coordinates satisfy

q(a-m)=q+a, p(a-m)=p(m)
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Taking a to be the corresponding element in the Lie algebra of G = R3,
the vector field on M corresponding to this action (by [15.10)) is

P T )
? ' oq 2 9q2 ’ Jqs3
and the moment map is given by
j1a(m) = a- p(m) (15.12)

This can be interpreted as a function a-p on M for each element a of the
Lie algebra, or as an element p(m) of the dual of the Lie algebra R? for
each point m € M.

For another example, consider the action of the group G = SO(3) of
rotations on phase space M = RS given by performing the same SO(3)
rotation on position and momentum vectors. This gives a map from so0(3)
to vector fields on RS, taking for example

0 0 0 0
lh €s0(3) = Xy, = —g3 o0 +q2 90 P3 90y + D2 s
(this is the vector field for an infinitesimal counter-clockwise rotation in
the ¢o — g3 and ps — p3 planes, in the opposite direction to the case of
the vector field X%(qz_;’_pz) in the ¢gp plane of section . The moment
map here gives the usual expression for the 1-component of the angular
momentum

M1, = q2p3 — 43p2

since one can check from equation|T5_7Z|that Xi, = Xy, - On basis elements
of 0(3) one has

t; (m) = (q(m) x p(m));

Formulated as a map from M to s0(3)*, the moment map is

u(m)(1) = (q(m) x p(m)) - 1
where 1 € s0(3).

While most of the material of this chapter also applies to the case of a
general symplectic manifold M, the case of M a vector space has the
feature that G can be taken to be a group of linear transformations of
M, and the moment map will give quadratic polynomials. The previous
example is a special case of this and more general linear transformations
will be studied in great detail in later chapters. In this linear case it turns
out that it is generally best to work not with M but with its dual space
M.
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15.5 The dual of a Lie algebra and symplectic
geometry

We have been careful to keep track of the difference between phase space
M = R?? and its dual M = M?*, even though the symplectic form provides
an isomorphism between them (see equation . One reason for this is that
it is M = M™ that is related to the Heisenberg Lie algebra by

hoat1 = MOR

with M the linear functions on phase space, R the constant functions, and the
Poisson bracket the Lie bracket. It is this Lie algebra that we want to use in
chapter [17] when we define the quantization of a classical system.

Another reason to carefully keep track of the difference between M and M is
that they carry two different actions of the Heisenberg group, coming from the
fact that the group acts quite differently on its Lie algebra (the adjoint action)
and on the dual of its Lie algebra (the “co-adjoint” action). On M and M these
actions become:

e The Heisenberg group Hag41 acts on its Lie algebra hogr1 = M @ R by
the adjoint action, with the differential of this action given as usual by
the Lie bracket (see equation |5.4]). Here this means

(o) o)) ((@))) =) ) (&)
=((o) 2 ((&):

This action is trivial on the subspace M, taking

()~ 0)

e The simplest way to define the “co-adjoint” action in this case is to define
it as the Hamiltonian action of Hayg41 on M = R2% such that its moment
map pr, is just the identification of hoyyq with functions on M. For the
case d = 1, one has

~a '~

pr =L =cqq+cpp+c€hs

and 9 9
Xy = _Cq87p + Cpafq
This is the action described in equations and satisfying

((G)) ) oo o((()) ) s -2

Here the subgroup of elements of Hs with z = z = 0 acts as the usual
translations in position gq.
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It is a general phenomenon that for any Lie algebra g, a Poisson bracket
on functions on the dual space g* can be defined. This is because the Leibniz
property ensures that the Poisson bracket only depends on €2, its restriction
to linear functions, and linear functions on g* are elements of g. So a Poisson
bracket on functions on g* is given by first defining

QX, X') = [X, X'] (15.14)

for X, X' € g = (g*)*, and then extending this to all functions on g* by the
Leibniz property.

Such a Poisson bracket on functions on the vector space g* is said to provide a
“Poisson structure” on g*. In general it will not provide a symplectic structure
on g*, since it will not be non-degenerate. For example, in the case of the
Heisenberg Lie algebra

g=MoR

and 2 will be non-degenerate only on the subspace M, the phase space, which
it will give a symplectic structure.

Digression. The Poisson structure on g* can often be used to get a symplectic
structure on submanifolds of g*. As an example, take g = s0(3), in which case
g* = R3, with antisymmetric bilinear form w given by the vector cross-product.
In this case it turns out that if one considers spheres of fized radius in R3,
w provides a symplectic form proportional to the area two-form, giving such
spheres the structure of a symplectic manifold.

This is a special case of a general construction. Taking the dual of the adjoint
representation Ad on g, there is an action of g € G on g* by the representation
Ad*, satisfying

(Ad*(g) - 1)(X) = U(Ad(g™")X)

This is called the “co-adjoint” action on g*. Picking an element | € g*, the
orbit O; of the co-adjoint action turns out to be a symplectic manifold. It comes
with an action of G preserving the symplectic structure (the restriction of the
co-adjoint action on g* to the orbit). In such a case the moment map

o O, — g*
1s just the inclusion map. Two simple examples are

e For g = b3, phase space M = R? with the Heisenberg group action of
equation is given by a co-adjoint orbit, taking [ € b3 to be the dual
basis vector to the basis vector of b3 given by the constant function 1 on
R2.

e [or g = s0(3) the non-zero co-adjoint orbits are spheres, with radius the
length of 1, the symplectic form described above, and an action of G =
SO(3) preserving the symplectic form.
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Note that in the second example, the standard inner product on R? provides an
SO(3) invariant identification of the Lie algebra with its dual, and as a result
the adjoint and co-adjoint actions are much the same. In the case of Hs, there
is no invariant inner product on b3, so the adjoint and co-adjoint actions are
rather different, explaining the different actions of Hs on M and M described
earlier.

15.6 For further reading

For a general discussion of vector fields on R”, see [48]. See [2], [8] and [13] for
more on Hamiltonian vector fields and the moment map. For more on the duals
of Lie algebras and co-adjoint orbits, see [9] and [51].
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Chapter 16

Quadratic Polynomials and
the Symplectic Group

In chapters [14] and [T5] we studied in detail the Heisenberg Lie algebra as the Lie
algebra of linear functions on phase space. After quantization, such functions
will give operators (); and P; on the state space H. In this chapter we’ll begin
to investigate what happens for quadratic functions with the symplectic Lie
algebra now the one of interest.

The existence of non-trivial Poisson brackets between homogeneous order
two and order one polynomials reflects the fact that the symplectic group acts by
automorphisms on the Heisenberg group. The significance of this phenomenon
will only become clear in later chapters, where examples will appear of inter-
esting observables coming from the symplectic Lie algebra that are quadratic in
the (); and P; and act not just on states, but non-trivially on the ¢; and P;
observables.

The identification of elements L of the Lie algebra sp(2d, R) with order-
two polynomials p;, on phase space M is just the moment map for the ac-
tion of the symplectic group Sp(2d, R) on M. Quantization of these quadratic
functions will provide quantum observables corresponding to any Lie subgroup
G C Sp(2d,R) (any Lie group G that acts linearly on M preserving the sym-
plectic form). Such quantum observables may or may not be “symmetries”,
with the term “symmetry” usually meaning that they arise by quantization of
a pur, such that {ur,h} =0 for h the Hamiltonian function.

The reader should be warned that the discussion here is not at this stage
physically very well-motivated, with much of the motivation only appearing in
later chapters, especially in the case of the observables of quantum field theory,
which will be quadratic in the fields, and act by automorphisms on the fields
themselves.
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16.1 The symplectic group

Recall that the orthogonal group can be defined as the group of linear transfor-
mations preserving an inner product, which is a symmetric bilinear form. We
now want to study the analog of the orthogonal group that comes from replac-
ing the inner product by the antisymmetric bilinear form 2 that determines the
symplectic geometry of phase space. We will define:

Definition (Symplectic group). The symplectic group Sp(2d, R) is the subgroup
of linear transformations g of M = R?? that satisfy

Q(thgvz) = Q(U17U2)
for vi,vo € M

While this definition uses the dual phase space M and 2, it would have been
equivalent to have made the definition using M and w, since these transforma-
tions preserve the isomorphism between M and M given by Q (see equation
114.6]). For an action on M

ueM—gueM

the action on elements of M (such elements correspond to linear functions Q(u, -)
on M) is given by

Qu,) €M — g-Qu,-) = Qu,g7 () = Qgu,-) € M (16.1)

Here the first equality uses the definition of the dual representation (see 4.2)
to get a representation on linear functions on M given a representation on M,
and the second uses the invariance of 2.

16.1.1 The symplectic group for d =1

In order to study symplectic groups as groups of matrices, we’ll begin with the
case d = 1 and the group Sp(2,R). We can write (2 as

o((2).(3)) =ee-at= ) (4 () oz

A linear transformation g of M will be given by

(z;) - (: §> (ZZ) (16.3)

The condition for 2 to be invariant under such a transformation is
a B Tro 1\ /a 15} 0 1
G5 G a6 - ) (64
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or
0 ad—Byy (0 1
(cater 0" =(40)

det(i g)zo«S—ﬁ’yzl

This says that we can have any linear transformation with unit determinant.
In other words, we find that Sp(2,R) = SL(2,R). This isomorphism with a
special linear group occurs only for d = 1.

Now turning to the Lie algebra, for group elements g € GL(2,R) near the
identity, g can be written in the form g = e** where L is in the Lie algebra
gl(2,R). The condition that g acts on M preserving 2 implies that (differenti-
ating |16.4))

£ (e (4 o) - (7 (% o o)er

Setting ¢ = 0, the condition on L is

Lr (_01 (1)) + (_01 é) L=0 (16.5)

This requires that L must be of the form

L= (Z _ba> (16.6)

which is what one expects: L is in the Lie algebra s[(2, R) of 2 by 2 real matrices
with zero trace.

The homogeneous degree two polynomials in p and ¢ form a three dimen-
sional sub-Lie algebra of the Lie algebra of functions on phase space, since the

SO

2 2
non-zero Poisson bracket relations on a basis 4-, &-, gp are

¢ p? 2 2 2 2
{5,3} =qp {ap,p°} =2p° {ap,¢°} = —2¢
‘We have

Theorem 16.1. The Lie algebra of degree two homogeneous polynomials on
M = R? is isomorphic to the Lie algebra sp(2,R) = sl(2,R), with the isomor-
phism given explicitly by

b>  op® 1 0 —1\ (¢ fa b

Proof. One can identify basis elements as follows:

2 2
q (o 1y p? (0 0y (1 0
2<—>E—(O O) 2<—>F—<1 O) qp<—>G—(O _1> (16.8)
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The commutation relations amongst these matrices are
[E,F]=G |[G,E]=2F |[G,F]=-2F

which are the same as the Poisson bracket relations between the corresponding
quadratic polynomials. O

The moment map for the SL(2,R) action on M = R? of equation is
given by
bg* _ cp®

=— —_—— 16.9
wr aqp + 9 D) ( )

To check this, first compute using the definition of the Poisson bracket

oF OF
Xy F(q,p) = {pr, F} = (bg — ap)iap + (ag + Cp)i@q

Elements e‘* € SL(2,R) act on functions on M by

et F(g(m),p(m)) = F(g(e™" - m), p(e™"" - m))

where (for m € M written as column vectors) e~ ‘X - m is multiplication by the
matrix e~*. On linear functions | € M written as column vectors, the same

group action takes [ to e*“l and acts on basis vectors ¢, p of M by

(- ()

The vector field Xy, is then given by
S F((a(e
(8F GF) d 4 ety (q>
dt PJi=o
(8F or ) T (q)
p
OF OF\ (aq+cp
dq’ op bq — ap
and one sees that X7, = X, as required. The isomorphism of the theorem is the

statement that py has the Lie algebra homomorphism property characterizing
moment maps:

—tL —tL

—X.F(q,p) = -m),p(e”"" - m))i=o

{brs et = pr,on
Two important subgroups of SL(2,R) are

e The subgroup of elements one gets by exponentiating G, which is isomor-
phic to the multiplicative group of positive real numbers

t
tG (& O
= (b &)

Here one can explicitly see that this group has elements going off to infinity.
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e Exponentiating the Lie algebra element F — F' gives rotations of the plane

HE—F) _ Co§9 sin 6
—sinf cosf

Note that the Lie algebra element being exponentiated here is

1
E—-F« §(p2+q2)
the function studied in section [I5.2] which we will later re-encounter as
the Hamiltonian function for the harmonic oscillator in chapter

The group SL(2,R) is non-compact and its representation theory is quite
unlike the case of SU(2). In particular, all of its non-trivial irreducible unitary
representations are infinite dimensional, forming an important topic in mathe-
matics, but one that is beyond our scope. We will be studying just one such
irreducible representation (the one provided by the quantum mechanical state
space), and it is a representation only of a double cover of SL(2,R), not of
SL(2,R) itself.

16.1.2 The symplectic group for arbitrary d

For general d, the symplectic group Sp(2d,R) is the group of linear transfor-
mations g of M that leave  (see [14.4)) invariant, i.e., satisfy

2(o(e) o) =2 () (@)

where ¢, ¢, are d dimensional vectors. By essentially the same calculation as in
the d = 1 case, we find the d dimensional generalization of equation This
says that Sp(2d, R) is the group of real 2d by 2d matrices g satisfying

g" <01 (1,> 9= (01 (1)) (16.10)

where 0 is the d by d zero matrix, 1 the d by d unit matrix.

Again by a similar argument to the d = 1 case where the Lie algebra sp(2, R)
was determined by the condition sp(2d, R) is the Lie algebra of 2d by 2d
matrices L satisfying

({0 1 0 1 _
L (_1 O) + (_1 0> L=0 (16.11)
Such matrices will be those with the block-diagonal form
A B
L= (C’ —AT> (16.12)
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where A, B, C are d by d real matrices, with B and C symmetric, i.e.,
B=BT c=cC"T

Note that, replacing the block antisymmetric matrix by the unit matrix, in
one recovers the definition of an orthogonal matrix, in the definition of
the Lie algebra of the orthogonal group.

The generalization of is

Theorem 16.2. The Lie algebra sp(2d, R) is isomorphic to the Lie algebra of
order two homogeneous polynomials on M = R?? by the isomorphism (using a

vector notation for the coefficient functions qi,- - ,qd,p1,- " ,Pd)
L pup
where
pe :% (@ p)L <(1) _01) (g)
:% (a p) (_iT _é) (g)
:%(q.Bq_Qq.Ap_p.Cp) (16.13)

We will postpone the proof of this theorem until section[16.2] since it is easier
to first study Poisson brackets between order two and order one polynomials,
then use this to prove the theorem about Poisson brackets between order two
polynomials. As in d = 1, the function py, is the moment map function for L.

The Lie algebra sp(2d, R) has a subalgebra gl(d, R) consisting of matrices

of the form
I A 0
—\0 -—-AT

or, in terms of quadratic functions, the functions
—q-Ap=-p-4A'q (16.14)

where A is any real d by d matrix. This shows that one way to get symplectic
transformations is to take any linear transformation of the position coordinates,
together with the dual linear transformation (see definition on momentum
coordinates. In this way, any linear group acting on position space gives a
subgroup of the symplectic transformations of phase space.

An example of this is the group SO(d) of spatial rotations, with Lie algebra
so(d) C gl(d, R), the antisymmetric d by d matrices, for which —AT = A. The
special case d = 3 was an example already worked out earlier, in section
where 7, gives the standard expression for the angular momentum as a function
of the ¢;,p; coordinates on phase space.
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Another important special case comes from taking A =0,B=1,C = —1in

equation [16.12] which by equation [16.13| gives

1
pe = 5(lal* + pl*)

This generalizes the case of d = 1 described earlier, and will be the Hamiltonian
function for a d dimensional harmonic oscillator. Note that exponentiating L
gives a symplectic action on phase space that mixes position and momentum
coordinates, so this an example that cannot be understood just in terms of a
group action on configuration space.

16.2 The symplectic group and automorphisms
of the Heisenberg group

Returning to the d = 1 case, we have found two three dimensional Lie alge-
bras (hs and s[(2,R)) as subalgebras of the infinite dimensional Lie algebra of
functions on phase space:

e b3, the Lie algebra of linear polynomials on M, with basis 1, ¢, p.

e 5l(2,R), the Lie algebra of order two homogeneous polynomials on M,
with basis ¢2, p?, ¢p.

Taking all quadratic polynomials, we get a six dimensional Lie algebra with
basis elements 1, q, p, gp, ¢%, p*. This is not the direct product of h3 and s[(2, R)
since there are nonzero Poisson brackets

{ap,a} = —q, {ap,p} =»p

p? e (16.15)
Ga=—p (5=

These relations show that operating on a basis of linear functions on M by
taking the Poisson bracket with something in sl(2,R) (a quadratic function)
provides a linear transformation on M* = M.

In this section we will see that this is the infinitesimal version of the fact that
SL(2,R) acts on the Heisenberg group Hs by automorphisms. We’ll begin with
a general discussion of what happens when a Lie group G acts by automorphisms
on a Lie group H, then turn to two examples: the conjugation action of G on
itself and the action of SL(2,R) on Hs.

An action of one group on another by automorphisms means the following:

Definition (Group automorphisms). If an action of elements g of a group G
on a group H
he H— ®,(h) e H

satisfies
Dy (h1)Pg(h2) = Pg(hih2)
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forallg € G and hy,he € H, the group G is said to act on H by automorphisms.
Each map @4 is an automorphism of H. Note that since ®, is an action of G,
we have @4, 4, = Py, Dy, .

When the groups are Lie groups, taking the derivative ¢, : h — b of the map
®, : H — H at the identity of H gives a Lie algebra automorphism, defined by

Definition (Lie algebra automorphisms). If an action of elements g of a group
G on a Lie algebra b
Xeh—g4X)eh

satisfies
[09(X), d9(Y)] = 64([X,Y])
for all g € G and X,Y € b, the group is said to act on b by automorphisms.

Given an action ¢4 of a Lie group G on f, we get an action of elements Z € g
on b by linear maps:

X7 X= %(%Z(X))‘t:o (16.16)

that we will often refer to as the infinitesimal version of the action ¢, of G' on
h. These maps satisfy

21X Y] = Gz (XY D)o

:%([¢efz (X)a etz (Y>])|t:0
=[Z-X,Y]+[X,Z-Y]

and one can define

Definition (Lie algebra derivations). If an action of a Lie algebra g on a Lie
algebra b by linear maps

Xeh—=>2-Xep

satisfies

(Z-X,Y|+[X,Z-Y]=Z [X,Y] (16.17)

forall Z € g and X,Y € b, the Lie algebra g is said to act on b by derivations.
The action of an element Z on b§ is a derivation of b.

16.2.1 The adjoint representation and inner automorphisms

Any group G acts on itself by conjugation, with

Dy(g') =99'g"

giving an action by automorphisms (these are called “inner automorphisms”).
The derivative at the identity of the map ®, is the linear map on g given by the
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adjoint representation operators Ad(g) discussed in chapter |5l So, in this case
the corresponding action by automorphisms on the Lie algebra g is the adjoint
action

X €g— ¢g(X) = Ad(g)(X) = gXg~'

The infinitesimal version of the Lie group adjoint representation by Ad(g)
on g is the Lie algebra adjoint representation by operators ad(Z) on g

Xeg—2Z-X =ad2)(X) =2, X]

This is an action of g on itself by derivations.

16.2.2 The symplectic group as automorphism group
Recall the definition of the Heisenberg group Hj3 as elements

Y
with the group law

()= () )= (Ga)=+=+32(C)- (7))

Elements g € SL(2,R) act on Hs by

(€906

Here G = SL(2,R), H = H3 and &, given above is an action by automorphisms
since

v ((5)2) e () =)= () =) () =)
(o (Gy) e (o) o ()
(o Gip) 32 (() ()
o ((()o)(()) o

Recall that, in the exponential coordinates we use, the exponential map
between the Lie algebra hs and the Lie group Hj is the identity map, with both
b3 and H3 identified with R? @ R. As in section we will explicitly identify
b3 with functions cqq + cpp + ¢ on M, writing these as

(())
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with Lie bracket

() o) ()N = () et o) = () 2 ((2)-(2)

The linearized action of ®, at the identity of H3 gives the action ¢4 on b3, but
since the exponential map is the identity, ¢4 acts on R2@R =M @R in the
same way as @ , by

() o) emman () <) = (o) )

Since the Lie bracket just depends on 2, which is SL(2,R) invariant, ¢, pre-
serves the Lie bracket and so acts by automorphisms on bj3.

The infinitesimal version of the SL(2,R) action ¢4 on hs is an action of
s[(2,R) on b3 by derivations. This action can be found by computing (for
L € sl(2,R) and X € b3) using equation [16.16] to get

sG] ) =il () )= () ) oo

The Poisson brackets between degree two and degree one polynomials discussed
at the beginning of this section give an alternate way of calculating this action
of s[(2,R) on h3 by derivations. For a general L € s[(2,R) (see equation
and cqq + cpp + C € b3 we have

/

{nr,cqq+cpp+C} = chqg+c,p, (Zg) = (ZEZ jggﬁ) =L (EZ) (16.21)
(here pif, is given by [16.9). We see that this is the action of s[(2, R) by derivations
on h3 of equation |46_:20 the infinitesimal version of the action of SL(2,R) on
hs by automorphisms.

Note that in the larger Lie algebra of all polynomials on M of order two or
less, the action of s[(2,R) on b3 by derivations is part of the adjoint action of
the Lie algebra on itself, since it is given by the Poisson bracket (which is the
Lie bracket), between order two and order one polynomials.

16.3 The case of arbitrary d

For the general case of arbitrary d, the group Sp(2d,R) will act by automor-
phisms on Hsgy1 and hogi1, both of which can be identified with M @& R.
The group acts by linear transformations on the M factor, preserving 2. The
infinitesimal version of this action is computed as in the d = 1 case to be

p((e)e) = (o ((2) )= (2 ) 0)

where L € sp(2d,R). This action, as in the d = 1 case, is given by taking
Poisson brackets of a quadratic function with a linear function:
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Theorem 16.3. The sp(2d,R) action on hagy1 = M @ R by derivations is

L-(cg-q+cy-p+c)={ur,cq-q+c,-p+cy=c,-q+c,-p (16.22)

c, Cp
or, equivalently (see section , on basis vectors of M one has

)9

Proof. One can first prove [16.22] for the cases when only one of A, B, C' is non-
zero, then the general case follows by linearity. For instance, taking the special

case 1
0 B
L—(O 0)’ /~LL—§Q'Bq

the action on coordinate functions (the basis vectors of M) is
s 2o (o)) =7 (3) = (5)
— . B 5 = L =
{5a-Ba <p> } p Bq

1 1
{5 > 4 Bingr: i} =3 > (g{Bjkar, i} + {a;Bjr- pi}ar)
3,k gk

:%(Z q; By + ; Biqr)
j

= ZBquj (since B = BT)
J

where

since

Repeating for A and C gives in general
q T(4d
; =L
{“ g <p>} <p>

We can now prove theorem as follows:

Proof.
L= pr

is clearly a vector space isomorphism of matrices and of quadratic polynomials.
To show that it is a Lie algebra isomorphism, the Jacobi identity for the Poisson
bracket can be used to show

{,U/La {ML’qu'q+cp'p}} _{/’[’L’a {/’LLa Cq q+cpp}} = {{/’LL?/’I/L,}) cq'q+cp'p}
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The left-hand side of this equation is ¢ - q + ¢} - p, where

/!
(%;) = (LL - L'L) (°q>
Cp Cp

As a result, the right-hand side is the linear map given by

{ne, pe} = pr o

16.4 For further reading

For more on symplectic groups and the isomorphism between sp(2d, R) and
homogeneous degree two polynomials, see chapter 14 of [37] or chapter 4 of [26].
Chapter 15 of [37] and chapter 1 of [26] discuss the action of the symplectic
group on the Heisenberg group and Lie algebra by automorphisms.
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Chapter 17

Quantization

Given any Hamiltonian classical mechanical system with phase space R??, phys-
ics textbooks have a standard recipe for producing a quantum system, by a
method known as “canonical quantization”. We will see that for linear func-
tions on phase space, this is just the construction we have already seen of a
unitary representation I'y of the Heisenberg Lie algebra, the Schrédinger repre-
sentation. The Stone-von Neumann theorem assures us that this is the unique
such construction, up to unitary equivalence. We will also see that this recipe
can only ever be partially successful: the Schréodinger representation gives us
a representation of a sub-algebra of the Lie algebra of all functions on phase
space (the polynomials of degree two and below), but a no-go theorem shows
that this cannot be extended to a representation of the full infinite dimensional
Lie algebra. Recipes for quantizing higher-order polynomials will always suffer
from a lack of uniqueness, a phenomenon known to physicists as the existence
of “operator ordering ambiguities.”

In later chapters we will see that this quantization prescription does give
unique quantum systems corresponding to some Hamiltonian systems (in par-
ticular the harmonic oscillator and the hydrogen atom), and does so in a manner
that allows a description of the quantum system purely in terms of representa-
tion theory.

17.1 Canonical quantization

Very early on in the history of quantum mechanics, when Dirac first saw the
Heisenberg commutation relations, he noticed an analogy with the Poisson
bracket. One has

{¢,;p} =1 and — %[Q,P] =1
as well as

d d ;
di;:{f,h} and a(f)(t):—%[(f),H]
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where the last of these equations is the equation for the time dependence of a
Heisenberg picture observable O(t) in quantum mechanics. Dirac’s suggestion
was that given any classical Hamiltonian system, one could “quantize” it by
finding a rule that associates to a function f on phase space a self-adjoint
operator Oy (in particular Oy, = H), acting on a state space H such that

i
Otr9t = =301, 04]

This is completely equivalent to asking for a unitary representation (7', H)
of the infinite dimensional Lie algebra of functions on phase space (with the
Poisson bracket as Lie bracket). To see this, note that units for momentum
p and position ¢ can be chosen such that A = 1. Then, as usual getting a
skew-adjoint Lie algebra representation operator by multiplying a self-adjoint
operator by —i, setting

7 (f) = ~i0

the Lie algebra homomorphism property

' ({f,9}) = [ (f), 7' (9)]

corresponds to
—i0ys,g)y = [-i0g, =10g] = =[O0, O]

so one has Dirac’s suggested relation.

Recall that the Heisenberg Lie algebra is isomorphic to the three dimen-
sional sub-algebra of functions on phase space given by linear combinations of
the constant function, the function ¢ and the function p. The Schrédinger rep-
resentation I'y provides a unitary representation not of the Lie algebra of all
functions on phase space, but of these polynomials of degree at most one, as
follows

O1=1, O,=Q, O,=P
SO
d

Ps(1) = =L, Ts(q) = ~iQ = ~ig, T(p) = ~iP = — .

Moving on to quadratic polynomials, these can also be quantized, as follows

P2 Q2

3 2
For the function pg one can no longer just replace p by P and ¢ by @ since the
operators P and () don’t commute, so the ordering matters. In addition, neither
PQ nor QP is self-adjoint. What does work, satisfying all the conditions to give
a Lie algebra homomorphism, is the self-adjoint combination

Ops = 5(PQ +QP)

This shows that the Schrédinger representation I'y that was defined as a
representation of the Heisenberg Lie algebra b3 extends to a unitary Lie algebra
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representation of a larger Lie algebra, that of all quadratic polynomials on phase
space, a representation that we will continue to denote by I'ly and refer to as the
Schrédinger representation. On a basis of homogeneous order two polynomials
we have

e
VRS
0|
N———

Il

|

<
N\Q

I

|
N |

[\v}

Is(pq) = —%(PQ +QP)

Restricting Iy to linear combinations of these homogeneous order two polyno-
mials (which give the Lie algebra s[(2, R), see theorem[16.1]) we get a Lie algebra
representation of s[(2, R) called the metaplectic representation.

Restricted to the Heisenberg Lie algebra, the Schrédinger representation I'y
exponentiates to give a representation I'g of the corresponding Heisenberg Lie
group (recall section [I3.3). As an sl(2,R) representation however, it turns out
that I'y has the same sort of problem as the spinor representation of su(2) =
$0(3), which was not a representation of SO(3), but only of its double cover
SU(2) = Spin(3). To get a group representation, one must go to a double cover
of the group SL(2,R), which will be called the metaplectic group and denoted
Mp(2,R).

For an indication of the problem, consider the element

1 2 2 _ 0 1
5((] —|—p)<—>E—F—<_1 0>

in s[(2, R). Exponentiating this gives a subgroup SO(2) C SL(2,R) of clockwise
rotations in the gp plane. The Lie algebra representation operator is

F/122_i2P2_i2d2
(50 +0) = —5@ 4 P =4 (- o)
which is a second-order differential operator in both the position space and mo-
mentum space representations. As a result, it is not obvious how to exponentiate
this operator.

One can however see what happens on the state

volg) = e CH = L*(R)

where one has ' P2 ‘
2 4 __t
5 (- 52 o) =~ o)

so o (q) is an eigenvector of I'y (3 (¢*+p?)) with eigenvalue —%. Exponentiating

F’S(%(q2 + p?)), the representation I's acts on this state by multiplication by a
phase. As one goes around the group SO(2) once (rotating the gp plane by an
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angle from 0 to 27), the phase angle only goes from 0 to 7, demonstrating the
same problem that occurs in the case of the spinor representation.

When we study the Schrodinger representation using its action on the quan-
tum harmonic oscillator state space H in chapter[22) we will see that the operator

S(@ 4 P)

is the Hamiltonian operator for the quantum harmonic oscillator, and all of
its eigenvectors (not just 1p(q)) have half-integer eigenvalues. In chapter
we will go on to discuss in more detail the construction of the metaplectic
representation, using methods developed to study the harmonic oscillator.

17.2 The Groenewold-van Hove no-go theorem

If one wants to quantize polynomial functions on phase space of degree greater
than two, it quickly becomes clear that the problem of “operator ordering am-
biguities” is a significant one. Different prescriptions involving different ways
of ordering the P and @ operators lead to different Oy for the same function
f, with physically different observables (although the differences involve the
commutator of P and ), so higher-order terms in #).

When physicists first tried to find a consistent prescription for producing an
operator Oy corresponding to a polynomial function on phase space of degree
greater than two, they found that there was no possible way to do this consistent
with the relation

i
Otr9y = — 301,04l

for polynomials of degree greater than two. Whatever method one devises for
quantizing higher degree polynomials, it can only satisfy that relation to lowest
order in A, and there will be higher order corrections, which depend upon one’s
choice of quantization scheme. Equivalently, it is only for the six dimensional Lie
algebra of polynomials of degree up to two that the Schrodinger representation
gives one a Lie algebra representation, and this cannot be consistently extended
to a representation of a larger subalgebra of the functions on phase space. This
problem is made precise by the following no-go theorem

Theorem (Groenewold-van Hove). There is no map f — Oy from polynomials
on R? to self-adjoint operators on L*(R) satisfying

)
Off,9y = h [0, 0]

and
O,=P, O,=0Q

for any Lie subalgebra of the functions on R? for which the subalgebra of poly-
nomials of degree less than or equal to two is a proper subalgebra.
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Proof. For a detailed proof, see section 5.4 of [8], section 4.4 of [26], or chapter
16 of [37]. In outline, the proof begins by showing that taking Poisson brack-
ets of polynomials of degree three leads to higher order polynomials, and that
furthermore for degree three and above there will be no finite dimensional sub-
algebras of polynomials of bounded degree. The assumptions of the theorem
force certain specific operator ordering choices in degree three. These are then
used to get a contradiction in degree four, using the fact that the same degree
four polynomial has two different expressions as a Poisson bracket:

1 1
¢*p* = §{q2p,p2q} = §{q37p3}

17.3 Canonical quantization in d dimensions

The above can easily be generalized to the case of d dimensions, with the
Schrédinger representation I'g now giving a unitary representation of the Heisen-
berg Lie algebra hagy1 determined by

Ts(g;) = —iQ;, Ts(py) = —iP;
which satisfy the Heisenberg relations
(Qj, Pr] = 16

Generalizing to quadratic polynomials in the phase space coordinate func-
tions, we have

Ts(gjqr) = —iQ;Qx, Ts(pjpr) = —iPiPy, Ts(qjpr) = *%(ijk + PrQ;)

(17.1)
These operators can be exponentiated to get a representation on the same H
of Mp(2d,R), a double cover of the symplectic group Sp(2d,R). This phe-
nomenon will be examined carefully in later chapters, starting with chapter [20]
and the calculation in section [20.3.2] followed by a discussion in chapters [24]
and [25| using a different (but unitarily equivalent) representation that appears
in the quantization of the harmonic oscillator. The Groenewold-van Hove the-
orem implies that we cannot find a unitary representation of a larger group of
canonical transformations extending this one of the Heisenberg and metaplectic
groups.

17.4 Quantization and symmetries

The Schrédinger representation is thus a Lie algebra representation providing
observables corresponding to elements of the Lie algebras hagy1 (linear combi-
nations of @; and Py) and sp(2d,R) (linear combinations of degree-two com-
binations of @; and Py). The observables that commute with the Hamiltonian
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operator H will make up a Lie algebra of symmetries of the quantum system,
and will take energy eigenstates to energy eigenstates of the same energy. Some
examples for the physical case of d = 3 are:

e The group R3 of translations in coordinate space is a subgroup of the
Heisenberg group and has a Lie algebra representation as linear combina-
tions of the operators —iP;. If the Hamiltonian is position-independent,
for instance the free particle case of

H=_—(P?+P?+P?
2m( 1 2 )

then the momentum operators correspond to symmetries. Note that the

position operators ¢); do not commute with this Hamiltonian, and so do

not correspond to a symmetry of the dynamics.

e The group SO(3) of spatial rotations is a subgroup of Sp(6,R), with
50(3) C sp(6,R) given by the quadratic polynomials in equation [16.14] for
A an antisymmetric matrix. Quantizing, the operators

—i(Q2P3 — Q3P2), —i(QsP1 —Q1P3), —i(Q1P>— Q2P1)

provide a basis for a Lie algebra representation of s0(3). This phenomenon
will be studied in detail in chapter where we will find that for the
Schrédinger representation on position-space wavefunctions, these are the
same operators that were studied in chapterunder the name p’'(l;). They
will be symmetries of rotationally invariant Hamiltonians, for instance the
free particle as above, or the particle in a potential

! (P + P; + P3) + V(Q1,Q2,Q3)

H=—
2m

when the potential only depends on the combination Q% + Q3 + Q3.

17.5 More general notions of quantization

The definition given here of quantization using the Schrédinger representation
of hagy1 only allows the construction of a quantum system based on a classical
phase space for the linear case of M = R??. For other sorts of classical systems
one needs other methods to get a corresponding quantum system. One possible
approach is the path integral method, which starts with a choice of configuration
space and Lagrangian, and will be discussed in chapter

Digression. The name “geometric quantization” refers to attempt to generalize
quantization to the case of any symplectic manifold M, starting with the idea
of prequantization (see equation . This gives a representation of the Lie
algebra of functions on M on a space of sections of a line bundle with connection
V, with V a connection with curvature w, where w is the symplectic form on
M. One then has to deal with two problems:
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e The space of all functions on M is far too big, allowing states localized in
both position and coordinate variables in the case M = R?%. One needs
some way to cut down this space to something like a space of functions
depending on only half the variables (e.g., just the positions, or just the
momenta). This requires finding an appropriate choice of a so-called “po-
larization” that will accomplish this.

e To get an inner product on the space of states, one meeds to introduce
a twist by a “square root” of a certain line bundle, something called the
“metaplectic correction”.

For more details, see for instance [[1|] or [T0F).

Geometric quantization focuses on finding an appropriate state space. An-
other general method, the method of “deformation quantization” focuses instead
on the algebra of operators, with a quantization given by finding an appropriate
non-commutative algebra that is in some sense a deformation of a commuta-
tive algebra of functions. To first order the deformation in the product law is
determined by the Poisson bracket.

Starting with any Lie algebra g, in principle[I5.1]] can be used to get a Pois-
son bracket on functions on the dual space g*, and then one can take the quan-
tization of this to be the algebra of operators known as the universal enveloping
algebra U(g). This will in general have many different irreducible representa-
tions and corresponding possible quantum state spaces. The co-adjoint orbit
philosophy posits an approzimate matching between orbits in g* under the dual
of the adjoint representation (which are symplectic manifolds) and irreducible
representations. Geometric quantization provides one possible method for trying
to associate representations to orbits. For more details, see [5]].

None of the general methods of quantization is fully satisfactory, with each
running into problems in certain cases, or not providing a construction with all
the properties that one would want.

17.6 For further reading

Just about all quantum mechanics textbooks contain some version of the discus-
sion here of canonical quantization starting with classical mechanical systems
in Hamiltonian form. For discussions of quantization from the point of view of
representation theory, see [8] and chapters 14-16 of [37]. For a detailed discus-
sion of the Heisenberg group and Lie algebra, together with their representation
theory, also see chapter 2 of [51].
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Chapter 18

Semi-direct Products

The theory of a free particle is largely determined by its group of symmetries,
the group of symmetries of three dimensional space, a group which includes a
subgroup R? of spatial translations, and a subgroup SO(3) of rotations. The
second subgroup acts non-trivially on the first, since the direction of a transla-
tion is rotated by an element of SO(3). In later chapters dealing with special
relativity, these groups get enlarged to include a fourth dimension, time, and the
theory of a free particle will again be determined by the action of these groups,
now on space-time, not just space. In chapters [I5] and [I6] we studied two groups
acting on phase space: the Heisenberg group Hz441 and the symplectic group
Sp(2d,R). In this situation also, the second group acts non-trivially on the first
by automorphisms (see [16.19)).

This situation of two groups, with one acting on the other by automorphisms,
allows one to construct a new sort of product of the two groups, called the semi-
direct product, and this will be the topic for this chapter. The general theory
of such a construction will be given, but our interest will be in certain specific
examples: the semi-direct product of R? and SO(3), the semi-direct product of
Hyy41 and Sp(2d, R), and the Poincaré group (which will be discussed later, in
chapter . This chapter will just be concerned with the groups and their Lie
algebras, with their representations the topics of later chapters and .

18.1 An example: the Euclidean group

Given two groups G’ and G”, a product group is formed by taking pairs of
elements (¢',¢"”) € G' x G"”. However, when the two groups act on the same
space, but elements of G’ and G don’t commute, a different sort of product
group is needed to describe the group action. As an example, consider the
case of pairs (ag, R2) of elements a; € R3 and Ry € SO(3), acting on R? by
translation and rotation

v — (ag, Ro) - v=as + Rav
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If one then acts on the result with (a;, R1) one gets
(a1, R1) - ((az, R2) - v) = (a1, R1) - (a2 + Rav) = a1 + Riaz + RiRov

Note that this is not what one would get if one took the product group law on
R3 x SO(3), since then the action of (aj, R1)(az, Ry) on R? would be

vV — a; +as +R1R2V

To get the correct group action on R?, one needs to take R3 x SO(3) not with
the product group law, but instead with the group law

(a1, Ry)(az, R2) = (a1 + Rias, R1R»)

This group law differs from the standard product law by a term Rjas, which is
the result of By € SO(3) acting non-trivially on ay € R®. We will denote the
set R? x SO(3) with this group law by

R? x SO(3)

This is the group of orientation-preserving transformations of R? preserving the
standard inner product.
The same construction works in arbitrary dimensions, where one has:

Definition (Euclidean group). The Euclidean group E(d) (sometimes written
150(d) for “inhomogeneous” rotation group) in dimension d is the product of
the translation and rotation groups of R% as a set, with multiplication law

(a1, Ri)(az, R2) = (a1 + Riag, R Ry)
(where a; € RY R; € SO(d)) and can be denoted by
R x SO(d)

E(d) can also be written as a matrix group, taking it to be the subgroup of
GL(d + 1,R) of matrices of the form (R is a d by d orthogonal matrix, a a d
dimensional column vector)

R a
(6 %)

One gets the multiplication law for E(d) from matrix multiplication since

Rl ap RQ az\) RlRQ a1+R1a2
0 1 0 1) 0 1

18.2 Semi-direct product groups

The Euclidean group example of the previous section can be generalized to the
following:

205



Definition (Semi-direct product group). Given a group K, a group N, and an
action ® of K on N by automorphisms

O :neN— Py(n) eN
the semi-direct product N x K is the set of pairs (n, k) € N x K with group law
(n1, k1) (n2, k2) = (n1®x, (n2), kikz)
One can easily check that this satisfies the group axioms. The inverse is
(n, k)" = (@1 (n™1), k71
Checking associativity, one finds

(n2), kikz)(ns, k3)
=(n1Px, (n2)Pr,k, (n3), k1kaks)

(

(

na®p, (n3)), k1kaks)
no®y, (n3), koks)
)

The notation N x K for this construction has the weakness of not explicitly
indicating the automorphism ® which it depends on. There may be multiple
possible choices for ®, and these will always include the trivial choice ®; = 1
for all k € K, which will give the standard product of groups.

I
3
=
I
i
~—
—~
—
3
(V]
ol
)
~
—~
S
@
5
w

Digression. For those familiar with the notion of a normal subgroup, N is a
normal subgroup of N x K. A standard notation for “N is a normal subgroup
of G7 is N < G. The symbol N x K is supposed to be a mizture of the x and
< symbols (note that some authors define it to point in the other direction).

The Euclidean group E(d) is an example with N = R, K = SO(d). For
a € R% R € SO(d) one has
®r(a) = Ra

In chapter [42| we will see another important example, the Poincaré group which
generalizes F(3) to include a time dimension, treating space and time according
to the principles of special relativity.

The most important example for quantum theory is:

Definition (Jacobi group). The Jacobi group in d dimensions is the semi-direct
product group
G7(d) = Haat1 x Sp(2d,R)

If we write elements of the group as



where k € Sp(2d,R), then the automorphism ®; that defines the Jacobi group
is given by the one studied in section [16.2

() )= (+(3) o

Note that the Euclidean group E(d) is a subgroup of the Jacobi group G”(d),
the subgroup of elements of the form

()9 G 2)
()<

make up the group R? of translations in the g; coordinates, and the

where R € SO(d). The

R 0
k:(O R)CSp(Qd,R)

are symplectic transformations since

Q C(I C; / /
k c k ¢ =Rc, - Rc;, — Rc,, - Re|,

= . 4 —_ . /
=Cq-C, —Cp-C,

() ()

(R is orthogonal so preserves dot products).

18.3 Semi-direct product Lie algebras

We have seen that semi-direct product Lie groups can be constructed by taking
a product N x K of Lie groups as a set, and imposing a group multiplication
law that uses an action of K on N by automorphisms. In a similar manner,
semi-direct product Lie algebras n x ¢ can be constructed by taking the direct
sum of n and ¢ as vector spaces, and defining a Lie bracket that uses an action of
£ on n by derivations (the infinitesimal version of automorphisms, see equation
1517,

Considering first the example E(d) = R% x SO(d), recall that elements F(d)
can be written in the form

R a
(5 9)

for R € SO(d) and a € R%. The tangent space to this group at the identity will
be given by matrices of the form

X a

0 0
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where X is an antisymmetric d by d matrix and a € R%. Exponentiating such
matrices will give elements of E(d).
The Lie bracket is then given by the matrix commutator

(3 3).05 9]0 me=)

We see that the Lie algebra of E(d) will be given by taking the sum of R? (the
Lie algebra of R%) and so(d), with elements pairs (a, X) with a € R? and X an
antisymmetric d by d matrix. The infinitesimal version of the rotation action
of SO(d) on R? by automorphisms

®r(a) = Ra
is
d d
a@etx(a)\tzo = ﬁ(etxa)ﬁzo = Xa

Just in terms of such pairs, the Lie bracket can be written
(a1, X1), (a2, X2)] = (X122 — Xoay, [ X1, Xo])
We can define in general:

Definition (Semi-direct product Lie algebra). Given Lie algebras ¢ and n, and
an action of elements Y € £ on n by derivations

Xen—=Y -Xen
the semi-direct product nx € is the set of pairs (X,Y) € n®€ with the Lie bracket
[(X17Y1)7 (X27}/2)] = ([X17X2] + Y] : X2 - }/2 : Xla [Y17§/2])

One can easily see that in the special case of the Lie algebra of F(d) this agrees
with the construction above.

In section we studied the Lie algebra of all polynomials of degree
at most two in d dimensional phase space coordinates g;,p;, with the Poisson
bracket as Lie bracket. There we found two Lie subalgebras, the degree zero
and one polynomials (isomorphic to hagy1), and the homogeneous degree two
polynomials (isomorphic to sp(2d, R)) with the second subalgebra acting on the
first by derivations as in equation [16.22

Recall from chapter [16| that elements of this Lie algebra can also be written

() ) )

of elements in hagy1 and sp(2d, R), with this pair corresponding to the polyno-
mial
KL +Cq-q+Cp-pP+c
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In terms of such pairs, the Lie bracket is given by
/
((E)-)-5)-((@)-) )] -
cp c,
/ !/
(@) -2 (&) () (2))-1=2)
c, Cp Cp c,

which satisfies the definition above and defines the semi-direct product Lie al-
gebra
g7 (d) = h2q41 ¥ sp(2d,R)

The fact that this is the Lie algebra of the semi-direct product group
G7(d) = Haat1 % Sp(2d,R)

follows from the discussion in section [[6.21
The Lie algebra of E(d) will be a sub-Lie algebra of g”/(d), consisting of

elements of the form
0 0 X 0
cp)’ "\0 X

where X is an antisymmetric d by d matrix.

Digression. Just as E(d) can be identified with a group of d+1 by d+1 matrices,
the Jacobi group G j(d) is also a matriz group and one can in principle work with
it and its Lie algebra using usual matriz methods. The construction is slightly
complicated and represents elements of G j(d) as matrices in Sp(2d+1,R). See
section 8.5 of [9] for details of the d =1 case.

18.4 For further reading

Semi-direct products are not commonly covered in detail in either physics or
mathematics textbooks, with the exception of the case of the Poincaré group of
special relativity, which will be discussed in chapter [I2] Some textbooks that
do cover the subject include section 3.8 of [85], chapter 6 of [39] and [9].
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Chapter 19

The Quantum Free Particle
as a Representation of the
Euclidean Group

The quantum theory of a free particle is intimately connected to the represen-
tation theory of the group of symmetries of space and time. This is well known
for relativistic theories, where it is the representation theory of the Poincaré
group that is relevant, a topic that will be discussed in chapter It is less
well known that even in the non-relativistic case, the Euclidean group E(3) of
symmetries of space plays a similar role, with irreducible representations of E(3)
corresponding to free particle quantum theories for a fixed value of the energy.
In this chapter we’ll examine this phenomenon, for both two and three spatial
dimensions.

The Euclidean groups E(2) and E(3) in two and three dimensions act on
phase space by a Hamiltonian group action. The corresponding moment maps
(momenta p; for translations, angular momenta [; for rotations) Poisson-com-
mute with the free particle Hamiltonian giving symmetries of the theory. The
quantum free particle theory then provides a construction of unitary representa-
tions of the Euclidean group, with the space of states of a fixed energy giving an
irreducible representation. The momentum operators P; give the infinitesimal
action of translations on the state space, while angular momentum operators L;
give the infinitesimal rotation action (there will be only one angular momentum
operator L in two dimensions since the dimension of SO(2) is one, three in three
dimensions since the dimension of SO(3) is three).

The Hamiltonian of the free particle is proportional to the operator |P|?.
This is a quadratic operator that commutes with the action of all the elements
of the Lie algebra of the Euclidean group, and so is a Casimir operator play-
ing an analogous role to that of the SO(3) Casimir operator |L|? of section
Irreducible representations will be labeled by the eigenvalue of this oper-
ator, which in this case will be proportional to the energy. In the Schrodinger
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representation, where the P; are differentiation operators, this will be a second-
order differential operator, and the eigenvalue equation will be a second-order
differential equation (the time-independent Schrodinger equation).

Using the Fourier transform, the space of solutions of the Schrédinger equa-
tion of fixed energy becomes something much easier to analyze, the space of
functions (or, more generally, distributions) on momentum space supported
only on the subspace of momenta of a fixed length. In the case of E(2) this
is just a circle, whereas for F(3) it is a sphere. In both cases, for each radius
one gets an irreducible representation in this manner.

In the case of E(3) other classes of irreducible representations can be con-
structed. This can be done by introducing multi-component wavefunctions,
with a new action of the rotation group SO(3). A second Casimir operator is
available in this case, and irreducible representations are eigenfunctions of this
operator in the space of wavefunctions of fixed energy. The eigenvalues of this
second Casimir operator turn out to be proportional to an integer, the “helicity”
of the representation.

19.1 The quantum free particle and representa-
tions of F(2)

We'll begin for simplicity with the case of two spatial dimensions. Recall from
chapter that the Euclidean group E(d) is a subgroup of the Jacobi group
G7(d) = Haqy1 x Sp(2d, R). For the case d = 2, the translations R? are a sub-
group of the Heisenberg group Hs (translations in ¢1,¢2) and the rotations are
a subgroup SO(2) C Sp(4,R) (simultaneous rotations of g1, g2 and p1,p2). The
Lie algebra of F(2) is a sub-Lie algebra of the Lie algebra g”(2) of polynomials
in g1, g2, p1, p2 of degree at most two.

More specifically, a basis for the Lie algebra of F(2) is given by the functions

I = qip2 — q2p1, p1, P2

on the d = 2 phase space M = R*, where [ is a basis for the Lie algebra so(2)
of rotations, p1,p2 a basis for the Lie algebra R? of translations. The non-zero
Lie bracket relations are given by the Poisson brackets

{l,p1} =p2, {lip2} =—m

which are the infinitesimal version of the rotation action of SO(2) on R2. There
is an isomorphism of this Lie algebra with a matrix Lie algebra of 3 by 3 matrices
given by

0 -1 0 00 1 000
I {1 0 of, ppe |0 0 0], poe |0 01
0 0 0 000 000

Since we have realized the Lie algebra of E(2) as a sub-Lie algebra of the
Jacobi Lie algebra g7(2), quantization via the Schrédinger representation I'g
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provides a unitary Lie algebra representation on the state space H of functions
of the position variables ¢;, g2. This will be given by the operators

) 0 . 0
Fi@(pl) =—iP = *aqlv F%(Pz) = —iPy = 767612 (19.1)
and
I"(l)——iL——i(QP—QP)——( —a — 8) (19.2)
S 1472 21471 q1 8Q2 q2 6q1 .

The Hamiltonian operator for the free particle is

1 1 (9>
He —(P2+P)=—— (L + 2
2m( L+ ) 2m <8qf+8q§>

and solutions to the Schrédinger equation can be found by solving the eigenvalue
equation

1 (82 02

H = — 4~

S > (g1, q2) = E(q1, 2)
The operators L, Py, P, commute with H and so provide a representation of the
Lie algebra of E(2) on the space of wavefunctions of energy E.

This construction of irreducible representations of F(2) is similar in spirit
to the construction of irreducible representations of SO(3) in section [8.4} There
the Casimir operator L? commuted with the SO(3) action, and gave a differ-
ential operator on functions on the sphere whose eigenfunctions were spaces
of dimension 2l + 1 with eigenvalue I(I + 1), for [ non-negative and integral.
For E(2) the quadratic function p? + p3 Poisson commutes with [, py, pe. After
quantization,
|P|? = P? + P;

is a second-order differential operator which commutes with L, P;, P,. This
operator has infinite dimensional eigenspaces that each carry an irreducible
representation of F(2). They are characterized by a non-negative eigenvalue
that has physical interpretation as 2mFE where m, E are the mass and energy
of a free quantum particle moving in two spatial dimensions.

From our discussion of the free particle in chapter we see that, in mo-
mentum space, solutions of the Schrodinger equation are given by

d(p,t) = e~z PP (p,0)

and are parametrized by distributions

¥(p,0) = ¥(p)

on R2. These will have well-defined momentum pg when

Y(p) = (P — Po)
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The position space wavefunctions can be recovered from the Fourier inversion
formula

vlat) = 3 [ @m0

T om

Since, in the momentum space representation, the momentum operator is
the multiplication operator

P4 (p) = p¥(p)

an eigenfunction for the Hamiltonian with eigenvalue E will satisfy

(|p|2 E> %(p) =0

2m

~ 2
¥ (p) can only be non-zero if F = %, so free particle solutions of energy E will

thus be parametrized by distributions that are supported on the circle

Ip|* = 2mE
b2
p=V2mFE
0 p1

Figure 19.1: Parametrizing free particle solutions of Schrédinger’s equation via
distributions supported on a circle in momentum space.

Going to polar coordinates p = (pcos#, psin ), such solutions are given by
distributions 1 (p) of the form

b(p) = ¥p(0)5(p* — 2mE)
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depending on two variables 6, p. To put this delta-function in a more useful form,
recall the discussion leading to equation and note that for p =~ v2mFE one
has the linear approximation

p* —2mE ~ 2V2mE(p — V2mE)

so one has the equality of distributions

5(p? — 2mE) = d(p—V2mE)

1
2V2mE
In the one dimensional case (see equation we found that the space of
solutions of energy E was parametrized by two complex numbers, corresponding
to the two possible momenta +v/2mk. In this two dimensional case, the space of
such solutions will be infinite dimensional, parametrized by distributions g (6)
on the circle. B

It is this space of distributions ¥ g(#) on the circle of radius v2mFE that will
provide an infinite dimensional representation of the group E(2), one that turns
out to be irreducible, although we will not show that here. The position space
wavefunction corresponding to g (6) will be

v(a) :% /] eip"*zZEW(pZ ~ 2mE)ppdo
/ / P (6) 3l — VIME)pdpds

z 2mE(q1 cos 0+q2sin0) ]
— L[ Te(0)d0

Functions {Z;E(G) with simple behavior in 6 will correspond to wavefunctions

with more complicated behavior in position space. For instance, taking ’(Z g(0) =

e~ one finds that the wavefunction along the go direction is given by

1 27 ] ) ‘
ZZJ(Oa q) :Z/ e“/m(qu 0)672n9d0
T Jo

1 ——
:§Jn( szq)

where J,, is the n’th Bessel function.

Equations and give the representation of the Lie algebra of E(2)
on wavefunctions 1(q). The representation of this Lie algebra on the zZE (9) is
given by the Fourier transform, and we’ll denote this by r 's. Using the formula
for the Fourier transform we find that

~ 0
Is(p1) = —5— = —ip1 = —iV2mE cos 0

(pa) = —-2 — —ipy — —ivZmEsind
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are multiplication operators and, taking the Fourier transform of gives the
differentiation operator

(use integration by parts to show ¢; = i% and thus the first equality, then the
chain rule for functions f(p1(6),p2(0)) for the second).

This construction of a representation of E(2) starting with the Schrédinger
representation gives the same result as starting with the action of E(2) on
configuration space, and taking the induced action on functions on R? (the
wavefunctions). To see this, note that E(2) has elements (a, R(¢)) which can
be written as a product (a, R(¢)) = (a,1)(0, R(¢)) or, in terms of matrices

cos¢ —sing ap 1 0 a cos¢p —sing 0
sing cos¢p az | =0 1 ay sing cos¢p O
0 0 1 0 0 1 0 0 1

The group has a unitary representation

(a, R(¢)) — u(a, R(¢))

on the position space wavefunctions ¥ (q), given by the induced action on func-
tions from the action of E(2) on position space R?

u(a, R(¢))¥(a) =¢((a, R(¢))™" - q)

= =1((—R(-¢)a, R(—9¢)) - q)
=(R(—¢)(q —a))

This representation of E(2) is the same as the exponentiated version of the
Schrédinger representation I'y of the Jacobi Lie algebra g7 (2), restricted to the
Lie algebra of F(2). This can be seen by considering the action of translations
as the exponential of the Lie algebra representation operators I'y(p;) = —iP;

u(a, 1)y (q) = e (M PrteP)y(q) = ¢(q — a)

and the action of rotations as the exponential of the I'y(l) = —iL

u(0, R(¢))(q) = e **F1p(q) = (R(—¢)q)

One also has a Fourier-transformed version u of this representation, with
translations now acting by multiplication operators on the ¥ g

ﬂ(a, I)JE(Q) _ efi(a-p)i[;E (9) _ efi\/QmE(al cos 0+as sin G)JE(Q) (193)
and rotations acting by rotating the circle in momentum space
(0, R(9))s(0) = ¥u(0 — ¢) (19.4)
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Although we won’t prove it here, the representations constructed in this way
provide essentially all the unitary irreducible representations of E(2), parame-
trized by a real number E > 0. The only other ones are those on which the
translations act trivially, corresponding to E = 0, with SO(2) acting as an
irreducible representation. We have seen that such SO(2) representations are
one dimensional, and characterized by an integer, the weight. We thus get
another class of E(2) irreducible representations, labeled by an integer, but
they are just one dimensional representations on C.

19.2 The case of E(3)

In the physical case of three spatial dimensions, the state space of the theory of a
quantum free particle is again a Euclidean group representation, with the same
relationship to the Schrédinger representation as in two spatial dimensions. The
main difference is that the rotation group is now three dimensional and non-
commutative, so instead of the single Lie algebra basis element [ we have three
of them, satisfying Poisson bracket relations that are the Lie algebra relations
of s0(3)

{ll7l2} = l37 {12113} = llv {l3all} = 12

The p; give the other three basis elements of the Lie algebra of E(3). They
commute amongst themselves and the action of rotations on vectors provides
the rest of the non-trivial Poisson bracket relations

{l1,p2} = p3, {li,p3} = —p2

{l2,p1} = —p3, {l2a,p3}=m
{ls,p1} = p2, {lz,p2} = —p1

An isomorphism of this Lie algebra with a Lie algebra of matrices is given
by

00 0 0 0 010 0 -1 0 0
Lo |00 ol o oo f10 00
01 0 0 100 0 0 0 0 0
00 0 0 0 00 0 0 0 0 0
000 1 0000 000 0
0000 000 1 0000
Prerto 00 0] 2900000 27000 01
0000 0000 0000

The I; are quadratic functions in the g;, p;, given by the classical mechanical
expression for the angular momentum

l=qxp
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or, in components

li = qap3 — qap2, lo = q3p1 — qip3, I3 = qip2 — g2p1

The Euclidean group F(3) is a subgroup of the Jacobi group G (3) in the
same way as in two dimensions, and, just as in the E(2) case, exponentiating
the Schrddinger representation I'y

0 0
| = —iL1 = —i(Q2P3 — Q3P) = — — — g3 ——
5(11) (251 Z( 2173 3 2) <q28q3 Q?’@qg)

Do e B N S
[g(lz) = —ily = —i(Q3Py — Q1P3) = (% a0 qQ 90

0 0
I = —iLly = —i(Q1P> — Q2P) = — — — gy ——
5(13) L3 z( 1472 2 1) <Q1 9(]2 q2 9q1>

/ : 9
FS(pJ) ZPJ aqj
provides a representation of E(3).

As in the E(2) case, the above Lie algebra representation is just the in-
finitesimal version of the action of E(3) on functions induced from its action
on position space R?. Given an element g = (a, R) € E(3) we have a unitary
transformation on wavefunctions

u(a, R)y(q) = ¥(g" - q) = (R '(q—a))

Such group elements g will be a product of a translation and a rotation, and
treating these separately, the unitary transformations u are exponentials of the
Lie algebra actions above, with

u(a,1)y(q) = e HmPrrazPatasbay, () = (q — a)

for a translation by a, and

u(0, R(¢, ;) (a) = e "9 (q) = Y(R(~¢, e;)q)

for R(¢,e;) a rotation about the j-axis by angle ¢.

This representation of F(3) on wavefunctions is reducible, since in terms of
momentum eigenstates, rotations will only take eigenstates with one value of the
momentum to those with another value of the same norm-squared. We can get
an irreducible representation by using the Casimir operator P? + P$+ P§, which
commutes with all elements in the Lie algebra of E(3). The Casimir operator
will act on an irreducible representation as a scalar, and the representation will
be characterized by that scalar. The Casimir operator is just 2m times the
Hamiltonian 1
 2m

H (P} + P} + P?)
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and so the constant characterizing an irreducible will be the energy 2mFE. Our ir-
reducible representation will be on the space of solutions of the time-independent
Schrédinger equation

1 o2 02 92
(P? 4 P2+ P2)(q) = — (

87qf + qu + ﬁqg) Y(q) = EY(q)

1
2m 2m

Using the Fourier transform

1

1/}((1) = (277)%

[ eraimay
R3
the time-independent Schrédinger equation becomes
p|? -
— —F =0
( 5o ¥(p)

and we have distributional solutions
¥ (p) = ¥r(p)d(|p* — 2mE)

characterized by distributions 1z (p) defined on the sphere |p|? = 2mE.

Such complex-valued distributions on the sphere of radius v2mFE provide a
Fourier-transformed version u of the irreducible representation of E(3). Here
the action of the group E(3) is by

i(a,1)¢p(p) = e ®P)Yp(p)

for translations, by _ ~
(0, R)vi(p) = ¥u(R™'p)

for rotations, and by

i(a, R)yp(p) = d(a, 1)a(0, R)jp(p) = ¢ @ Py (R 'p)

for a general element.

19.3 Other representations of F(3)

For the case of E(3), besides the representations parametrized by E > 0 con-
structed above, as in the E(2) case there are finite dimensional representations
where the translation subgroup of F(3) acts trivially. Such irreducible represen-
tations are just the spin-s representations (ps, C**™1) of SO(3) for s =0, 1,2, .. ..

E(3) has some structure not seen in the E(2) case, which can be used to
construct new classes of infinite dimensional irreducible representations. This
can be seen from two different points of view:

e There is a second Casimir operator which one can show commutes with
the E(3) action, given by

L-P=LP+LyP+ L3Ps
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e The group SO(3) acts on momentum vectors by rotation, with orbit of the
group action the sphere of momentum vectors of fixed energy E > 0. This
is the sphere on which the Fourier transform of the wavefunctions in the
representation is supported. Unlike the corresponding circle in the F(2)
case, here there is a non-trivial subgroup of the rotation group SO(3)
which leaves a given momentum vector invariant. This is the SO(2) C
SO(3) subgroup of rotations about the axis determined by the momentum
vector, and it is different for different points in momentum space.

b3

TR
EI\\\\

P1

Figure 19.2: Copy of SO(2) leaving a given momentum vector invariant.

For single-component wavefunctions, a straightforward computation shows
that the second Casimir operator L - P acts as zero. By introducing wavefunc-
tions with several components, together with an action of SO(3) that mixes the
components, it turns out that one can get new irreducible representations, with
a non-zero value of the second Casimir corresponding to a non-trivial weight of
the action of the SO(2) of rotations about the momentum vector.

Such multiple-component wavefunctions can be constructed as representa-
tions of E(3) by taking the tensor product of our irreducible representation on
wavefunctions of energy E (call this Hg) and the finite dimensional irreducible
representation C25+!

HE ® CQS+1

The Lie algebra representation operators for the translation part of E(3) act as
momentum operators on Hg and as 0 on C?**1. For the SO(3) part of E(3),
we get angular momentum operators that can be written as

Jj:Lj—I—SjELj®1—|—1®Sj

219



where L; acts on Hg and S; = p/(l;) acts on C 1,
This tensor product representation will not be irreducible, but its irreducible
components can be found by taking the eigenspaces of the second Casimir op-

erator, which will now be
J-P

We will not work out the details of this here (although details can be found in
chapterfor the case s = %, where the half-integrality corresponds to replacing
SO(3) by its double cover Spin(3)). What happens is that the tensor product
breaks up into irreducibles as

HE ® C2s+1 — @ HE7’I’L

n=-—s

where n is an integer taking values from —s to s that is called the “helicity”.
H . is the subspace of the tensor product on which the first Casimir |P|? takes
the value 2mF, and the second Casimir J - P takes the value np, where p =
Vv2mE. The physical interpretation of the helicity is that it is the component of
angular momentum along the axis given by the momentum vector. The helicity
can also be thought of as the weight of the action of the SO(2) subgroup of
SO(3) corresponding to rotations about the axis of the momentum vector.

Choosing E > 0 and n € Z, the representations on Hg, (which we have
constructed using some s such that s > |n|) give all possible irreducible repre-
sentations of E(3). The representation spaces have a physical interpretation as
the state space for a free quantum particle of energy E which carries an “inter-
nal” quantized angular momentum about its direction of motion, given by the
helicity.

19.4 For further reading

The angular momentum operators are a standard topic in every quantum me-
chanics textbook, see for example chapter 12 of [81]. The characterization here of
free particle wavefunctions at fixed energy as giving irreducible representations
of the Euclidean group is not so conventional, but it is just a non-relativistic
version of the conventional description of relativistic quantum particles in terms
of representations of the Poincaré group (see chapter . In the Poincaré group
case the analog of the E(3) irreducible representations of non-zero energy E and
helicity n considered here will be irreducible representations labeled by a non-
zero mass and an irreducible representation of SO(3) (the spin). In the Poincaré
group case, for massless particles one will again see representations labeled by
an integral helicity (an irreducible representation of SO(2)), but there is no
analog of such massless particles in the E(3) case.

For more details about representations of F(2) and E(3), see [95] or [98]
(which is based on [93]).
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Chapter 20

Representations of
Semi-direct Products

In this chapter we will examine some aspects of representations of semi-direct
products, in particular for the case of the Jacobi group and its Lie algebra, as
well as the case of N x K, for N commutative. The latter case includes the
Euclidean groups E(d), as well as the Poincaré group which will come into play
once we introduce special relativity.

The Schrodinger representation provides a unitary representation of the
Heisenberg group, one that carries extra structure arising from the fact that
the symplectic group acts on the Heisenberg group by automorphisms. Each
such automorphism takes a given construction of the Schrodinger representation
to a unitarily equivalent one, providing an operator on the state space called an
“Intertwining operator”. These intertwining operators will give (up to a phase
factor), a representation of the symplectic group. Up to the problem of the
phase factor, the Schrédinger representation in this way extends to a represen-
tation of the full Jacobi group. To explicitly find the phase factor, one can
start with the Lie algebra representation, where the sp(2d, R) action is given
by quantizing quadratic functions on phase space. It turns out that, for a finite
dimensional phase space, exponentiating the Lie algebra representation gives a
group representation up to sign, which can be turned into a true representation
by taking a double cover (called Mp(2d,R)) of Sp(2d,R).

In later chapters, we will find that many groups acting on quantum systems
can be understood as subgroups of this Mp(2d,R), with the corresponding
observables arising as the quadratic combinations of momentum and position
operators determined by the moment map.

The Euclidean group E(d) is a subgroup of the Jacobi group, and we saw in
chapter [19| how some of its representations can be understood by restricting the
Schrédinger representation to this subgroup. More generally, this is an example
of a semi-direct product N x K with N commutative. In such cases irreducible
representations can be characterized in terms of the action of K on irreducible
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representations of N, together with the irreducible representations of certain
subgroups of K.

The reader should be warned that much of the material included in this chap-
ter is motivated not by its applications to non-relativistic quantum mechanics, a
context in which such an abstract point of view is not particularly helpful. The
motivation for this material is provided by more complicated cases in relativistic
quantum field theory, but it seems worthwhile to first see how these ideas work
in a simpler context. In particular, the discussion of representations of N x K
for N commutative is motivated by the case of the Poincaré group (see chapter
. The treatment of intertwining operators is motivated by the way symmetry
groups act on quantum fields (a topic which will first appear in chapter .

20.1 Intertwining operators and the metaplectic
representation

For a general semi-direct product N x K with non-commutative N, the repre-
sentation theory can be quite complicated. For the Jacobi group case though, it
turns out that things simplify dramatically because of the Stone-von Neumann
theorem which says that, up to unitary equivalence, we only have one irreducible
representation of N = Hagy1.

In the general case, recall that for each k € K the definition of the semi-direct
product comes with an automorphism &5 : N — N satisfying @, 1, = Pk, P, -
Given a representation m of IV, for each k we can define a new representation
7, of N by first acting with ®:

m(n) = m(Px(n))

In the special case of the Heisenberg group and Schrédinger representation I'g,
we can do this for each k € K = Sp(2d, R), defining a new representation by

FSJC(TL) =TI (q)lc (n))

The Stone-von Neumann theorem assures us that these must all be unitarily
equivalent, so there must exist unitary operators Uy satisfying

Dsi = Upl'sU; ' = Tg(®(n))

We will generally work with the Lie algebra version I'y of the Schrédinger rep-
resentation, for which the same argument applies: we expect to be able to find
unitary operators Uy, relating Lie algebra representations I'y and I'; by

5x(X) = Ul s(X)U; ! =Ty (Pi(X)) (20.1)

where X is in the Heisenberg Lie algebra, and k acts by automorphism ®; on
this Lie algebra.

Operators like Uy that relate two representations are called “intertwining
operators”:
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Definition (Intertwining operator). If (w1, V1), (72, V2) are two representations
of a group G, an intertwining operator between these two representations is an
operator U such that

ma(9)U =Umi(g) Vg€ G

In our case V3 = V5 is the Schrodinger representation state space H and Uy :
‘H — H is an intertwining operator between I'g and I'g j, for each k € Sp(2d, R).
Since
—1
FS,kle = UklePSUk-lk-z

one might expect that the Uy should satisfy the group homomorphism property
Ukyky = Uy, Uy,

and give us a representation of the group Sp(2d,R) on H. This is what would
follow from the general principle that a group action on the classical phase space
after quantization becomes a unitary representation on the quantum state space.

The problem with this argument is that the Uy are not uniquely defined.
Schur’s lemma tells us that since the representation on H is irreducible, the
operators commuting with the representation operators are just the complex
scalars. These give a phase ambiguity in the definition of the unitary operators
Uy, which then give a representation of Sp(2d, R) on H only up to a phase, i.e.,

Uk, ky = U, U, eie(k1,k2)

for some real-valued function ¢ of pairs of group elements. In terms of corre-
sponding Lie algebra representation operators U; , this ambiguity appears as an
unknown constant times the identity operator.

The question then arises whether the phases of the Uy can be chosen so
as to satisfy the homomorphism property (i.e., can phases be chosen so that
o(k1,ke) = N2x for N integral?). It turns out that this cannot quite be done,
since N may have to be half-integral, giving the homomorphism property only
up to a sign. Just as in the SO(d) case where a similar sign ambiguity showed
the need to go to a double cover Spin(d) to get a true representation, here
one needs to go to a double cover of Sp(2d,R), called the metaplectic group
Mp(2d,R). The nature of this sign ambiguity and double cover is quite subtle,
and unlike for the Spin(d) case, we will not provide an actual construction of
Mp(2d,R). For more details on this, see [56] or [37]. In section we will
show by computation one aspect of the double cover.

Since this is just a sign ambiguity, it does not appear infinitesimally: the
ambiguous constants in the Lie algebra representation operators can be chosen
so that the Lie algebra homomorphism property is satisfied. However, this will
no longer necessarily be true for infinite dimensional phase spaces, a situation
that is described as an “anomaly” in the symmetry. This phenomenon will be
examined in more detail in chapter
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20.2 Constructing intertwining operators

The method we will use to construct the intertwining operators Uy, is to find
a solution to the differentiated version of equation and then get Uy by
exponentiation. Differentiating for k = el at t = 0 gives

U, Ts(X)] =T%(L - X) (20.2)

where

d
L . X - a@etll (X)‘t:()

and we have used equation on the left-hand side.
In terms of @); and P; operators, which are ¢ times the I'g(X) for X a basis
vector ¢j, pj, equation [20.2] is

(9] (3

We can find U} by quantizing the moment map function py,, which satisfies

e )3

Recall from that the uy, are quadratic polynomials in the g;,p;. We saw
in section that the Schrédinger representation I'y could be extended from

the Heisenberg Lie algebra to the symplectic Lie algebra, by taking a product of
Qj, P; operators corresponding to the product in yy. The ambiguity in ordering
for non-commuting operators is resolved by quantizing g;p; using

Cs(gips) = —%(Qij + P;Qy)

We thus take
Ur, = Ts(pr)

and this will satisfy as desired. It will also satisfy the Lie algebra homo-
morphism property
UL, ULl = Ulr, 1, (20.5)

If one shifts U by a constant operator, it will still satisfy but in general
will no longer satisfy [20.5] Exponentiating this U} will give us our Uy, and thus
the intertwining operators that we want.

This method will be our fundamental way of producing observable operators.
They come from an action of a Lie group on phase space preserving the Poisson
bracket. For an element L of the Lie algebra, we first use the moment map to
find py, the classical observable, then quantize to get the quantum observable
Uj.
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20.3 Explicit calculations

As a balance to the abstract discussion so far in this chapter, in this section
we’ll work out explicitly what happens for some simple examples of subgroups
of Sp(2d, R) acting on phase space. They are chosen because of important later
applications, but also because the calculations are quite simple, while demon-
strating some of the phenomena that occur. The general story of how to explic-
itly construct the full metaplectic representation is quite a bit more complex.
These calculations will also make clear the conventions being chosen, and show
the basic structure of what the quadratic operators corresponding to actions of
subgroups of the symplectic group look like, a structure that will reappear in
the much more complicated infinite dimensional quantum field theory examples
we will come to later.

20.3.1 The SO(2) action by rotations of the plane for d = 2

In the case d = 2 one can consider the SO(2) group which acts as the group
of rotations of the configuration space R?, with a simultaneous rotation of the
momentum space. This leaves invariant the Poisson bracket and so is a subgroup
of Sp(4,R) (this is just the SO(2) subgroup of E(2) studied in section [19.1)).

From the discussion in section this SO(2) acts by automorphisms on
the Heisenberg group Hs and Lie algebra b5, both of which can be identified
with M @R, by an action leaving invariant the R component. The group SO(2)
acts on ¢q, q1 + Cg,q2 + Cp, P1 + Cp,p2 € M by

Cq Cq cosf —sinfd 0 0 Cqy
Cqs Ce, | | sing cos@ 0 0 Cqs
c I I o 0 0 cosf —sinf c
P1 P1 P1
Cp, Cp, 0 0 sinf  cos@ Cp,

0 -1 0 O
1 0 0 O
L= 0 0 0 -1
0 0 1 0

L acts on phase space coordinate functions by

q1 q1 q2
E2R IR oA O R |
P1 P1 D2
b2 b2 -

By equation [16.22] with

0 -1
(0 ) mecng
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the quadratic function py, that satisfies

q1 Q1 0 1 0 0 q1 q2
q2 T | g2 -1 0 0 0 q2 —q1
s = = =
HE | py 2 0 0 0 1)|p P2
D2 D2 0 0 =1 0/ \p2 —p1

is
IU’L - q 1 0 p - QIp2 Q2p1
which is just the formula for the angular momentum
l=qip2 — @21

ind=2.
Quantization gives a representation of the Lie algebra so(2) with

Up = —i(Q1P2 — Q2Py)

(@)= (%) [ ()] = ()

Exponentiating gives a representation of SO(2)

satisfying

Usor = e~ 10(Q1P2—Q2P1)

with conjugation by U,er rotating linear combinations of the @Q1,Qs (or the
Py, P;) each by an angle 6.

UeeL (quQl + quQQ)Uv;@1 = C;lQl + C;2Q2

(c;1> _ (COSG — sin 0) (cql>
Con sinf  cosf Cq

These representation operators are exactly the ones found in (section
the discussion of the representation of E(2) corresponding to the quantum free
particle in two dimensions. There we saw that on position space wavefunctions
this is just the representation induced from rotations of the position space. It
also comes from the Schrodinger representation, by taking a specific quadratic
combination of the Q;, P; operators, the one corresponding to the quadratic
function I. Note that there is no ordering ambiguity in this case since one does
not multiply ¢; and p; with the same value of j. Also note that for this SO(2)
the double cover is trivial: as one goes around the circle in SO(2) once, the
operator Uger is well-defined and returns to its initial value. As far as this
subgroup of Sp(4, R) is concerned, there is no need to consider the double cover
Mp(4,R) to get a well-defined representation.

where
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The case of the group SO(2) C Sp(4,R) can be generalized to a larger
subgroup, the group GL(2,R) of all invertible linear transformations of R?,
performed simultaneously on position and momentum space. Replacing the

matrix L by
A 0
(6 %)

for A any real 2 by 2 matrix

we get an action of the group GL(2,R) C Sp(4,R) on M, and after quantization
a Lie algebra representation

I P
e e (o 52) (7)

which will satisfy

(@)= (@) o ()] - ()

Note that the action of A on the momentum operators is the dual of the action
on the position operators. Only in the case of an orthogonal action (the SO(2)
earlier) are these the same, with A7 = —A.

20.3.2 An SO(2) action on the d =1 phase space

Another sort of SO(2) action on phase space provides a d = 1 example that
mixes position and momentum coordinates. This will lead to quite non-trivial
intertwining operators, with an action on wavefunctions that does not come
about as an induced action from a group action on position space. This ex-
ample will be studied in much greater detail when we get to the theory of the
quantum harmonic oscillator, beginning with chapter Such a physical sys-
tem is periodic in time, so the usual group R of time translations becomes this
SO(2), with the corresponding intertwining operators giving the time evolution
of the quantum states.

In this case d = 1 and one has elements g € SO(2) C Sp(2,R) acting on

cqq + cpp € M by
Cq cq\ [ cosf sin@ Cq
(cp) 9 (cp) - (— sin@ cos 9) (cp)

SO

where



(Note that for such phase space rotations, we are making the opposite choice
for convention of the positive direction of rotation, clockwise instead of counter-
clockwise).

To find the intertwining operators, we first find the quadratic function pp,

in g, p that satisfies
q T (4 —-p
R = L =
G} =2G) - (7)

By equation [16.7] this is
1 0 1
p) (0 1> (Z) = 5(‘12 +p2)

Quantizing p7, using the Schrédinger representation I'y, one has a unitary
Lie algebra representation U’ of s0(2) with

1
ML:§((]

1
U = —§(Q2 +P?)

% (3)-(3)

U, = Wi — o-i%(@+P?)

satisfying
and intertwining operators

These give a representation of SO(2) only up to a sign, for reasons mentioned
in section that will be discussed in more detail in chapter

Conjugating the Heisenberg Lie algebra representation operators by the uni-
tary operators U, intertwines the representations corresponding to rotations of
the phase space plane by an angle 6

o—i4(Q*+P?) (g) ci5(Q°+P?) _ <C080 Sine) (g) (20.7)

sinf  cos@

Note that this is a different calculation than in the spin case where we also
constructed a double cover of SO(2). Despite the different context (SO(2)
acting on an infinite dimensional state space), again one sees an aspect of the
double cover here, as either U, or —U, will give the same SO(2) rotation action
on the operators @, P (while each having a different action on the states, to be
worked out in chapter .

In our discussion here we have blithely assumed that the operator U} can
be exponentiated, but doing so turns out to be quite non-trivial. As remarked
earlier, this representation on wavefunctions does not arise as the induced action
from an action on position space. Uj is (up to a factor of ¢) the Hamiltonian
operator for a quantum system that is not translation invariant. It involves
quadratic operators in both ) and P, so neither the position space nor momen-
tum space version of the Schrodinger representation can be used to make the
operator a multiplication operator. Further details of the construction of the
needed exponentiated operators will be given in section

228



20.3.3 The Fourier transform as an intertwining operator

For another indication of the non-trivial nature of the intertwining operators of
section [20.3.2] note that a group element g acting by a § rotation of the d = 1
phase space interchanges the role of ¢ and p. It turns out that the corresponding
intertwining operator U, is closely related to the Fourier transform 7. Up to a
phase factor e'7, Fourier transformation is just such an intertwining operator:
we will see in section that, acting on wavefunctions,

Uz, = €i%JT"
ez2

Squaring this gives
Uerr = (U _z1)* =iF?

and we know from the definition of F and Fourier inversion that
F2(q) = ¥(—q)
The non-trivial double cover here appears because
Ugnr = —F* = -1

which takes a wavefunction ¥(q) to —(q).

20.3.4 An R action on the d = 1 phase space

For another sort of example in d = 1, consider the action of a subgroup R C
SL(2,R) on d =1 phase space by

Cq cqg\ _(e" O Cq
(@) =(@)=( &) )
- 1 0
g=c", L:(o —1)

Now, by equation the moment map will be

pr = % (a ») (01 _01) (;1)) =—qp

e ()= ()

Quantization gives intertwining operators by

where

which satisfies

U = —%(QP +PQ), U, =elVt = $QPTPQ)

These act on operators @ and P by a simple rescaling

—r@rire) (Q) jg@prre) _ (¢ 0 ) (@
P 0 e)\P
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Note that in the Schrédinger representation

;1 : i d 1
—i5(QP+ PQ) = —i(QP - )1 = —q - — 51

The operator will have as eigenfunctions

Y(g) =4q°

with eigenvalues —c— % Such states are far from square-integrable, but do have
an interpretation as distributions on the Schwartz space.

20.4 Representations of N x K, N commutative

The representation theory of semi-direct products N x K will in general be rather
complicated. However, when N is commutative things simplify considerably,
and in this section we’ll survey some of the general features of this case. The
special cases of the Euclidean groups in 2 and 3 dimensions were covered in
chapter [19| and the Poincaré group case will be discussed in chapter

For a general commutative group IV, one does not have the simplifying fea-
ture of the Heisenberg group, the uniqueness of its irreducible representation.
On the other hand, while N will have many irreducible representations, they
are all one dimensional. As a result, the set of representations of N acquires its
own group structure, also commutative, and one can define:

Definition (Character group). For N a commutative group, let N be the set of
characters of N, i.e., functions

a:N—C
that satisfy the homomorphism property
a(ning) = a(ny)a(nsg)
The elements of N form a group, with multiplication
(a1a2)(n) = ar(n)az(n)

When N is a Lie group, we will restrict attention to characters that are
differentiable functions on N. We only will actually need the case N = R?,
where we have already seen that the differentiable irreducible representations
are one dimensional and given by

ap(a) = eP2

where a € N. So the character group in this case is N = RY, with elements
labeled by the vector p.
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For a semi-direct product N x K, we will have an automorphism &, of N
for each k € K. From this action on N, we get an induced action on functions
on N, in particular on elements of N, by

~

&\)kZQEN—)&;k(O&)EN
where ®,(a) is the element of N satisfying

Op(@)(n) = a(@; " (n))
For the case of N = R?, we have
Br(ap)(a) = PP @) — (i@ ) ()
S0 -
O (ap) = A(g-1y7(p)

When K acts by orthogonal transformations on N = R¢, &7 = <I>,;1 SO

Pp(ap) = ag, (p)

To analyze representations (7,V) of N x K, one can begin by restricting
attention to the NN action, decomposing V into subspaces V, where N acts
according to a. v € V is in the subspace V,, when

m(n,1)v = a(n)v
Acting by K will take this subspace to another one according to
Theorem.
veVy = m(0,k)veVg
Proof. Using the definition of the semi-direct product in chapter one can
show that the group multiplication satisfies
(0, k_l)(n7 1)(0,k) = (®4-1(n),1)
Using this, one has
w(n, )7(0, k)v =7 (0, k)7 (0, k™ 1)7T(TL 1)7(0, k)v
= (0, k')TF((I)k 1
(O, k:)oz((I)k 1
=d;,(a)(n)m(0, k)v
O
For each o € N one can look at its orbit under the action of K by </IS;€, which
will give a subset O, C N. From the above theorem, we see that if V,, # 0,
then we will also have Vg # 0 for § € O,, so one piece of information that
characterizes a representation V' is the set of orbits one gets in this way.

«a also defines a subgroup K, C K consisting of group elements whose action
on N leaves « invariant:
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Definition (Stabilizer group or little group). The subgroup K, C K of elements
k € K such that R
Qi) =a

for a given a € N is called the stabilizer subgroup (by mathematicians) or little
subgroup (by physicists).

The group K, will act on the subspace V,,, and this representation of K, is a
second piece of information that can be used to characterize a representation.

In the case of the Euclidean group E(2) we found that the non-zero orbits
O, were circles and the groups K, were trivial. For F(3), the non-zero orbits
were spheres, with K, an SO(2) subgroup of SO(3) (one that varies with «). In
these cases we found that our construction of representations of E(2) or E(3) on
spaces of solutions of the single-component Schrédinger equation corresponded
under Fourier transform to a representation on functions on the orbits O,.
We also found in the F(3) case that using multiple-component wavefunctions
gave new representations corresponding to a choice of orbit O, and a choice
of irreducible representation of K, = SO(2). We did not show this, but this
construction gives an irreducible representation when a single orbit O, occurs
(with a transitive K action), with an irreducible representation of K, on V,.

We will not further pursue the general theory here, but one can show that
distinct irreducible representations of N x K will occur for each choice of an
orbit O, and an irreducible representation of K,. One way to construct these
representations is as the solution space of an appropriate wave equation, with the
wave equation corresponding to the eigenvalue equation for a Casimir operator.
In general, other “subsidiary conditions” then must be imposed to pick out a
subspace of solutions that gives an irreducible representation of N x K this
corresponds to the existence of other Casimir operators. Another part of the
general theory has to do with the question of the unitarity of representations
produced in this way, which will require that one starts with an irreducible
representation of K, that is unitary.

20.5 For further reading

For more on representations of semi-direct products, see section 3.8 of [85],
chapter 5 of [95], [9], and [39]. The general theory was developed by Mackey
during the late 1940s and 1950s, and his lecture notes on representation theory
[58] are a good source for the details of this. The point of view taken here,
that emphasizes constructing representations as solution spaces of differential
equations, where the differential operators are Casimir operators, is explained
in more detail in [47].

The conventional derivation found in most physics textbooks of the opera-
tors U}, coming from an infinitesimal group action uses Lagrangian methods and
Noether’s theorem. The purely Hamiltonian method used here treats configu-
ration and momentum variables on the same footing, and is useful especially in
the case of group actions that mix them (such as the example of section [20.3.2))
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For another treatment of these operators along the lines of this chapter, see
section 14 of [37].

For a concise but highly insightful discussion of the metaplectic representa-
tion, see chapters 16 and 17 in Graeme Segal’s section of [I4]. For a discussion
of this topic emphasizing the role of the Fourier transform as an intertwining
operator, see [49]. The issue of the phase factor in the intertwining operators
and the metaplectic double cover will be discussed later in the context of the
harmonic oscillator, using a different realization of the Heisenberg Lie algebra
representation. For a discussion of this in terms of the Schrodinger representa-
tion, see part I of [56].
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Chapter 21

Central Potentials and the
Hydrogen Atom

When the Hamiltonian function is invariant under rotations, we then expect
eigenspaces of the corresponding Hamiltonian operator to carry representations
of SO(3). These spaces of eigenfunctions of a given energy break up into irre-
ducible representations of SO(3), and we have seen that these are labeled by an
integer [ = 0,1,2,... and have dimension 2[ + 1. This can be used to find prop-
erties of the solutions of the Schrédinger equation whenever one has a rotation
invariant potential energy. We will work out what happens for the case of the
Coulomb potential describing the hydrogen atom. This specific case is exactly
solvable because it has a second not-so-obvious SO(3) symmetry, in addition to
the one coming from rotations of R3.

21.1 Quantum particle in a central potential

In classical physics, to describe not free particles, but particles experiencing
some sort of force, one just needs to add a “potential energy” term to the
kinetic energy term in the expression for the energy (the Hamiltonian function).
In one dimension, for potential energies that just depend on position, one has

for some function V(gq). In the physical case of three dimensions, this will be

1
h = %(P? + 3 +p3) + Vg, g2, 43)

Quantizing and using the Schrédinger representation, the Hamiltonian op-
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erator for a particle moving in a potential V (g1, ¢2,q3) will be

1
T 2m

h2 82 62 62
- _ = o o7 v

h2

2m + (CII7(I27(13)

We will be interested in so-called “central potentials”, potential functions that
are functions only of ¢? + g5 + ¢3, and thus only depend upon 7, the radial
distance to the origin. For such V', both terms in the Hamiltonian will be
SO(3) invariant, and eigenspaces of H will be representations of SO(3).

Using the expressions for the angular momentum operators in spherical co-
ordinates derived in chapter [§ (including equation for the Casimir operator
L?), one can show that the Laplacian has the following expression in spherical
coordinates

or?2  ror r2

The Casimir operator L? has eigenvalues [(I + 1) on irreducible representations
of dimension 2 4+ 1 (integral spin ). So, restricted to such an irreducible repre-
sentation, we have

# 20 1.,

L0220 11+1)

or2 1 or r2
To solve the Schrédinger equation, we want to find the eigenfunctions of
H. The space of eigenfunctions of energy F will be a sum of irreducible repre-
sentations of SO(3), with the SO(3) acting on the angular coordinates of the
wavefunctions, leaving the radial coordinate invariant. To find eigenfunctions
of the Hamiltonian

h2
H=—3 At V(r)

we can first look for functions g;g(r), depending on l = 0,1, 2, ... and the energy
eigenvalue E, and satisfying

(7ﬁ(d2+2d I(1+1)

2m \dr?2 " rdr 12

)+ V) el = Baue(r

Turning to the angular coordinates, we have seen in chapter |8 that represen-
tations of SO(3) on functions of angular coordinates can be explicitly expressed
in terms of the spherical harmonic functions ¥;™(6, ¢), on which L? acts with
eigenvalue [(I+1). For each solution g;g(r) we will have the eigenvalue equation

Hgip(r)Y"(0,¢) = Eqr(r)Y," (0, )

and the
@/1(7", 0; ¢) = glE(T)YEm(aa ¢)
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will span a 2]+ 1 dimensional (since m = —I,—l+1,...,l—1,1) space of energy
eigenfunctions for H of eigenvalue F.

For a general potential function V(r), exact solutions for the eigenvalues E
and corresponding functions ¢;g(r) cannot be found in closed form. One special
case where we can find such solutions is for the three dimensional harmonic os-
cillator, where V (r) = %mw2r2. These are much more easily found though using
the creation and annihilation operator techniques to be discussed in chapter

The other well known and physically very important such case is the case
of a % potential, called the Coulomb potential. This describes a light charged
particle moving in the potential due to the electric field of a much heavier
charged particle, a situation that corresponds closely to that of a hydrogen

atom. In this case we have

e2

vV=-2
.

where e is the charge of the electron, so we are looking for solutions to

(_W<£i+2d_}Utn>_f>mﬂngmﬂ@ (21.1)

2m rdr r

Since on functions f(r)

d? d? 2 d
2= T

multiplying both sides of equation by r gives

(_#(ji_za+n)_ff)mm@)=Emm@)

2m 72

)f

The solutions to this equation can be found through a rather elaborate pro-
cess described in most quantum mechanics textbooks, which involves looking
for a power series solution. For E > 0 there are non-normalizable solutions that
describe scattering phenomena that we won’t study here. For E < 0 solutions

correspond to an integer n =1,2,3,..., with n >[4+ 1. So, for each n we get n
solutions, with [ =0,1,2,...,n — 1, all with the same energy
4
B, —_me
2h2n?

A plot of the different energy eigenstates looks like this:
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scattering states

(E>0)
° (Y X)) 'YYXXXxl Y X XXX X) n—4
4s 4p 4d 4f
° (Y X)) 'YYXXXxl
n=3
3s 3p 3d
[ J 000 n=29
2s 2p
bound states
° (E<0)
n=1
1s
(=0 =1 =2 =3

Figure 21.1: Energy eigenstates in the Coulomb potential.

The degeneracy in the energy values leads one to suspect that there is some
extra group action in the problem commuting with the Hamiltonian. If so, the
eigenspaces of energy eigenfunctions will come in irreducible representations
of some larger group than SO(3). If the representation of the larger group
is reducible when one restricts to the SO(3) subgroup, giving n copies of the
SO(3) representation of spin [, that would explain the pattern observed here.
In the next section we will see that this is the case, and there use representation
theory to derive the above formula for F,,.

We won’t go through the process of showing how to explicitly find the func-
tions g;g, (r) but just quote the result. Setting

h2

apg = ——5
me?

(this has dimensions of length and is known as the “Bohr radius”), and defining
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gni(r) = qig, (r) the solutions are of the form

1
__r 2r oe1 [ 21
gna(r) oc €70 <nao> Lt nag

where the Lilj:ll are certain polynomials known as associated Laguerre polyno-
mials.
So, finally, we have found energy eigenfunctions

Yrim (7,0, 0) = g (1)Y,™ (0, ¢)

for
n=12,...

l=0,1,...,n—1
m=—l,—l+1,...;1—1,1
The first few of these, properly normalized, are

1

3
Tay

1bl()(] =

(called the 15 state, “S” meaning [ = 0)

1 r __r
e -2
200 8rad 2a0

(called the 2S state), and the three dimensional | =1 (called 2P, “P” meaning
I = 1) states with basis elements

1 T r .
_ — 255 gin fei®
911 = ————=—=—e 29 sinfe
8/ ma3 o
’(/J 1 T ,% 9
210 = —————=—¢€ 29 COos
45/27a} ao
1 r __r . i
Po1-1 = — e 290 sinfe'?

8y/ma3 o
21.2 so(4) symmetry and the Coulomb potential

The Coulomb potential problem is very special in that it has an additional
symmetry, of a non-obvious kind. This symmetry appears even in the classi-
cal problem, where it is responsible for the relatively simple solution one can
find to the essentially identical Kepler problem. This is the problem of finding
the classical trajectories for bodies orbiting around a central object exerting a
gravitational force, which also has a % potential.
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Kepler’s second law for such motion comes from conservation of angular
momentum, which corresponds to the Poisson bracket relation

{ljvh} =0

Here we’ll take the Coulomb version of the Hamiltonian that we need for the
hydrogen atom problem
2
(&

1
h=—|p]* - —
2m|p| r

The relation {l;, h} = 0 can be read in two ways:

e The Hamiltonian h is invariant under the action of the group (SO(3))
whose infinitesimal generators are [;.

e The components of the angular momentum (I;) are invariant under the
action of the group (R of time translations) whose infinitesimal generator
is h, so the angular momentum is a conserved quantity.

For this special choice of Hamiltonian, there is a different sort of conserved
quantity. This quantity is, like the angular momentum, a vector, often called
the Lenz (or sometimes Runge-Lenz, or even Laplace-Runge-Lenz) vector:

Definition (Lenz vector). The Lenz vector is the vector-valued function on the
phase space RS given by

1
w=—(1xp)+e -
m |al

Simple manipulations of the cross-product show that one has
l.-w=0

We won'’t here explicitly calculate the various Poisson brackets involving the
components w; of w, since this is a long and unilluminating calculation, but
will just quote the results, which are

{wjvh} =0

This says that, like the angular momentum, the vector with components
w; is a conserved quantity under time evolution of the system, and its
components generate symmetries of the classical system.

{lja wk} = €5kIW]

These relations say that the generators of the SO(3) symmetry act on w;
in the way one would expect for the components w; of a vector in R3.
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—2h
{wj, wr} = €l <m>

This is the most surprising relation, and it has no simple geometrical
explanation (although one can change variables in the problem to try and
give it one). It expresses a highly non-trivial relationship between the
Hamiltonian h and the two sets of symmetries generated by the vectors
I, w.

The w; are cubic in the ¢ and p variables, so the Groenewold-van Hove
no-go theorem implies that there is no consistent way to quantize this system
by finding operators W;, L;, H providing a representation of the Lie algebra
generated by the functions wj,[;, h (taking Poisson brackets). Away from the
locus h = 0 in phase space, the function h can be used to rescale the w;, defining

[—m

and the functions ;, k; then do generate a finite dimensional Lie algebra. Quan-

tization of the system can be performed by finding appropriate operators W;

then rescaling them using the energy eigenvalue, giving operators L;, K; that

provide a representation of a finite dimensional Lie algebra on energy eigenspaces.
A choice of operators W; that will work is

1
—(LxP—PxL)+e2g

W =
2m Q|

where the last term is the operator of multiplication by e?q;/|q|. By elaborate
and unenlightening computations the W; can be shown to satisfy the commu-
tation relations corresponding to the Poisson bracket relations of the w;:

[ij H] =0
[Lj, Wi] = ihejaW,
. 2
[Wj, Wk] = zhejlel <—mH>

as well as
LW=W-L=0

The first of these shows that energy eigenstates will be preserved not just by the
angular momentum operators L;, but by a new set of non-trivial operators, the
W;, so will be representations of a larger Lie algebra than so(3). In addition,
one has the following relation between W2, H and the Casimir operator L?

2
W2 =e*1 4+ = H(L* + 1*1) (21.2)
m
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If we now restrict attention to the subspace Hgp C H of energy eigenstates
of energy F, on this space we can define rescaled operators

—m
K= —W
2F

On this subspace, equation becomes the relation
2H(K? + L* + h*1) = —me*1

and we will be able to use this to find the eigenvalues of H in terms of those of
L? and K2.
We will assume that F < 0, in which case we have the following commutation
relations
[Lj, Lk] = iﬁejlel

[L;, Ki] = theju K
(K, Ki| = ihejr Ly
Defining
M = %(L+K), N = %(L—K)

one has
[M;, My] = ihejr M,

[Nj,Nk] = ihejklNl
[MJ'?N’C] =0

This shows that we have two commuting copies of s0(3) acting on states, spanned
respectively by the M; and N;, with two corresponding Casimir operators M 2
and N2
Using the fact that
L-K=K-L=0

one finds that
M? = N?

Recall from our discussion of rotations in three dimensions that representa-
tions of s0(3) = su(2) correspond to representations of Spin(3) = SU(2), the
double cover of SO(3) and the irreducible ones have dimension 2! + 1, with !
half-integral. Only for [ integral does one get representations of SO(3), and it
is these that occur in the SO(3) representation on functions on R?. For four di-
mensions, we found that Spin(4), the double cover of SO(4), is SU(2) x SU(2),
and one thus has spin(4) = s0(4) = su(2) x su(2) = s0(3) xs0(3). This is exactly
the Lie algebra we have found here, so one can think of the Coulomb problem
at a fixed negative value of F as having an so(4) symmetry. The representa-
tions that will occur can include the half-integral ones, since neither of the two
s0(3) factors is the s0(3) of physical rotations in 3-space (the physical angular
momentum operators are the L = M + N).
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The relation between the Hamiltonian and the Casimir operators M? and
N2 is

2H(K? + L* + h%1) = 2H(2M? + 2N? + h*1) = 2H (4M? + h?1) = —me*1
On irreducible representations of s0(3) of spin u, we will have
M? = p(p+ 1)R%1

for some half-integral u, so we get the following equation for the energy eigen-

values

—me4 —me4

T 2R2(2u+ 1)2

T 2R2(4p(p+1) + 1)

Letting n = 2u + 1, for p = 0, %, 1,... we get n =1,2,3,... and precisely the

same equation for the eigenvalues described earlier

me4

En = - 2h2n2

One can show that the irreducible representations of the product Lie algebra
$0(3) xs0(3) are tensor products of irreducible representations of the factors, and
in this case the two factors in the tensor product are identical due to the equality
of the Casimirs M? = N2. The dimension of the s0(3) x s0(3) irreducibles is
thus (21 + 1)? = n?, explaining the multiplicity of states one finds at energy
eigenvalue F,,.

The states with E < 0 are called “bound states” and correspond physically
to quantized particles that remain localized near the origin. If we had chosen
E > 0, our operators would have satisfied the relations for a different real
Lie algebra, called so0(3,1), with quite different properties. Such states are
called “scattering states”, corresponding to quantized particles that behave as
free particles far from the origin in the distant past, but have their momentum
direction changed by the Coulomb potential (the Hamiltonian is non-translation
invariant, so momentum is not conserved) as they propagate in time.

21.3 The hydrogen atom

The Coulomb potential problem provides a good description of the quantum
physics of the hydrogen atom, but it is missing an important feature of that
system, the fact that electrons are spin % systems. To describe this, one really
needs to take as space of states two-component wavefunctions

_ (¥ (OI))
) (%(Q)
(or, equivalently, replace our state space H of wavefunctions by the tensor prod-

uct H ® C?) in a way that we will examine in detail in chapter
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The Hamiltonian operator for the hydrogen atom acts trivially on the C?2
factor, so the only effect of the additional wavefunction component is to double
the number of energy eigenstates at each energy. Electrons are fermions, so
antisymmetry of multi-particle wavefunctions implies the Pauli principle that
states can only be occupied by a single particle. As a result, one finds that when
adding electrons to an atom described by the Coulomb potential problem, the
first two fill up the lowest Coulomb energy eigenstate (the 1 or 15 state at n =
1), the next eight fill up the n = 2 states (two each for 1200, %211, %210, P21-1),
etc. This goes a long ways towards explaining the structure of the periodic table
of elements.

When one puts a hydrogen atom in a constant magnetic field B, for reasons
that will be described in section the Hamiltonian acquires a term that acts
only on the C? factor, of the form

EB o

mc
This is exactly the sort of Hamiltonian we began our study of quantum mechan-
ics with for a simple two-state system. It causes a shift in energy eigenvalues
proportional to £|B| for the two different components of the wavefunction, and
the observation of this energy splitting makes clear the necessity of treating the
electron using the two-component formalism.

21.4 For further reading

This is a standard topic in all quantum mechanics books. For example, see
chapters 12 and 13 of [81]. The so(4) calculation is not in [8I], but is in some
of the other such textbooks, a good example is chapter 7 of [5]. For extensive
discussion of the symmetries of the 1 potential problem, see [38] or [39].
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Chapter 22

The Harmonic Oscillator

In this chapter we’ll begin the study of the most important exactly solvable
physical system, the harmonic oscillator. Later chapters will discuss extensions
of the methods developed here to the case of fermionic oscillators, as well as free
quantum field theories, which are harmonic oscillator systems with an infinite
number of degrees of freedom.

For a finite number of degrees of freedom, the Stone-von Neumann theo-
rem tells us that there is essentially just one way to non-trivially represent the
(exponentiated) Heisenberg commutation relations as operators on a quantum
mechanical state space. We have seen two unitarily equivalent constructions
of these operators: the Schrédinger representation in terms of functions on ei-
ther coordinate space or momentum space. It turns out that there is another
class of quite different constructions of these operators, one that depends upon
introducing complex coordinates on phase space and then using properties of
holomorphic functions. We’ll refer to this as the Bargmann-Fock representation,
although quite a few mathematicians have had their name attached to it for one
good reason or another (some of the other names one sees are Friedrichs, Segal,
Shale, Weil, as well as the descriptive terms “holomorphic” and “oscillator”).

Physically, the importance of this representation is that it diagonalizes the
Hamiltonian operator for a fundamental sort of quantum system: the harmonic
oscillator. In the Bargmann-Fock representation the energy eigenstates of such
a system are monomials, and energy eigenvalues are (up to a half-integral con-
stant) integers. These integers label the irreducible representations of the U(1)
symmetry generated by the Hamiltonian, and they can be interpreted as count-
ing the number of “quanta” in the system. It is the ubiquity of this example that
justifies the “quantum” in “quantum mechanics”. The operators on the state
space can be simply understood in terms of so-called annihilation and creation
operators which decrease or increase by one the number of quanta.
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22.1 The harmonic oscillator with one degree of
freedom

An even simpler case of a particle in a potential than the Coulomb potential
of chapter [21] is the case of V(¢q) quadratic in ¢. This is also the lowest-order
approximation when one studies motion near a local minimum of an arbitrary
V(q), expanding V(q) in a power series around this point. We’ll write this as
2
p 1 2 2
h=-—+-nmuw

om 2"
with coefficients chosen so as to make w the angular frequency of periodic motion
of the classical trajectories. These satisfy Hamilton’s equations

.oV 2 P
p——a———mw q9 49=—
q m
SO
j=—-wq
which will have solutions with periodic motion of angular frequency w. These
solutions can be written as

q(t) _ C+eiwt + C_efiwt

for c;,c_ € C where, since ¢(t) must be real, we have c_ = ¢;. The space of
solutions of the equation of motion is thus two real dimensional, and abstractly
this can be thought of as the phase space of the system.

More conventionally, the phase space can be parametrized by initial values
that determine the classical trajectories, for instance by the position ¢(0) and
momentum p(0) at an initial time ¢(0). Since

t iwt t = —iwt)

p(t) = mg = megiwe™” — me_iwe™™" = imw(c e™’ —cie

we have
q(0) = cx + c— =2Re(c+), p(0) =imw(cy —c—) = —2mwIm(cy)

SO
1 1

C+ = ?Z(O) - i%p(o)

The classical phase space trajectories are

2 2mw 2 ! 2mw

q(t) = <1q(0) i p(0)> et + <1q(0) + ‘1p(0)> o

p(t) = <in;wq(0) + ;p(o)) et 4 <i;an(0) 4 ;p(0)> it
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Instead of using two real coordinates to describe points in the phase space
(and having to introduce a reality condition when using complex exponentials),
one can instead use a single complex coordinate, which we will choose as

(0 =% (a0 - pi0)

Then the equation of motion is a first-order rather than second-order differential
equation

z =1iwz
with solutions

2(t) = 2(0)e™? (22.1)

The classical trajectories are then realized as complex functions of ¢, and paramet-
rized by the complex number

mw )

0= /% (400 - -p00))

Since the Hamiltonian is quadratic in the p and ¢, we have seen that we can
construct the corresponding quantum operator uniquely using the Schrédinger
representation. For # = L?(R) we have a Hamiltonian operator

To find solutions of the Schrédinger equation, as with the free particle, one
proceeds by first solving for eigenvectors of H with eigenvalue F, which means
finding solutions to

h? d? 1
Hijpp = (—q + mw2q2> b = B

Solutions to the Schrédinger equation will then be linear combinations of the
functions

Yp(g)e # 7
Standard but somewhat intricate methods for solving differential equations

like this show that one gets solutions for £ = E,, = (n+ %)hw, n a non-negative
integer, and the normalized solution for a given n (which we’ll denote v,,) will

be s
mw 4 mw _mw 2
%@_QWWW>E(WHOGM (22.2)

where H, is a family of polynomials called the Hermite polynomials. The
¥, provide an orthonormal basis for H (one does not need to consider non-
normalizable wavefunctions as in the free particle case), so any initial wavefunc-
tion (g, 0) can be written in the form

"/}(% 0) = Z Cn¢n(q)

n=0
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with
+oo

Cn = Yn(q)¥(q,0)dq

(note that the 1), are real-valued). At later times, the wavefunction will be

i oo
W(a,) = Y cntbal@e H = D7 catpu(g)e D!
n=0 "0

22.2 Creation and annihilation operators

It turns out that there is a quite easy method which allows one to explicitly find
eigenfunctions and eigenvalues of the harmonic oscillator Hamiltonian (although
it’s harder to show it gives all of them). This also leads to a new representation
of the Heisenberg group (of course unitarily equivalent to the Schrodinger one
by the Stone-von Neumann theorem). Instead of working with the self-adjoint
operators () and P that satisfy the commutation relation

[Q, P] = ihl

mw 1 mw 1
“ V' 2k Q+1 V 2mwhp7 “ 2h @—i Qmwhp

which satisfy the commutation relation

we define

[a,a'] =1

h mwh
Q \/Qmw(a—i—a), P ) 5 (a—al)

the Hamiltonian operator is

Since

pP? 1
H - - 212
om 3"
1
=hw(=(a—a")?+(a+a")?)

1
:ihw(aaT +a'a)

1
= T —_
hw(a a+2>

The problem of finding eigenvectors and eigenvalues for H is seen to be
equivalent to the same problem for the operator

N =a'a
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Such an operator satisfies the commutation relations
[N,a] = [aTa,a] = a'[a,a] + [af,ala = —a

and
[N,a'] = af

If |¢) is a normalized eigenvector of N with eigenvalue ¢, one has
¢ = (cla’alc) =alc)|* > 0

so eigenvalues of N must be non-negative. Using the commutation relations of
N,a,a’ gives

Nalc) = ([N, a] + aN)c) = a(N = 1)|¢) = (¢ = D)alc)

and
Na'le) = ([N,a'] + a'N)|c) = aT(N + 1)|¢) = (¢ + 1)al|e)

This shows that a|c) will have eigenvalue ¢ — 1 for N, and a normalized eigen-
function for N will be

1
lc—1) = %G|C>
Similarly, since

lafle)|* = {claa’|c) = (c|(N +1)]e) = c+1

we have

le+1) = a'lc)

1
ve+1
If we start off with a state |0) that is a non-zero eigenvector for N with eigenvalue
0, we see that the eigenvalues of NV will be the non-negative integers, and for
this reason N is called the “number operator”.

We can find such a state by looking for solutions to

al0) =0

|0) will have energy eigenvalue %hw, and this will be the lowest energy eigenstate.
Acting by a' n-times on |0) gives states with energy eigenvalue (n -+ %)hw The
equation for |0) is

al0) = ( ";,‘;’Qm/mlth) o) = /5 (4 o) vt =0

One can check that this equation has a single normalized solution

mw 2

7h

Yolq) = (—)Te 54

which is the lowest-energy eigenfunction.
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vf3

n)

The rest of the energy eigenfunctions can be found by computing
ol at at 0) = 1 (mw)
v V21 2h

i <qnqu>n¢o(@

To show that these are the eigenfunctions of equation 22:2] one starts with the
definition of Hermite polynomials as a generating function

oo

p2at—1> _ Z Hn(q)% (22.3)

n=0

and interprets the H,, (¢q) as the Taylor coefficients of the left-hand side at ¢t = 0,
deriving the identity

d” 2
o0 = (")

o (‘”e—(q—wz)
dt o

=(~1)"e” (dze(qtf)
dq [t=0

Taking ¢ to \/%q this can be used to show that |n) = v, (q) is given by

In the physical interpretation of this quantum system, the state |n), with
energy hw(n + %) is thought of as a state describing n “quanta”. The state
|0) is the “vacuum state” with zero quanta, but still carrying a “zero-point”
energy of %hw The operators a' and a have somewhat similar properties to
the raising and lowering operators we used for SU(2) but their commutator is
different (the identity operator), leading to simpler behavior. In this case they
are called “creation” and “annihilation” operators respectively, due to the way
they change the number of quanta. The relation of such quanta to physical
particles like the photon is that quantization of the electromagnetic field (see
chapter involves quantization of an infinite collection of oscillators, with the
quantum of an oscillator corresponding physically to a photon with a specific
momentum and polarization. This leads to a well known problem of how to
handle the infinite vacuum energy corresponding to adding up %ﬁw for each
oscillator.

The first few eigenfunctions are plotted below. The lowest energy eigenstate
is a Gaussian centered at ¢ = 0, with a Fourier transform that is also a Gaussian
centered at p = 0. Classically the lowest energy solution is an oscillator at rest
at its equilibrium point (¢ = p = 0), but for a quantum oscillator one cannot
have such a state with a well-defined position and momentum. Note that the
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plot gives the wavefunctions, which in this case are real and can be negative.
The square of this function is what has an interpretation as the probability
density for measuring a given position.

Figure 22.1: Harmonic oscillator energy eigenfunctions.

While we have preserved constants in our calculations in this section, in what
follows we will often for simplicity set A = m = w = 1, which can be done by
an appropriate choice of units. Equations with the constants can be recovered
by rescaling. In particular, our definition of annihilation and creation operators
will be given by

L-ip)

(Q+iP), a' = 7

_ L
TV
22.3 The Bargmann-Fock representation

Working with the operators a and af and their commutation relation
[a,a'] =1

makes it clear that there is a simpler way to represent these operators than
the Schrodinger representation as operators on position space functions that we
have been using, while the Stone-von Neumann theorem assures us that this will
be unitarily equivalent to the Schrédinger representation. This representation
appears in the literature under a large number of different names, depending on
the context, all of which refer to the same representation:

Definition (Bargmann-Fock or oscillator or holomorphic or Segal-Shale-Weil
representation). The Bargmann-Fock (etc.) representation is given by taking as
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state space H = F, where F is the space of holomorphic functions (satisfying
d%z/} =0) on C with finite norm in the inner product

Wila) =+ [ TiGalo)e s (22.4)

where d*z = dRe(z)dIm(z). The space F is sometimes called “Fock space”. We
define the following two operators acting on this space:

d
a=—, a' =z
dz

Since

d d
= — Y o ST — 1— n—_ ,n
dz(zz ) Zdzz (n+ n)z z

the commutator is the identity operator on polynomials

[a,al]z"

[a,a'] =1
One finds
Theorem. The Bargmann-Fock representation has the following properties

o The elements "
z

Vn!

of F form=0,1,2,... are orthonormal.

e The operators a and a' are adjoints with respect to the given inner product
on F.

o The basis

Zn

e

of F forn=0,1,2,... is complete.
Proof. The proofs of the above statements are not difficult, in outline they are

e For orthonormality one can compute the integrals

_ 2
/Emz”e 217 q2 2
c

in polar coordinates.

e To show that z and % are adjoint operators, use integration by parts.

251



e For completeness, assume (n|y)) = 0 for all n. The expression for the |n)
as Hermite polynomials times a Gaussian then implies that

/F(q)e_éw(Q)dq =0

q2

2

for all polynomials F(¢). Computing the Fourier transform of ¢ (q)e
gives

b 22 =~ (—ikq)? o2
[ete v = [ 3 SR e uaydg =0
j=0 ’

2
So 1h(q)e” = has Fourier transform 0 and must be 0 itself. Alternatively,
one can invoke the spectral theorem for the self-adjoint operator H, which
guarantees that its eigenvectors form a complete and orthonormal set.

O

Since in this representation the number operator N = afa satisfies

NzZ" = 2z—2z" =nz"
dz

the monomials in z diagonalize the number and energy operators, so one has

ZTL

Vil

for the normalized energy eigenstate of energy hw(n + %)

Note that we are here taking the state space F to include infinite linear
combinations of the states |n), as long as the Bargmann-Fock norm is finite.
We will sometimes want to restrict to the subspace of finite linear combinations
of the |n), which we will denote F/*. This is the space C[z] of polynomials,
and F is its completion for the Bargmann-Fock norm.

22.4 Quantization by annihilation and creation
operators

The introduction of annihilation and creation operators involves allowing linear
combinations of position and momentum operators with complex coefficients.
These can be thought of as giving a Lie algebra representation of h3 ® C, the
complexified Heisenberg Lie algebra. This is the Lie algebra of complex poly-
nomials of degree zero and one on phase space M, with a basis 1,2,Z. One
has

h3C=M®C)aC

with
L g—ip), 2= —(¢+ip)
z=—=(q—1ip), z2=—4
oA oA
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a basis for the complexified dual phase space M®C. Note that these coordinates
provide a decomposition
MC=CaqgC

of the complexified dual phase space into subspaces spanned by z and by Z.
The Lie bracket is the Poisson bracket, extended by complex linearity. The
only non-zero bracket between basis elements is given by

{z,z} =1

Quantization by annihilation and creation operators produces a Lie algebra
representation by

I'(1) = —il, I'(z) = —ial, T'(Z) = —ia (22.5)

with the operator relation
[a,a'] =1

equivalent to the Lie algebra homomorphism property

[M(2), I'(2)] =T'({2,7})

We have now seen two different unitarily equivalent realizations of this Lie
algebra representation: the Schrodinger version I'y on functions of ¢, where

SRS

and the Bargmann-Fock version I'; . on functions of z, where

d

_ T
=—, a'=z
dz

Note that while annihilation and creation operators give a representation
of the complexified Heisenberg Lie algebra h3 ® C, this representation is only
unitary on the real Lie subalgebra h3. This corresponds to the fact that general
complex linear combinations of a and a' are not self-adjoint, to get something
self-adjoint one must take real linear combinations of

a+a' and i(a—af)

22.5 For further reading

All quantum mechanics books should have a similar discussion of the harmonic
oscillator, with a good example the detailed one in chapter 7 of Shankar [81].
One source for a detailed treatment of the Bargmann-Fock representation is
[26].
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Chapter 23

Coherent States and the
Propagator for the
Harmonic Oscillator

In chapter we found the energy eigenstates for the harmonic oscillator us-
ing annihilation and creation operator methods, and showed that these give a
new construction of the representation of the Heisenberg group on the quantum
mechanical state space, called the Bargmann-Fock representation. This repre-
sentation comes with a distinguished state, the state |0), and the Heisenberg
group action takes this state to a set of states known as “coherent states”. These
states are labeled by points of the phase space and provide the closest analog
possible in the quantum system of classical states (i.e., those with a well-defined
value of position and momentum variables).

Coherent states also evolve in time very simply, with their time evolution
given just by the classical time evolution of the corresponding point in phase
space. This fact can be used to calculate relatively straightforwardly the har-
monic oscillator position space propagator, which gives the kernel for the action
of time evolution on position space wavefunctions.

23.1 Coherent states and the Heisenberg group
action

Since the Hamiltonian for the d = 1 harmonic oscillator does not commute
with the operators a or a' which give the representation of the Lie algebra hs
on the state space F, the Heisenberg Lie group and its Lie algebra are not
symmetries of the system. Energy eigenstates do not break up into irreducible
representations of the group but rather the entire state space makes up such
an irreducible representation. The state space for the harmonic oscillator does
however have a distinguished state, the lowest energy state |0), and one can ask
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what happens to this state under the Heisenberg group action.
Elements of the complexified Heisenberg Lie algebra h3 ® C can be written
as
taz + BZ 4+

for a, B, in C (this choice of « simplifies later formulas). The Lie algebra b3
is the subspace of real functions, which will be those of the form

iz — 10z + 7y
for « € C and v € R. The Lie algebra structure is given by the Poisson bracket
{ianz — i1 Z + 71, tanz — i02Z + 2} = 2Im(@;ag)

Here b3 is identified with C @ R, and elements can be written as pairs (a,7),
with the Lie bracket

[(a1,7), (a2,72)] = (0, 2Im(@02))

This is just a variation on the labeling of b3 elements discussed in chapter[I3] and
one can again use exponential coordinates and write elements of the Heisenberg
group Hj also as such pairs, with group law

(a1,71)(2,72) = (1 + a2, 71 + 72 + Im(@102))

Quantizing using equation [22.5] one has a Lie algebra representation I, with
operators for elements of b

I(a,v) = T'(iaz —iaz + ) = aal —@a — iyl (23.1)
and exponentiating these will give the unitary representation
T

—aa—1iy

[(a,y) = e

We define operators
D(a) — eaaT—Ea

which satisfy (using Baker-Campbell-Hausdorff)
D(al)D(OQ) = D(a1 + a2)e_“m(510¢2)

Then ‘
(o, ) = D(a)e™™

and the operators I'(«, y) give a representation, since they satisfy
T(a, )0 (a2,72) = D(ay + ag)e " Frtm@es) — D((ay,y) (a2, 72))

Acting on |0) with D(«) gives:
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Definition (Coherent states). The coherent states in H are the states

aat—aa
la) = D(a)|0) = e 10)
where a € C.

Using the Baker-Campbell-Hausdorff formula

aat—aa aal —@a _la? —aa aat 122
e =e e & 2 =e (& e 2

SO
e L

aa' —aa _la2
la) = e* e™e™ 27 |0)

and since a|0) = 0 this becomes
Cla ot _lal? o a”
oy =e” 2 e |0) = e 2 Z—m) (23.2)
Since a|n) = y/n|n — 1)
ala) =e”

and this property could be used as an equivalent definition of coherent states.
In a coherent state the expectation value of a is

(alale) = (o] =(Q +iP)|a) =

/’

SO

(alQla) = V2Re(), (a|Pla) = v2Im(a)

Note that coherent states are superpositions of different states |n), so are
not eigenvectors of the number operator IV, and do not describe states with a
fixed (or even finite) number of quanta. They are eigenvectors of

1 .
a= E(Q—HP)

with eigenvalue « so one can try and think of V2a as a complex number whose
real part gives the position and imaginary part the momentum. This does not
lead to a violation of the Heisenberg uncertainty principle since this is not a
self-adjoint operator, and thus not an observable. Such states are however very
useful for describing certain sorts of physical phenomena, for instance the state
of a laser beam, where (for each momentum component of the electromagnetic
field) one does not have a definite number of photons, but does have a definite
amplitude and phase.
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Digression (Spin coherent states). One can perform a similar construction
replacing the group Hs by the group SU(2), and the state |0) by a highest weight
vector of an irreducible representation (m,, V™ = C™t1) of spin &. Writing | %)
for such a highest weight vector, we have

m(S)|5) = 515 mh(SHlg) =0

and we can create a family of spin coherent states by acting on |5) by elements
of SU(2). If we identify states in this family that differ only by a phase, the
states are parametrized by a sphere.

For the case n = 1, this is precisely the Bloch sphere construction of section

where we took as highest weight vector |%> = <(1)) In that case, all states

in the representation space C? were spin coherent states (identifying states that
differ only by scalar multiplication). For larger values of m, only a subset of the
states in C™ 1 will be spin coherent states.

23.2 Coherent states and the Bargmann-Fock
state space

One thing coherent states provide is an alternate complete set of norm one
vectors in H, so any state can be written in terms of them. However, these
states are not orthogonal (they are eigenvectors of a non-self-adjoint operator
so the spectral theorem for self-adjoint operators does not apply). The inner
product of two coherent states is

<B|Oé> :<0‘6_%‘5‘2€Ba6_%|a‘2eaaT|O>
—e4(lalP+18) B g eaa’ g
=ePa—3(lal*+181%) (23.3)
and |
[(Blay)|? = e~ P

The Dirac formalism used for representing states as position space or momen-
tum space distributions with a continuous basis |¢) or |p) can also be adapted
to the Bargmann-Fock case. In the position space case, with states functions of
g, the delta-function distribution é(q¢ — ¢’) provides an eigenvector |¢') for the
Q) operator, with eigenvalue ¢’. As discussed in chapter the position space
wavefunction of a state |1)) can be thought of as given by

Y(q) = (qlv¥)

with
(qlg") =0(q—q")
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In the Bargmann-Fock case, there is an analog of the distributional states
|g), given by taking states that are eigenvectors for a, but unlike the |a), are
not normalizable. We define

wal i w" - lw)?
0w) =€ 10) = ) —=In) =€ =e 2 [w)
n=0 \/H
Instead of equation [23.3] such states satisfy
(Ouwr |0ws) = e

The |d,,) behave in a manner analogous to the delta-function, since the Bargmann-
Fock analog of computing (g|1) using the function space inner product is, writ-
ing

the computation

1 _
Guto) =1 [ TP p(w)du
T Jc
:l/ eTTelvl’® ic —d*w
TJc n=0 nm
1 = 2mogm 2 — w
P —|w]| 7d2
= e c w
W/(jw;)\/m! vm! 7;) n!
oo Zn
= Z Cn—F—= = ¢(z>
n=0 m
Here we have used the orthogonality relations
/ e v g2y = 60, m (23.4)
Cc

It is easily seen that the Bargmann-Fock wavefunction of a coherent state is
given by

a|2

(0,|la) = e™ 2 e** (23.5)
while for number operator eigenvector states
Z’ﬂ
1) = —
In section we will compute the Bargmann-Fock wavefunction (d,|q) for
position eigenstates, see equation [23.13
Like the |o) (and unlike the |g) or |p)), these states |d,,) are not orthogonal
for different eigenvalues of a, but they span the state space, providing an over-
complete basis, and satisfy the resolution of the identity relation

1 2
1= 7/ 160) (w611 20 (23.6)
T Jc
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This can be shown using
0o o 00 w™
— In =
wi=(E ) (5 )

1= n)n
n=0

and the orthogonality relations Note that the normalized coherent states
similarly provide an over-complete basis, with

as well as

_i aa2a
=~ [ lo)(aid (28,7

To avoid confusion over the various ways in which complex variables z and
w appear here, note that this is just the analog of what happens in the position
space representation, where ¢ is variously a coordinate on classical phase space,
an argument of a wavefunction, a label of a position operator eigenstate, and
a multiplication operator. The analog of the position operator @ here is af,
which is multiplication by z (unlike @Q, not self-adjoint). The conjugate com-
plex coordinate Z is analogous to the momentum coordinate, quantized to a
differentiation operator. One confusing aspect of this formalism is that complex
conjugation takes elements of H (holomorphic functions) to antiholomorphic
functions, which are in a different space. The quantization of Z is not the
complex-conjugate of z, but the adjoint operator.

23.3 The Heisenberg group action on operators
The representation operators
I(a,7) = D(a)e™
act not just on states, but also on operators, by the conjugation action
D(a)aD(a)"' =a—a, D(@)d'D(a) ' =d' —a

(on operators the phase factors cancel). These relations follow from the fact
that the commutation relations

[aa! —@a,a) = —a, [aa! —@a,al] = —a
are the derivatives with respect to ¢ of
D(ta)aD(ta)™ ' = a —ta, D(ta)a'D(ta)™ =a' —ta (23.8)

At t = 0 this is just equation[5.1} but it holds for all ¢ since multiple commutators
vanish.
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We thus see that the Heisenberg group acts on annihilation and creation
operators by shifting the operators by a constant. The Heisenberg group acts
by automorphisms on its Lie algebra by the adjoint representation (see section
[15.5)), and one can check that the I'(c,7) are intertwining operators for this
action (see chapter. The constructions of this chapter can easily be general-
ized from d = 1 to general values of the dimension d. For finite values of d the
I'(a,7) act on states as an irreducible representation, as required by the Stone-
von Neumann theorem. We will see in chapter that in infinite dimensions
this is no longer necessarily the case.

23.4 The harmonic oscillator propagator

In section we saw that for the free particle quantum system, energy eigen-
states were momentum eigenstates, and in the momentum space representation
time evolution by a time interval T' was given by a kernel (see equation [12.6])

- 1.
U(T, k‘) _ EefzﬁlﬁT

The position space propagator was found by computing the Fourier transform
of this. For the harmonic oscillator, energy eigenstates are no longer momentum
eigenstates and different methods are needed to compute the action of the time
evolution operator e AT

23.4.1 The propagator in the Bargmann-Fock representa-
tion

In the Bargmann-Fock representation the Hamiltonian is the operator

1 d 1
= T 2 = i
H w(aa+2) W(Zdz+2)

(here we choose h = 1 and m = 1, but no longer fix w = 1) and energy eigenstates

are the states
Z’I’L

7

()

will be diagonal in this basis, with

= [n)

with energy eigenvalues

e—iHT
e—iHT|n> _ e—iw(n+%)T|n>

Instead of the Schrédinger picture in which states evolve and operators are
constant, one can instead go to the Heisenberg picture (see section [7.3)) where
states are constant and operators O evolve in time according to

d ,
ZO(t) = i[H,0(t)
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with solution 4 4
O(t) = "™ O(0)e~

In the harmonic oscillator problem we can express other operators in terms of
the annihilation and creation operators, which evolve according to

d

. . d . ‘
%a(t) =i[H,a(t)] = —iwa, %aT(t) = i[H, af (t)] = iwal

with solutions ‘ ‘
a(t) = e”“a(0), af(t) = e“tal(0)

The Hamiltonian operator is time invariant.

Questions about time evolution now become questions about various prod-
ucts of annihilation and creation operators taken at various times, applied to
various Heisenberg picture states. Since an arbitrary state is given as a linear
combination of states produced by repeatedly applying a'(0) to |0), such prob-
lems can be reduced to evaluating expressions involving just the state |0), with
various creation and annihilation operators applied at different times. Non-zero
results will come from terms involving

(Ola(T)a’ (0)[0) = e~*T

which for T" > 0 has an interpretation as an amplitude for the process of adding
one quantum to the lowest energy state at time ¢t = 0, then removing it at time
t="T.

23.4.2 The coherent state propagator

One possible reason these states are given the name “coherent” is that they re-
main coherent states as they evolve in time (for the harmonic oscillator Hamil-
tonian), with « evolving in time along a classical phase space trajectory. If the
state at ¢ = 0 is a coherent state labeled by ag (|1(0)) = |ap)), by 23:2] at later

times one has

[¥(t)) =" |ao)
; levgl? > all
:esztefT Z 0 |TL>
n:O\/a

—iwnt n

_e—i%wte—% i € ) |n>
n=0 \/m

—iwt

o
:e_i%Wte_% (e thao)n ‘n>
n=0 v n!
:e_i%“t|e_i“’ta0) (23.9)
Up to the phase factor e‘iém, this remains a coherent state, with time de-

pendence of the label a given by the classical time-dependence of the complex
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coordinate z(t) = %(\/@q(t) + ﬁp(t)) for the harmonic oscillator (see [22.1)
with 5(0) = Q.

Equations and can be used to calculate a propagator function in
terms of coherent states, with the result

—1 1 — —iw i
(arle HT|a0> = exp(—§(|ozo|2 + |aT|2) + arage T — in) (23.10)

23.4.3 The position space propagator

Coherent states can be expressed in the position space representation by calcu-
lating

al?

(gla) =(gle~ =" |0)

| o 1 dy, W.1 2
:e*QTe\/E(\/‘;q ﬁdq)(i)zef%q
T

w.1 _lo? [T, ——o_ d 2 2
:(7)16—%604 %qe \/(Z%Jdlle_%e_%q

T

W1 Jo)? 2 w(g—_a )2
:(7)167%67%604\/%16 el Civerd)

™

W1 _lal® a2 w2 5
=(Z)ie” T e Te 29 VAWM (23.11)

™

This expression gives the transformation between the position space basis and
coherent state basis. The propagator in the position space basis can then be
calculated as

—i 1 —i
(arle™ o) = =5 | tarlaz)(arie™ " ao)aolao)darda
C

using equations [23.10} [23.11] (and its complex conjugate), as well as equation
2317

We will not perform this (rather difficult) calculation here, but just quote
the result, which is

—¢HT w iw 2 2
= T) -2
{arle 407 \/ i2m sin(wT') exp <2 sin(wT) (90 + ar) cos(wT) qho))

(23.12)
One can easily see that as T — 0 this will approach the free particle propagator

(equation with m = 1)

. [ 1 a2
<CIT|€ zHT|q0> ~ Z.271-TegT(QT qo0)

and as in that case becomes the distribution §(go — ¢r) as T — 0. Without
too much difficulty, one can check that satisfies the harmonic oscillator
Schrédinger equation (in ¢ = gr and ¢t = T, for any initial 1(qo, 0)).

As in the free particle case, the harmonic oscillator propagator can be defined
first as a function of a complex variable s = 7+ 47", holomorphic for 7 > 0, then
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taking the boundary value as 7 — 0. This fixes the branch of the square root in
23.12] and one finds (see for instance section 7.6.7 of [I08]) that the square root
factor needs to be taken to be

w — e—iFe—ing w
i2m sin(wT) 27| sin(wT)|

for wT € [nm, (n+ 1)7].

23.5 The Bargmann transform

The Stone von-Neumann theorem implies the existence of:

Definition. Bargmann transform
There is a unitary map called the Bargmann transform

B:Hg— F

intertwining the Schridinger representation and the Bargmann-Fock represen-
tation, i.e., with operators satisfying the relation

['s(X) = B~ 'Tzp(X)B
for X € bs.

In practice, knowing B explicitly is often not needed, since the representation

independent relation
1

V2

can be used to express operators either purely in terms of a and af, which have
a simple expression

a (Q+1iP)

_d

=0
in the Bargmann-Fock representation, or purely in terms of Q and P which have
a simple expression

CLT:Z

d

Q=gq, qu

in the Schrodinger representation.
To compute the Bargmann transform one uses equation [23.11] for non-
normalizable continuous basis states |d,), to get

1 _
(alon) = (2) " e % om0 VBT
™
and
w\ 1 u? ©q? /2w
(0ulq) = (—) e"Te 2T evivHa (23.13)
7r



The Bargmann transform is then given by

+oo
(BY)(z) = / (6.:19) (al)dg

w i 22 Foo w 2
= (7) e T / e 27 V2R (q)dg (23.14)
™ — 00

(here ¥(q) is the position space wavefunction) while the inverse Bargmann trans-
form is given by

(B~1¢)(q) =%/C<q|§u><5u\¢>e—\u|zdzu

_1 (E)Ief%f/ o5 VBT () Il g2y
C

™ \T

(here ¢(z) is the Bargmann-Fock wavefunction).
As a check of equation [23.14] consider the case of the lowest energy state in
the Schréodinger representation, where |0) has coordinate space representation

and

1 +oo 2
()" | eFeeremmg
Vs

—00

:(W)%/“’" ()" 4y

™ —00

which is the expression for the state |0) in the Bargmann-Fock representation.

For an alternate way to compute the harmonic oscillator propagator, the
kernel corresponding to applying the Bargmann transform, then the time evo-
lution operator, then the inverse Bargmann transform can be calculated. This
will give

» 1 B o
(arle™ o) = [ tarl6 6.l an)e T

1 _er 2
=—¢€ 2 <qT‘§u><5ue*WT |q0>e Iul d2u
7T c

from which [23.12] can be derived by a (difficult) manipulation of Gaussian inte-
grals.
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23.6 For further reading

Coherent states and spin coherent states are discussed in more detail in chapter
21 of [81] and in [66]. For more about the Bargmann transform, see chapter 4 of
[62] for its relation to coherent states and [26] for its relation to the Heisenberg

group.
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Chapter 24

The Metaplectic
Representation and
Annihilation and Creation
Operators, d =1

In section we saw that annihilation and creation operators quantize com-
plexified coordinate functions Z,z on phase space, giving a representation of
the complexified Heisenberg Lie algebra h3 ® C. In this chapter we’ll see what
happens for quadratic combinations of the Z, z, which after quantization give
quadratic combinations of the annihilation and creation operators. These pro-
vide a Bargmann-Fock realization of the metaplectic representation of s[(2, R),
the representation which was studied in section using the Schrodinger real-
ization. Using annihilation and creation operators, the fact that the exponenti-
ated quadratic operators act with a sign ambiguity (requiring the introduction
of a double cover of SL(2,R)) is easily seen.

The metaplectic representation gives intertwining operators for the SL(2, R)
action by automorphisms of the Heisenberg group. The use of annihilation and
creation operators to construct these operators introduces an extra piece of
structure, in particular picking out a distinguished subgroup U(1) C SL(2,R).
Linear transformations of the a,a’ preserving the commutation relations (and
thus acting as automorphisms of the Heisenberg Lie algebra structure) are
known to physicists as “Bogoliubov transformations”. They are naturally de-
scribed using a different, isomorphic, form of the group SL(2,R), a group of
complex matrices denoted SU(1,1).
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24.1 The metaplectic representation for d =1 in
terms of ¢ and af

Poisson brackets of order two combinations of z and Z can easily be computed
using the basic relation {z,Z} = 7 and the Leibniz rule. On basis elements
2,%Z%, 2% the non-zero brackets are

24,z
{27, 2%} = —2i2%, {27,7°} = 2i7%, {7%,2°} = —4izZ

Recall from equation that quadratic real combinations of p and ¢ can be

identified with the Lie algebra s[(2,R) of traceless 2 by 2 real matrices with

basis
0 1 0 0 1 0
2= o) 7=(1 0) o= %)

Since we have complexified, allowing complex linear combinations of basis
elements, our quadratic combinations of z and Z are in the complexification of
sl(2,R). This is the Lie algebra sl(2, C) of traceless 2 by 2 complex matrices.
We can take as a basis of 5[(2, C) over the complex numbers

1
Z=E-F, Xi= 5(Gii(E+F))
which satisfy
[Z,X_|=-2iX_, [Z,X;]=2X,, [X4,X_|=—-iZ

and then use as our isomorphism between quadratics in z,Z and sl(2, C)

z2 22
?<—>X+, 5<—>X,, 22 7

The element )
_ 0 1
2Z = f(q2+p2)<—>Z: ( 1 O)

2
exponentiates to give a SO(2) = U(1) subgroup of SL(2,R) with elements of
the form
9z [ cosf sind
c = (— sind cos 9) (24.1)

Note that h = 3(p? + ¢*) = 2% is the classical Hamiltonian function for the
harmonic oscillator.

We can now quantize quadratics in z and Z using annihilation and creation
operators acting on the Fock space F. There is no operator ordering ambiguity
for

z2—>(aT)2:z7 22—>a2:@
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For the case of zZ (which is real), in order to get the sl(2,R) commutation
relations to come out right (in particular, the Poisson bracket {z?, 22} = —4iz%),
we must take the symmetric combination

2= Yaat +ata) —ataq £t =4 L
zz%Q(aa +a a)faa+2fzdz+2
(which of course is the standard Hamiltonian for the quantum harmonic oscil-
lator).
Multiplying as usual by —:¢ (to get a unitary representation of the real Lie
algebra sl(2,R)), an extension of the Bargmann-Fock representation Iz of
h3 ® C (see section to an sl(2, C) representation can be defined by taking

7 7 1
pr(Xy) = —§a2, pr(X_)= *Q(QT)z’ Br(Z) = *Zi(aTaJraaT)

This is the right choice of I3 z(Z) to get an sl(2, C) representation since

[l (), T ()] = | -3, 501 =~ Jaa +al0)

= — iTp(Z) = Tp([X4, X_])

As a representation of the real sub-Lie algebra s[(2,R) of sl(2, C), one has
(using the fact that G, E + F, E — F is a real basis of s[(2,R)):

Definition (Metaplectic representation of sl(2,R)). The representation I'yp
on F given by

2r(G) = Tp(Xy + X_) =~ ((al)? +a?)

Br(E+F) =Thp(—i(Xs — X)) = —5((a")* - a?) (24.2)

1
(B = F) = Upp(2) = —i(ala + aa)
is a representation of s(2,R), called the metaplectic representation.

Note that this is clearly a unitary representation, since all the operators are
skew-adjoint (using the fact that a and af are each other’s adjoints).

This representation I'y » on F will be unitarily equivalent using the Bargmann
transform (see section to the Schrédinger representation I'y found earlier
when quantizing 2, p?, pq as operators on H = L?(R). For many purposes it is
however much easier to work with since it can be studied as the state space of
the quantum harmonic oscillator, which comes with a basis of eigenvectors of
the number operator afa. The Lie algebra acts simply on such eigenvectors by
quadratic expressions in the annihilation and creation operators.

One thing that can now easily be seen is that this representation I does
not integrate to give a representation of the group SL(2,R). If the Lie algebra
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representation I'; » comes from a Lie group representation I'gp of SL(2,R), we

have
I-\BF<60Z) _ eGF’BF(Z)

Upp(Z) = —i <aTa+ ;) _ (N+ ;)

Lpr(e??)|n) = e 002 |n)

where

SO

Taking 6 = 2, this gives an inconsistency
Ipp(1)[n) = —|n)

This is the same phenomenon first described in the context of the Schrodinger
representation in section [I7.1]

As remarked there, it is the same sort of problem we found when studying the
spinor representation of the Lie algebra s0(3). Just as in that case, the problem
indicates that we need to consider not the group SL(2,R), but a double cover,
the metaplectic group Mp(2,R). The behavior here is quite a bit more subtle
than in the Spin(3) double cover case, where Spin(3) was the group SU(2),
and topologically the only non-trivial cover of SO(3) was the Spin(3) one since
m1(SO(3)) = Zs. Here m1(SL(2,R)) = Z, and each extra time one goes around
the U(1) subgroup we are looking at, one gets a topologically different non-
contractible loop in the group. As a result, SL(2,R) has lots of non-trivial
covering groups, of which only one interests us, the double cover Mp(2,R). In

particular, there is an infinite-sheeted universal cover SL(2,R), but that plays
no role here.

Digression. This group Mp(2,R) is quite unusual in that it is a finite dimen-
sional Lie group, but does not have any sort of description as a group of finite
dimensional matrices. This is due to the fact that all its finite dimensional
irreducible representations are the same as those of SL(2,R), which has the
same Lie algebra (these are representations on homogeneous polynomials in two
variables, those first studied in chapter@ which are SL(2,C) representations
which can be restricted to SL(2,R)). These finite dimensional representations
factor through SL(2,R) so their matrices don’t distinguish between two different
elements of Mp(2,R) that correspond as SL(2,R) elements.

There are no faithful finite dimensional representations of Mp(2,R) itself
which could be used to identify Mp(2,R) with a group of matrices. The only
faithful irreducible representation available is the infinite dimensional one we are
studying. Note that the lack of a matriz description means that this is a case
where the definition we gave of a Lie algebra in terms of the matriz exponential
does not apply. The more general geometric definition of the Lie algebra of
a group in terms of the tangent space at the identity of the group does apply,
although to do this one really needs a construction of the double cover Mp(2,R),
which is quite non-trivial and not done here. This is not a problem for purely
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Lie algebra calculations, since the Lie algebras of Mp(2,R) and SL(2,R) can
be identified.

Another aspect of the metaplectic representation that is relatively easy to
see in the Bargmann-Fock construction is that the state space F is not an
irreducible representation, but is the sum of two irreducible representations

F:Feven@Fodd

where Foyepn consists of the even functions of z, F,qq of odd functions of z. On
the subspace Ff" C F of finite sums of the number eigenstates, these are the
even and odd degree polynomials. Since the generators of the Lie algebra rep-
resentation are degree two combinations of annihilation and creation operators,
they will take even functions to even functions and odd to odd. The separate
irreducibility of these two pieces is due to the fact that (when n and m have
the same parity), one can get from state |n) to any another |m) by repeated
application of the Lie algebra representation operators.

24.2 Intertwining operators in terms of « and af

Recall from the discussion in chapter 20| that the metaplectic representation of
Mp(2,R) can be understood in terms of intertwining operators that arise due to
the action of the group SL(2,R) as automorphisms of the Heisenberg group Hs.
Such intertwining operators can be constructed by exponentiating quadratic
operators that have the commutation relations with the @, P operators that
reflect the intertwining relations (see equation. These quadratic operators
provide the Lie algebra version of the metaplectic representation, discussed in
section using the Lie algebra s[(2, R), which is identical to the Lie algebra of
Mp(2,R). In sections [20.3.2| and [20.3.4] these representations were constructed
explicitly for SO(2) and R subgroups of SL(2, R) using quadratic combinations
of the () and P operators. Here we’ll do the same thing using annihilation and
creation operators instead of Q and P operators.

For the SO(2) subgroup of equation (this is the same one discussed in
section , in terms of z and Z coordinates the moment map will be

Wz = 22

{nz, (2)} = <é _Ol> (i) (24.3)

Quantization by annihilation and creation operators gives (see [24.2)

and one has

[p(22) = Dpp(2) = 5 (aa’ +a'a)

and the quantized analog of 24.3]is

i ()6 00 e
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For group elements, go = €/ € SO(2) C SL(2,R) and the representation is
given by unitary operators

Ugy = Tpp(e??) = e~i8(aa+a'®)

a _ e? 0 a
@0 )@

Note that, using equation [5.1

i (0 () 80') = ot et ()]

so equation is the derivative at § = 0 of equation We see that, on
operators, conjugation by the action of this SO(2) subgroup of SL(2,R) does
not mix creation and annihilation operators. On the distinguished state |0), Uy,
acts as the phase transformation

which satisfy

Ugo|0) = e~ 20)

Besides there are also the following other Poisson bracket relations
between order two and order one polynomials in z,Zz

{2272} = 2iz, {2%,2} =0, {Z° 2} =-2iz, {z*,2} =0 (24.6)
The function .
p=5@E -2

will provide a moment map for the R C SL(2,R) subgroup studied in section
[20.3:4] This is the subgroup of elements g, that for r € R act on basis elements

p by ) r
<1qo) - (eo eor> (?,) = (:f;) (24.7)

or on basis elements z,Z by

z . coshr sinhr z
z sinhr coshr z

This moment map satisfies the relations
zZ 0 1\ [z
(10 0) () 49
/ 1 2 2
() = (0 — (a1)?)

- ()] = (o) (2)
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and intertwining operators
Uy, = Tar(rn) — 5@ —(ah)?)
which satisfy
1

0
T .
a -1 <1 0) a\ _ (coshr sinhr a
Usr (aT> Ug =e¢ at )~ \sinhr coshr) \af (24.9)
The operator 3 (a” — (a')?) does not commute with the number operator IV,
or the harmonic oscillator Hamiltonian H, so the transformations U, are not

“symmetry transformations”, preserving energy eigenspaces. In particular they
act non-trivially on the state |0), taking it to a different state

10}, = e2(@’=(@"%)q)

24.3 Implications of the choice of 2,Z

The definition of annihilation and creation operators requires making a specific
choice, in our case

= st i), === i)

for complexified coordinates on phase space, which after quantization becomes
the choice

1 ) 1 .
- \—@(Q—&—zP), al = E(Q—ZP)

Besides the complexification of coordinates on phase space M, the choice of
z introduces a new piece of structure into the problem. In chapter we’ll
examine other possible consistent such choices, here will just point out the
various different ways in which this extra structure appears.

a

e The Schrodinger representation of the Heisenberg group comes with no
particular distinguished state. The unitarily equivalent Bargmann-Fock
representation does come with a distinguished state, the constant function
1. It has zero eigenvalue for the number operator N = afa, so can be
thought of as the state with zero “quanta”, or the “vacuum” state and
can be written |0). Such a constant function could also be characterized
(up to scalar multiplication), as the state that satisfies the condition

al0)y =0

e The choice of coordinates z and Z gives a distinguished choice of Hamil-
tonian function, h = 2Z. After quantization this corresponds to a distin-
guished choice of Hamiltonian operator

1 1 1
H:§(aTa+aaT):aTa+§:N+§
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With this choice the distinguished state |0) will be an eigenstate of H with
eigenvalue %

The choice of the coordinate z gives a decomposition
MC=CasqC (24.10)

where the first subspace C has basis vector z, the second subspace has
basis vector Z.

The decomposition picks out a subgroup U(1) C SL(2,R), those
symplectic transformations that preserve the decomposition. In terms of
the coordinates z,z, the Lie bracket relations [I6.15] giving the action of
sl(2,R) on M become

{2z,2} = —iz, {2z,Z} =iz
2 2
{Z,Z}zo, {z,z}:iz
=2 2
(5o} (2

The only basis element of sI(2, R) does not mix the z and Z coordinates
is zz. We saw (see equation [24.1) that upon exponentiation this basis
element gives the subgroup of SL(2,R) of matrices of the form

cosf sinf

—sinf cosf
Quantization of polynomials in z,Z involves an operator ordering ambigu-
ity since a and a' do not commute. This can be resolved by the following
specific choice, one that depends on the choice of z and Z:

Definition. Normal ordered product

Given any product P of the a and a' operators, the normal ordered product
of P, written :P: is given by re-ordering the product so that all factors at
are on the left, all factors a on the right, for example

«a?a’a(ah)?: = (ah)*a®

For the case of the Hamiltonian H, the normal ordered version

1
H: = :i(aaT +a'a): =a'a

could be chosen. This has the advantage that it acts trivially on |0) and has
integer rather than half-integer eigenvalues on F. Upon exponentiation
one gets a representation of U(1) with no sign ambiguity and thus no
need to invoke a double covering. The disadvantage is that :H: gives a
representation of u(1) that does not extend to a representation of sl(2, R).
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24.4 SU(1,1) and Bogoliubov transformations

Changing bases in complexified phase space from ¢, p to z,Z changes the group of
linear transformations preserving the Poisson bracket from the group SL(2,R)
of real 2 by 2 matrices of determinant one to an isomorphic group of complex 2
by 2 matrices. We have

Theorem. The group SL(2,R) is isomorphic to the group SU(1,1) of complex
2 by 2 matrices
a f
5 %)

o = [B* =1

such that

Proof. The equations for Z,z in terms of ¢,p imply that the change of basis

between these two bases is
z\ _ 1 /1 q
z) 2\l —i)\p

The matrix for this transformation has inverse

50

Conjugating by this change of basis matrix, one finds

L (1 1\(a B\ 1 (1 i)\ _ (Re(la+p) —Im(a-p) (24.11)
Ve \—i i)\pB @) 2\l —i Im(a+5) Re(a—p) '
The right hand side is a real matrix, with determinant one, since conjugation
doesn’t change the determinant. O

Note that the change of basis[24.11]is reflected in equations[24.3|and 24.8 where
the matrices on the right hand side are the matrix Z and G respectively, but
transformed to the Z, z basis by

Another equivalent characterization of the group SU(1,1) is as the group
of linear transformations of C?, with determinant one, preserving the indefinite
Hermitian inner product

(), -
€2/ \%2/ /11
One finds that
(96 D), ~(C)-()
v 0)\e2)\v )\ /1 \\e2) \&a) /4,

when v = 3,6 =@ and |a|? — |8]> = 1.
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Applied not to Z,z but to their quantizations a,a’, such SU(1,1) trans-
formations are known to physicists as “Bogoliubov transformations”. One can
easily see that replacing the annihilation operator a by

a = aa+ Ba’

leads to operators with the same commutation relations when |a|? — |5]? = 1,
since B
(@', (@)1 = [aa + Ba', @a’ + Ba] = (jaf* — |5]*)1

By equation [24.11|the SO(2) C SL(2,R) subgroup of equation appears
in the isomorphic SU(1,1) group as the special case a = €, 3 = 0, so matrices

of the form
et? 0
(5 %)

Acting with this subgroup on the annihilation and creation operators just changes
a by a phase (and a' by the conjugate phase).

The subgroup [24.7] provides more non-trivial Bogoliubov transformations,
with conjugation by U, giving (see equation annihilation and creation
operators

a, = acoshr +a'sinhr, af = asinhr + af coshr

For r # 0, the state
r 2 2
0}, = 5=« o)

will be an eigenstate of neither H nor the number operator IV, and describes
a state without a definite number of quanta. It will be the ground state for a
quantum system with Hamiltonian operator

1 1
= (cosh(2r)a'a + 5 sinh(2r)(a? + (a)?) + sinh® r + 3

DN | =

H, = aiaT +

Such quadratic Hamiltonians that do not commute with the number operator
have lowest energy states |0),. with indefinite number eigenvalue. Examples of
this kind occur for instance in the theory of superfluidity.

24.5 For further reading

The metaplectic representation is not usually mentioned in the physics litera-
ture, and the discussions in the mathematical literature tend to be aimed at
an advanced audience. Two good examples of such detailed discussions can be
found in [26] and chapters 1 and 11 of [95]. To see how Bogoliubov transfor-
mations appear in the theory of superfluidity, see for instance chapter 10.3 of
[87].
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Chapter 25

The Metaplectic
Representation and
Annihilation and Creation
Operators, arbitrary d

In this chapter we’ll turn from the d = 1 case of chapter to the general
case of arbitrary d. The choice of d annihilation and creation operators picks
out a distinguished subgroup U(d) C Sp(2d,R) of transformations that do not
mix annihilation and creation operators, and the metaplectic representation
gives one a representation of a double cover of this group. We will see that
normal ordering the products of annihilation and creation operators turns this
into a representation of U(d) itself (rather than the double cover). In this
way, a U(d) action on the finite dimensional phase space gives operators that
provide an infinite dimensional representation of U(d) on the state space of the
d dimensional harmonic oscillator.

This method for turning unitary symmetries of the classical phase space
into unitary representations of the symmetry group on a quantum state space
is elaborated in great detail here not just because of its application to simple
quantum systems like the d dimensional harmonic oscillator, but because it
will turn out to be fundamental in our later study of quantum field theories.
In such theories the observables of interest will be operators of a Lie algebra
representation, built out of quadratic combinations of annihilation and creation
operators. These arise from the construction in this chapter, applied to a unitary
group action on phase space (which in the quantum field theory case will be
infinite dimensional).

Studying the d dimensional quantum harmonic oscillator using these meth-
ods, we will see in detail how in the case d = 2 the group U(2) C Sp(4,R) com-
mutes with the Hamiltonian, so acts as symmetries preserving energy eigenspaces
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on the harmonic oscillator state space. This gives the same construction of all
SU(2) C U(2) irreducible representations that we studied in chapter The
case d = 3 corresponds to the physical example of an isotropic quadratic central
potential in three dimensions, with the rotation group acting on the state space
as an SO(3) subgroup of the subgroup U(3) C Sp(6,R) of symmetries com-
muting with the Hamiltonian. This gives a construction of angular momentum
operators in terms of annihilation and creation operators.

25.1 Multiple degrees of freedom

Up until now we have been working with the simple case of one physical degree of
freedom, i.e., one pair (@, P) of position and momentum operators satisfying the
Heisenberg relation [Q, P] = i1, or one pair of adjoint operators a, al satisfying
[a,a’] = 1. We can easily extend this to any number d of degrees of freedom by
taking tensor products of our state space F, and d copies of our operators, each
acting on a different factor of the tensor product. Our new state space will be

H=Fy=F® - 0F
d times

and we will have operators

QP j=1,...,d
satisfying
[ijpk} = iéjk‘]-? [Q]WQk] = [Pjvpk] =0
Here @); and P; act on the j'th term of the tensor product in the usual way,

and trivially on the other terms.
We define annihilation and creation operators then by

1 . 1
= E(Qj+lpj)v a;- = ﬁ

a;

(Q; —1iP;), j=1,...,d

These satisfy:

Definition (Canonical commutation relations). The canonical commutation re-
lations (often abbreviated CCR) are

[ajaalu = jk]-a [ajaak’} = [a;’?a’T] =0

In the Bargmann-Fock representation H = F; is the space of holomorphic func-
tions in d complex variables z; (with finite norm in the d dimensional version

of 22.4)) and we have
9

a; = — .
J 0 7
0z

The harmonic oscillator Hamiltonian for d degrees of freedom will be

1
H=-=
2 4

d
Jj=

d
(PP+Q5)=>_ (a}aj + ;) (25.1)
j=1

1
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where one should keep in mind that each degree of freedom can be rescaled
separately, allowing different parameters w; for the different degrees of freedom.
The energy and number operator eigenstates will be written

[P1,...,n4)

where .
a}aj|n1,...,nd> = Nj|ni,...,ng) =nj|n,...,ng)

For d = 3 the harmonic oscillator problem is an example of the central po-
tential problem described in chapter and will be discussed in more detail
in section It has an SO(3) symmetry, with angular momentum opera-
tors that commute with the Hamiltonian, and spaces of energy eigenstates that
can be organized into irreducible SO(3) representations. In the Schrodinger
representation states are in H = L?(R3), described by wavefunctions that can
be written in rectangular or spherical coordinates, and the Hamiltonian is a
second-order differential operator. In the Bargmann-Fock representation, states
in F3 are described by holomorphic functions of 3 complex variables, with op-
erators given in terms of products of annihilation and creation operators. The
Hamiltonian is, up to a constant, just the number operator, with energy eigen-
states homogeneous polynomials (with eigenvalue of the number operator their
degree).

Either the P;, Q; or the aj, a} together with the identity operator will give a
representation of the Heisenberg Lie algebra hag41 on H, and by exponentiation
a representation of the Heisenberg group Hsgy1. Quadratic combinations of
these operators will give a representation of the Lie algebra sp(2d, R), one that
exponentiates to the metaplectic representation of a double cover of Sp(2d,R).

25.2 Complex coordinates on phase space and
U(d) C Sp(2d,R)

As in the d = 1 case, annihilation and creation operators can be thought of
as the quantization of complexified coordinates z;,%; on phase space, with the
standard choice given by

1 . _ 1 )
Zj = ﬁ(qj —ipj), Zj = ﬁ(%’ +ip;)

Such a choice of z;,Z; gives a decomposition of the complexified Lie algebra
sp(2d, C) (as usual, the Lie bracket is the Poisson bracket) into three Lie sub-
algebras as follows:

e A Lie subalgebra with basis elements z;z;. There are %(d2 + d) distinct
such basis elements. This is a commutative Lie subalgebra, since the
Poisson bracket of any two basis elements is zero.

e A Lie subalgebra with basis elements Z;Z;. Again, this has dimension
3(d? + d) and is a commutative Lie subalgebra.
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e A Lie subalgebra with basis elements z;Z;,, which has dimension d?. Com-
puting Poisson brackets one finds

{2iZk, 2Zm} =2i{Zk, 21Zm } + Zi{2j, 21Zm }
= — iZjEm(Skl + izlzkéjm (25.2)

In this chapter we’ll focus on the third subalgebra and the operators that arise
by quantization of its elements.

Taking all complex linear combinations, this subalgebra can be identified
with the Lie algebra gl(d, C) of all d by d complex matrices. One can see this
by noting that if Ej; is the matrix with 1 at the j-th row and k-th column,
zeros elsewhere, one has

(Eik, Eim] = Ejm6r — Eikdjm
and these provide a basis of gl(d, C). Identifying bases by
Z'ijk — Ejk

gives the isomorphism of Lie algebras. This gl(d, C) is the complexification of
u(d), the Lie algebra of the unitary group U(d). Elements of u(d) will corre-
spond to, equivalently, skew-adjoint matrices, or real linear combinations of the
quadratic functions

Z2jZk + ZjZk, i(ZjEk — Ejzk)
on M.

In section[I16.1.2) we saw that the moment map for the action of the symplectic
group on phase space is just the identity map when we identify the Lie algebra
sp(2d, R) with order two homogeneous polynomials in the phase space coor-
dinates g¢j,p;. We can complexify and identify sp(2d, C) with complex-valued
order two homogeneous polynomials which we write in terms of the complexi-
fied coordinates z;,%;. The moment map is again the identity map, and on the
sub-Lie algebra we are concerned with, is explicitly given by

A€gld,C) = pa=1iY_ zAjz (25.3)
3ok
We can at the same time consider the complexification of the Heisenberg Lie
algebra, using linear functions of z; and Z;, with Poisson brackets between these
and the order two homogeneous functions giving a complexified version of the
derivation action of sp(2d, R) on hogiq.
We have (complexifying and restricting to gl(d, C) C sp(2d, C)) the following
version of theorems [[6.2] and [16.3]

Theorem 25.1. The map of equation|25.9is a Lie algebra homomorphism, i.e.

{pa,pary = ppaan

The pa satisfy (for column vectors z with components z1,...,zq)

{pa,zy = -4z, {pa,z}= ATy (25.4)
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Proof. Using one has

{pa,pnay == D {zAnzk 241 7m)

Jik,tm

/ — —
== z : AjkAlm{ZjZk7ZlZ7n}

Jikstm

=1 Z AjkAgm(ijmékl — Zlfk(sjm)

Jik,bm

=i z[A Az = paa
7,k

To show compute
{paz} ={iY_zApznz) =iy Apdz 2z

gk g,k
== Ayz
J

and

{pa 2} ={i) zApzn ) =iy 2 Au{zr, )

gk J:k
= g 2 A
%

O

Note that here we have written formulas for A € gl(d, C), an arbitrary com-
plex d by d matrix. It is only for A € u(d), the skew-adjoint (AT = —A)
matrices, that pua4 will be a real-valued moment map, lying in the real Lie al-
gebra sp(2d,R), and giving a unitary representation on the state space after
quantization. For such A we can write the relations as a (complexified)

example of [16.22] o
z\| _ (AT 0 (z
po (210 ) ()

The standard harmonic oscillator Hamiltonian
d
h = Z ijj (255)
j=1

lies in this u(d) sub-algebra (it is the case A = —il), and its Poisson brackets
with the rest of the sub-algebra are zero. It gives a basis element of the one
dimensional u(1) subalgebra that commutes with the rest of the u(d) subalgebra.

While we are not entering here into the details of what happens for polyno-
mials that are linear combinations of the z;z; and Z;Z, it may be worth noting
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one confusing point about these. Recall that in chapter [I6]we found the moment
map pur, = —q - Ap for elements L € sp(2d, R) of the block-diagonal form

(0 )

where A is a real d by d matrix and so in gl(d,R). That block decomposition
corresponded to the decomposition of basis vectors of M into the two sets g;
and p;. Here we have complexified, and are working with respect to a differ-
ent decomposition, that of basis vectors M @ C into the two sets z; and Z;.
The matrices A in this case are complex, skew-adjoint, and in a different non-
isomorphic Lie subalgebra, u(d) rather than gl(d, R). For the simplest example
of this, d = 1, the distinction is between the R Lie subgroup of SL(2,R) (see
section , for which the moment map is
Lo

—gp = Im(z%) = (" = 2°)

and the U(1) subgroup (see section [20.3.2)), for which the moment map is

1 _
5((12 +p°) =2z

25.3 The metaplectic representation and U(d) C
Sp(2d,R)

Turning to the quantization problem, we would like to extend the discussion of
quantization of quadratic combinations of complex coordinates on phase space
from the d = 1 case of chapter [24] to the general case. For any j, k one can take

ZjZ — —tajag, Zj2p — —ia;r-aL
There is no ambiguity in the quantization of the two subalgebras given by pairs
of the z; coordinates or pairs of the Z; coordinates since creation operators
commute with each other, and annihilation operators commute with each other.
If j # k one can quantize by taking

n
J

n

2jZ) — —ta;ap = —iakaj

and there is again no ordering ambiguity. If j = k, as in the d = 1 case there is
a choice to be made. One possibility is to take

1 1
- : T SN A
2jZj — _Zi(ajaj +aja;) = —i <ajaj + 2)

which will have the proper sp(2d, R) commutation relations (in particular for
commutators of a? with (a;)g), but require going to a double cover to get a true
representation of the group. The Bargmann-Fock construction thus gives us a
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unitary representation of u(d) on Fock space Fg, but after exponentiation this

is a representation not of the group U(d), but of a double cover we call U(d).

One could instead quantize using normal ordered operators, taking

ZjZj — —ia;r-aj
The definition of normal ordering in section [24.3| generalizes simply, since the
order of annihilation and creation operators with different values of j is imma-
terial. Using this normal ordered choice, the usual quantized operators of the
Bargmann-Fock representation are shifted by a scalar % for each j, and after
exponentiation the state space H = F4 provides a representation of U(d), with
no need for a double cover. As a u(d) representation however, this does not
extend to a representation of sp(2d, R), since commutation of af with (a;f-)2 can
land one on the unshifted operators.

Since the normal ordering doesn’t change the commutation relations obeyed
by products of the form a;ak, the quadratic expression for 4 can be quantized
using normal ordering, and get quadratic combinations of the a;, aL with the
same commutation relations as in theorem Letting

U1/4 = Za}Ajkak (25.6)
7,k

we have
Theorem 25.2. For A € gl(d,C) a d by d complex matrix
[U,/axa UA/] = U[/A,A’]

As a result

A€ gl(d,C) = U,

is a Lie algebra representation of gl(d,C) on H = Clz1,..., 24|, the harmonic
oscillator state space in d degrees of freedom.
In addition (for column vectors a with components ay,...,aq)
[U),al] = ATal, [U),a] = —Aa (25.7)
Proof. Essentially the same proof as [25.1] O
For A € u(d) the Lie algebra representation U, of u(d) exponentiates to give
a representation of U(d) on H = Clz1, ..., z4] by operators
UeA = eU'I“

These satisfy
Upsal(U,a)t = e al, Una(Ua)'=ea (25.8)

(the relations are the derivative of these). This shows that the U,a are
intertwining operators for a U(d) action on annihilation and creation operators
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that preserves the canonical commutation relations. Here the use of normal
ordered operators means that U/, is a representation of u(d) that differs by a
constant from the metaplectic representation, and U,a differs by a phase-factor.
This does not affect the commutation relations with U’} or the conjugation
action of U,a. The representation constructed this way differs in two ways from
the metaplectic representation. It acts on the same space H = Fy, but it is a
true representation of U(d), no double cover is needed. It also does not extend
to a representation of the larger group Sp(2d, R).

The operators U/, and U,a commute with the Hamiltonian operator for the
harmonic oscillator (the quantization of equation . For physicists this is
quite useful, as it provides a decomposition of energy eigenstates into irreducible
representations of U(d). For mathematicians, the quantum harmonic oscillator
state space provides a construction of a large class of irreducible representations
of U(d), by considering the energy eigenstates of a given energy.

25.4 Examples in d =2 and 3

25.4.1 Two degrees of freedom and SU(2)

In the case d = 2, the action of the group U(2) C Sp(4,R) discussed in section
5.3l commutes with the standard harmonic oscillator Hamiltonian and thus acts
as symmetries on the quantum harmonic oscillator state space, preserving en-
ergy eigenspaces. Restricting to the subgroup SU(2) C U(2), we’ll see that we
can recover our earlier (see section construction of SU(2) representations
in terms of homogeneous polynomials, in a new context. This use of the energy
eigenstates of a two dimensional harmonic oscillator appears in the physics liter-
ature as the “Schwinger boson method” for studying representations of SU(2).

The state space for the d = 2 Bargmann-Fock representation, restricting to
finite linear combinations of energy eigenstates, is

7‘[ - ‘/—"Qfln = C[ZhZQ]

the polynomials in two complex variables z1, zo. Recall from our SU(2) discus-
sion that it was useful to organize these polynomials into finite dimensional sets
of homogeneous polynomials of degree n forn =0,1,2,...

H=HeoH oH o -
There are four annihilation or creation operators

: ) )

_ T _ _
al =21, ah =20, a1 = —, ag = —
1 1, 2 2 1 821 ) 2 822
acting on H. These are the quantizations of complexified phase space coordi-
nates z1, 29,71, 22, with quantization the Bargmann-Fock construction of the
representation Iz p of hagy1 = bs

pr(l) = —il, Thp(z) = —z’a}, Ipr(Z5) = —ia;
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Quadratic combinations of the creation and annihilation operators give rep-
resentations on H of three subalgebras of the complexification sp(4, C) of sp(4, R):

e A three dimensional commutative Lie sub-algebra spanned by z,%», 27, Z3,
with quantization

Br(Z1%2) = —iaras, Tpp(2) = —ia}, Tpp(z3) = —iaj

e A three dimensional commutative Lie sub-algebra spanned by 21 29, 27, 23,
with quantization

Tpp(z1220) = —iala}, Typ(27) = —i(a])?, Tpp(23) = —i(al)?
e A four dimensional Lie subalgebra isomorphic to gl(2, C) with basis
2121, %222, 2221, 2122

and quantization

_ ) _ 7
Mpp(2171) = —i(aial +aral), Thp(nz)= —5(@@2 + azal)

/BF(ZQEl) = —Z.(L;(ll, F/BF(lez) = —Z.GJ{GQ

Real linear combinations of
2171, %2Z2, Z1Z2 + 22Z1, (2122 — 22%1)

span the Lie algebra u(2) C sp(4,R), and Iz applied to these gives a
unitary Lie algebra representation by skew-adjoint operators.

Inside this last subalgebra, there is a distinguished element h = 2121 + 2522
that Poisson-commutes with the rest of the subalgebra (but not with elements
in the first two subalgebras). Quantization of h gives the Hamiltonian operator

1 1 1 0 0
H = §(a1a1+a1a1+a2a£+a£a2) :N1+§+N2+§ 22’18721 +Z28722+1
This operator will multiply a homogeneous polynomial by its degree plus one,
so it acts by multiplication by n+ 1 on H". Exponentiating this operator (mul-
tiplied by —i) one gets a representation of a U(1) subgroup of the metaplectic
cover Mp(4,R). Taking instead the normal ordered version

0 0
:H::aial —|—a§a2 :N1+N2 :2218721-’-228722

one gets a representation of a U(1) subgroup of Sp(4,R). Neither H nor :H:
commutes with operators coming from quantization of the first two subalgebras.
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These will be linear combinations of pairs of either creation or annihilation
operators, so will change the eigenvalue of H or :H: by 4+2, mapping

H Hnj:Q

and in particular taking |0) to either 0 or a state in H2.

h is a basis element for the u(1) in u(2) = u(1) ®su(2). For the su(2) part, on
basis elements X; = —Z%J the moment map [25.3| gives the following quadratic
polynomials

1 B i 3 1, _
px, = 5(2122 +2071), pix, = 5(2221 —217Z2), Hx, = 5(2121 — 29%2)

This relates two different but isomorphic ways of describing su(2): as 2 by 2
matrices with Lie bracket the commutator, or as quadratic polynomials, with
Lie bracket the Poisson bracket.

Quantizing using the Bargmann-Fock representation give a representation
of su(2) on H

1 1
pp(X1) = —5(ajaz + ajar), Tpp(X2) = 5 (abar — alay)

7
Br(X3) = —5(@@1 — ajay)

Comparing this to the representation 7’ of su(2) on homogeneous polynomials
discussed in chapter |8} one finds that Iz and 7" are the same representation.
The inner product that makes the representation unitary is the one of equation
The Bargmann-Fock representation extends this SU(2) representation as
a unitary representation to a much larger group (Hs x Mp(4,R)), with all
polynomials in z7, z3 now making up a single irreducible representation of Hs.

The fact that we have an SU(2) group acting on the state space of the d = 2
harmonic oscillator and commuting with the action of the Hamiltonian H means
that energy eigenstates can be organized as irreducible representations of SU(2).
In particular, one sees that the space H" of energy eigenstates of energy n + 1
will be a single irreducible SU(2) representation, the spin § representation of
dimension n + 1 (so n + 1 will be the multiplicity of energy eigenstates of that
energy).

Another physically interesting subgroup here is the SO(2) C SU(2) C
Sp(4,R) consisting of simultaneous rotations in the position and momentum
planes, which was studied in detail using the coordinates q1, g2, p1, p2 in section
There we found that the moment map was given by

pr =1 =qp2 — q2p1

and quantization by the Schrédinger representation gave a representation of the
Lie algebra so0(2) with
Up = —i(Q1P — Q2P1)
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Note that this is a different SO(2) action than the one with moment map the
Hamiltonian, it acts separately on positions and momenta rather than mixing
them.

To see what happens if one instead uses the Bargmann-Fock representation,
using

1 _ 1 _
4 = ﬁ(zj +%), pj= Zﬁ(zj - Zj)

the moment map is

pr =5 (5 +21)(22 — 22) — (22 + 22) (21— 7))
=i(29Z1 — 2122)
Quantizing, the operator
U, = alay —alay = T"(2X5)

gives a unitary representation of s0(2). The factor of two here reflects the fact
that exponentiation gives a representation of SO(2) C Sp(4,R), with no need
for a double cover.

25.4.2 Three degrees of freedom and SO(3)

The case d = 3 corresponds physically to the so-called isotropic quantum har-
monic oscillator system, and it is an example of the sort of central poten-
tial problem we studied in chapter (since the potential just depends on
r? = ¢? + ¢5 + q3). For such problems, we saw that since the classical Hamilto-
nian is rotationally invariant, the quantum Hamiltonian will commute with the
action of SO(3) on wavefunctions, and energy eigenstates can be decomposed
into irreducible representations of SO(3).

Here the Bargmann-Fock representation gives an action of Hy x Mp(6,R)
on the state space, with a U(3) subgroup commuting with the Hamiltonian
(more precisely one has a double cover of U(3), but by normal ordering one
can get an actual U(3)). The eigenvalue of the U(1) corresponding to the
Hamiltonian gives the energy of a state, and states of a given energy will be
sums of irreducible representations of SU(3). This works much like in the d = 2
case, although here our irreducible representations are on the spaces H™ of
homogeneous polynomials of degree n in three variables rather than two. These
spaces have dimension % (n+1)(n+2). A difference with the SU(2) case is that
one does not get all irreducible representations of SU(3) this way.

The rotation group SO(3) will be a subgroup of this U(3) and one can ask
how the SU(3) irreducible H™ decomposes into a sum of irreducibles of the
subgroup (which will be characterized by an integral spin [ = 0,1,2,---). One
can show that for even n one gets all even values of [ from 0 to n, and for odd
n one gets all odd values of [ from 1 to n. A derivation can be found in some
quantum mechanics textbooks, see for example pages 456-460 of [60].
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To construct the angular momentum operators in the Bargmann-Fock rep-
resentation, recall that in the Schrodinger representation these were

Ly = Q2P3 —Q3P, Ly =Q3P —Q1P3, Ly=0Q1P— Q2P

and these operators can be rewritten in terms of annihilation and creation op-
erators. Alternatively, theorem [25.2) can be used, for Lie algebra basis elements
l; € 50(3) C u(3) C gl(3, C) which are (see chapter @

00 0 0 0 1 0 -1 0
L=[0 0 —1], L=(0 0 0], z=[1 0 o0
01 0 -1 00 0 0 0

to calculate

This gives

| f 1o i 1 ot T
Uy, = azaz — ayas, Uy, = aja3 —azar, U, =aza1 —ajas

Exponentiating these operators gives a representation of the rotation group
SO(3) on the state space F3, commuting with the Hamiltonian, so acting on
energy eigenspaces (which will be the homogeneous polynomials of fixed degree).

25.5 Normal ordering and the anomaly in finite
dimensions

For A € u(d) C sp(2d,R) we have seen that we can construct the Lie algebra
version of the metaplectic representation as

~ 1
Ujl4 = 5 Z Ajk(a;ak + aka;)
gk
which gives a representation that extends to sp(2d, R), or we can normal order,
getting
d
~ ~ 1
UA = ZUAZ = ZajAjkak = U:4 - 5 ZAjjl
gk Jj=1
To see that this normal ordered version does not extend to sp(2d, R), observe

that basis elements of sp(2d, R) that are not in u(d) are the linear combinations
of zj2;, and Z;Z), that correspond to real-valued functions. These are given by

1 —
3 > (Bjwzjzn + BinZ;zn)
ik
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for a complex symmetric matrix B with matrix entries B;;. There is no normal
ordering ambiguity here, and quantization will give the unitary Lie algebra
representation operators

7 —
—5 Z(Bjka;az + Bjkajak)
ik

Exponentiating such operators will give operators which take the state |0) to a
distinct state (one not proportional to |0)).
Using the canonical commutation relations one can show

[a;aL,alam] = —ala;&@m — alaiéjm — a;amékl — azaméﬂ

and these relations can in turn be used to compute the commutator of two such
Lie algebra representation operators, with the result

i — i _
[—= Z(Bjka;a,t + Bjrajax), ~3 Z(Clma;rajn + Cimaian,)]

2 £
jk lm

1 _ — -
2 > (BC - OB)ji(alar + ayal) = Upe_ o
jk
Note that normal ordering of these operators just shifts them by a constant,
in particular

’ _ 77 .77 _
56-c8 = Upe_c5 = Upe_cB

%tr(Bé - CB)1 (25.9)
The normal ordered operators fail to give a Lie algebra homomorphism when
extended to sp(2d, R), but this failure is just by a constant term. Recall from
section[I5.3]that even at the classical level, there was an ambiguity of a constant
in the choice of a moment map which in principle could lead to an “anomaly”, a
situation where the moment map failed to be a Lie algebra homomorphism by a
constant term. The situation here is that this potential anomaly is removable,
by the shift

~ 1
Uy—-U,=U,+ 51tr(A)1
which gives representation operators that satisfy the Lie algebra homomorphism
property. We will see in chapter [39] that for an infinite number of degrees of

freedom, the anomaly may not be removable, since the trace of the operator A
in that case may be divergent.

25.6 For further reading
The references from chapter[26] ([26], [95]) also contain the general case discussed

here. Given a U(d) C Sp(2d,R) action of phase space, the construction of
corresponding metaplectic representation operators using quadratic expressions
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in annihilation and creation operators is of fundamental importance in quantum
field theory, where d is infinite. This topic is however usually not discussed
in physics textbooks for the finite dimensional case. We will encounter the
quantum field theory version in later chapters where it will be examined in
detail.
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Chapter 26

Complex Structures and
Quantization

The Schrodinger representation I's of Hag41 uses a specific choice of extra struc-
ture on classical phase space: a decomposition of its coordinates into positions
g; and momenta p;. For the unitarily equivalent Bargmann-Fock representation
a different sort of extra structure is needed, a decomposition of coordinates on
phase space into complex coordinates z; and their complex conjugates Z;. Such
a decomposition is called a “complex structure” J, and will correspond after
quantization to a choice that distinguishes annihilation and creation operators.
In previous chapters we used one particular standard choice J = Jy, but in this
chapter will describe other possible choices. For each such choice we’ll get a
different version I'; of the Bargmann-Fock construction of a Heisenberg group
representation. In later chapters on relativistic quantum field theory, we will
see that the phenomenon of antiparticles is best understood in terms of a new
possibility for the choice of J that appears in that case.

26.1 Complex structures and phase space

Quantization of phase space M = R?2¢ using the Schrodinger representation
gives a unitary Lie algebra representation I'y of the Heisenberg Lie algebra hag41
which takes the ¢; and p; coordinate functions on phase space to operators —i();
and —iP; on Hg = L?(R?). This involves a choice, that of taking states to be
functions of the g¢;, or (using the Fourier transform) of the p;. It turns out to be
a general phenomenon that quantization requires choosing some extra structure
on phase space, beyond the Poisson bracket.

For the case of the harmonic oscillator, we found in chapter 22]that quantiza-
tion was most conveniently performed using annihilation and creation operators,
which involve a different sort of choice of extra structure on phase space. There
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we introduced complex coordinates on phase space, making the choice
=~ ipy), 7= (4 + ipy)
Zi = P—ipi), Zi = C+ips
1= /B qj — 1pj 1= /B qj T+ 1pj

The z; were then quantized using creation operators a;r-, the Z; using annihilation
operators a;. In the Bargmann-Fock representation, where the state space is a
space of functions of complex variables z;, we have

_ 9 i
a; = 9z’ a; = z;
and there is a distinguished state, the constant function, which is annihilated
by all the a;.

In this section we’ll introduce the notion of a complex structure on a real vec-
tor space, with such structures characterizing the possible ways of introducing
complex coordinates z;,%; and thus annihilation and creation operators. The
abstract notion of a complex structure can be formalized as follows. Given any
real vector space V = R", we have seen that taking complex linear combinations
of vectors in V gives a complex vector space V ® C, the complexification of V,
and this can be identified with C", a real vector space of twice the dimension.
When n = 2d is even there is another way to turn V = R?? into a complex
vector space, by using the following additional piece of information:

Definition (Complex structure). A complex structure on a real vector space V
18 a linear operator
J: V>V

such that
JP=-1

Given such a pair (V = R2?¢,.J) complex linear combinations of vectors in V'
can be decomposed into those on which J acts as ¢ and those on which it acts
as —i (since J? = —1, its eigenvalues must be 4i), so we have

VeC=V aV;,

where er is the +4 eigenspace of the operator J on V' ® C and V; is the —i
eigenspace. Note that we have extended the action of J on V' to an action on
V ® C using complex linearity. Complex conjugation takes elements of VJ+ to
V; and vice-versa. The choice of J has thus given us two complex vector spaces
of complex dimension d, Vj‘ and V;, related by this complex conjugation.
Since
J(w—iJv) =i(v—iJv)
for any v € V, the real vector space V' can by identified with the complex vector

space Vj‘ by the map

1
veV = —(—iJv) VS (26.1)

V2
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The pair (V,J) can be thought of as giving V' the structure of a complex vector
space, with J providing multiplication by 7. Similarly, taking

veV — \%(v +iJv) eV (26.2)
identifies V' with V", with J now providing multiplication by —i. VJJr and V;
are interchanged by changing the complex structure J to —J.

For the study of quantization, the real vector space we want to choose a
complex structure on is the dual phase space M = M*, since it is elements of this
space that are in a Heisenberg algebra, and taken to operators by quantization.
There will be a decomposition

M®C =Moo M;

and quantization will take elements of M# to linear combinations of creation
operators, elements of M, to linear combinations of annihilation operators.

The standard choice of complex structure is to take J = .Jy, where Jy is the
linear operator that acts on coordinate basis vectors g;, p; of M by

Joa; = pj, Jopj = —q;
Making the choice

implies
1
Jozj = —=(pj +iq;) = iz,
0~<j \/i (p] QJ) J
and the z; are basis elements (over the complex numbers) of M}ro. The complex

conjugates
1

Zj \/i(qj + ipj)

provide basis elements of M,

With respect to the chosen basis g;, pj, the complex structure can be written
as a matrix. For the case of Jy and for d = 1, on an arbitrary element of M the
action of Jy is

Jo(cqq + cpp) = cqp — ¢pq

so Jo in matrix form with respect to the basis (g,p) is
1 _
0= 0 ) G- ) (6
Cp 1 0 Cp Cq
or, the action on basis vectors is the transpose

1)) 6= () o

Note that, after complexifying, three different ways to identify the original
M with a subspace of M ® C are:
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o M is identified with Mjo by equation with basis element g; going
to zj, and p; to iz;.

e M is identified with M7 by equation with basis element g; going
to z;, and p; to —iz;.

e M is identified with elements of /\/lJr ® M3, that are invariant under
conjugation, with basis element ¢; going to f(z] +%;) and p; to f(zj —

2
Zj)-

26.2 Compatible complex structures and posi-
tivity

Our interest is in vector spaces M that come with a symplectic structure €2,

a non-degenerate antisymmetric bilinear form. To successfully use a complex

structure J for quantization, it will turn out that it must be compatible with
in the following sense:

Definition (Compatible complex structure). A complex structure on M is said
to be compatible with € if

Q(Jvl,ng) == Q(’Ul,’l}g) (265)

Equivalently, J € Sp(2d,R), the group of linear transformations of M preserv-
ing §2.

The standard complex structure J = Jy is compatible with €, since (treating
the d = 1 case, which generalizes easily, and using equations and [26.3)

T EDE G DE)
o (% 0) (5 o) () (@)
ol 9

=Q(cqq + cpp, cyq + cpp

More simply, the matrix for Jy is obviously in SL(2,R) = Sp(2,R).
Note that elements g of the group Sp(2d,R) act on the set of compatible

complex structures by
J — ng_1 (26.6)

This takes complex structures to complex structures since
(979 )(gJg™ ") =gJ%g7 = -1
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and preserves the compatibility condition since, if J € Sp(2d,R), so is gJg .

A complex structure J can be characterized by the subgroup of Sp(2d,R)
that leaves it invariant, with the condition gJg~' = J equivalent to the com-
mutativity condition gJ = Jg. For the case d =1 and J = Jy this becomes

906D
IR ey

which implies b = —c¢ and @ = d. The elements of SL(2,R) that preserve Jy
will be of the form

a b

—-b a

with unit determinant, so a? + b*> = 1. This is the U(1) = SO(2) subgroup of
SL(2,R) of matrices of the form

cosf sinf\ 4y
—sinf cosf) " °©

Other choices of J will correspond to other U(1) subgroups of SL(2,R), and
the space of compatible complex structures conjugate to Jy can be identified
with the coset space SL(2,R)/U(1). In higher dimensions, it turns out that
the subgroup of Sp(2d, R) that commutes with Jy is isomorphic to the unitary
group U(d), and the space of compatible complex structures conjugate to Jy is
$p(2d, R)/U(d).

Even before we choose a complex structure J, we can use ) to define an
indefinite Hermitian form on M ® C by:

SO

Definition (Indefinite Hermitian form on M ® C). For u;,us € M ® C,
<’LL1,’LL2> = iQ(El,'LLQ) (267)
s an indefinite Hermitian form on M ® C.

This is clearly antilinear in the first variable, linear in the second, and satisfies
the Hermitian property, since

<UQ,’LL1> = iQ(ﬂg,U1) = —iQ(ul,Ug) = iQ(ﬂl,UQ) = <U1,UQ>

Restricting (-,-) to M7 and using the identification of M and M7,
(-,-) gives a complex-valued bilinear form on M. Any u € ./\/l}r can be written
as

(v —iJv) (26.8)

Sl
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for some non-zero v € M, so
(uy,ug) =iQ(uy, us)
:i%Q(Ul + iJv1,v9 — iJvg)
:%(*Q(JULW) + Q(v1, Jvz)) + %(Q(Uhvz) + Q(Jv1, Jvz))
=Q(v1, Jvz) + (v, v2) (26.9)
where we have used compatibility of J and J? = —1 to get
Q(Jv1,v9) = Q(J?v1, Jvg) = —Q(v1, Jvo)

We thus can recover 2 on M as the imaginary part of the form (-, -).
This form (-,-) is not positive or negative-definite on M ® C. One can
however 