
Topics in Representation Theory: The
Metaplectic Representation

The metaplectic representation can be constructed in a way quite analogous
to the construction of the spin representation. In this case instead of dealing
with a finite dimensional exterior algebra one has to use an infinite dimensional
function space, so the analysis becomes non-trivial. The discussion we’ll give
here is very sketchy, for a rigorous and detailed treatment, see [1].

1 The Bargmann-Fock Representation

We have seen that, after complexification, the Heisenberg algebra can be iden-
tified with the CCR algebra generated by 2n operators ai, a

†
i satisfying the

relations
[aj , ak] = [a†j , a

†
k] = 0, [aj , a

†
k] = δjk

Just as the CAR algebra has a representation on the exterior algebra, the CCR
algebra has a representation on the symmetric algebra, i.e. the polynomial
algebra C[w1, · · · , wn], with

a†j → wj ·

and
aj →

∂

∂wj

satisfy the commutation relations since all commutator are zero except

[
∂

∂wj
, wj ]wn

j = (n + 1)wn
j − nwn

j = wn
j

We would like a representation on a Hilbert space H and want aj and a†j to
be adjoint operators with respect to the inner product on H. We can choose H
to be the following function space:

Definition 1 (Fock Space). Given an identification R2n = Cn, Fock space is
the space of entire functions on Cn, with finite norm using the inner product

(f1(w), f2(w)) =
1
πn

∫
Cn

f1(w)f2(w)e−w·w

An orthonormal basis of H is given by apropriately normalized monomials.
For the case n = 1, one can calculate

(wm, wn) =
1
π

∫
C

w̄mwne−|w|
2

=
1
π

∫ ∞

0

(
∫ 2π

0

eiθ(n−m)dθ)rn+me−r2
rdr

= n!δn,m
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and see that the functions wn
√

n!
are orthornormal.

We’ll leave it as an exercise to show that, with respect to this inner product,
aj and a†j are adjoint operators. One can show that H with this action of the
aj and a†j is an irreducible representation of the Heisenberg group and we will
often denote this representation by M . By the Stone-von Neumann theorem it
is the only one up to unitary equivalence.

2 The Metaplectic Representation

The action of the Heisenberg group on M is given by the action of linear func-
tions of aj and a†j on the Fock space. In the case of the spin representation, we
saw that the Lie algebra of the spin group consisted of quadratic elements of
the Clifford algebra, with the elements 1

2eiej satisfying the same commutation
relations as Lij , the generators of rotations of in the i− j plane. We won’t take
the time here to go into the details of what the commutation relations are for
sp(2n,R), but just as in the orthogonal group case, one can construct opera-
tors with these commutation relations using the quadratic elements, now in hn

rather than C(n).
sp(2n,R) has a subalgebra u(n), and the operators

1
2
(a†iaj + aja

†
i ) =

1
2
(wi

∂

∂wj
+

∂

∂wj
wi)

are a representation of this subalgebra on M . The other elements of sp(2n,R)
can be represented by operators

a†ia
†
j = wiwj

and

aiaj =
∂2

∂wi∂wj

A choice of elements of sp(2n,R) that correspond to a maximal torus (this
is a subalgebra of u(n)) are

1
2
(a†iai + aia

†
i ) = a†iai +

1
2

i = 1, · · · , n

where we have used the relation

aia
†
i = 1 + a†iai

coming from the CCR.
On the Fock space a†iai has eigenvalues the non-negative integers since

a†iaiw
n = w

d

dw
wn = nwn
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The eigenvalues of the generators of the maximal torus will be of the form
n + 1

2 . Upon exponentiation to the group Sp(2n,R) we see that M will only
be a projective representation: as one takes one of the angles in the maximal
torus from 0 to 2π, its action on M will go from I to −I and a double covering
of the group is required to make the representation single valued. This double
covering is called the metaplectic group and is various written as Mp(2n,R) or
S̃p(2n,R).

The representation of Mp(2n,R) on M is called the metaplectic represen-
tation. Note that since Mp(2n,R) is constructed out of quadratic elements it
leaves the parity of elements of M invariant, so M actually breaks up into two
irreducible components

M = M+ + M−

corresponding to the even and odd polynomials in the Fock space construction
of M .

Physically M can be thought of as the Hilbert space of a harmonic oscillator
with n degrees of freedom and Hamiltonian operator

H =
n∑
i

1
2
(P 2

i + Q2
i ) =

n∑
i

1
2
(a†iai + aia

†
i )

Specializing to the case n = 1 of a harmonic oscillator with a single degree
of freedom we get a projective representation of Sp(2,R) = SL(2,R) on the
space of polynomials in a single variable w. The Hamiltonian eigenvalues are
the energy levels and equal to

1
2
,

3
2
,

5
2
, · · ·

The lowest energy state has energy not 0 but 1
2 , sometimes known as the “zero-

point energy” and physically explained by the idea the since the only way to
have zero energy would be to simultaneous have zero momentum and zero po-
sition, that would violate the uncertainty principle. The Hamiltonian operator
generates a U(1) maximal torus subgroup of SL(2,R), but there are two other
generators of the Lie algebra of this group that also act on the Hilbert space
M . Since they don’t commute with the Hamiltonian, while they in some sense
generate symmetries of the system, states with well-defined energies are not
eigenstates for these operators.

3 The Siegel Space of Complex Structures

The construction we have given of the metaplectic representation M using Fock
space depends upon an identification R2n = Cn and thus upon a choice of
complex structure J which determines a decomposition R2n ⊗C = WJ ⊕ W̄J .
M varies with a change in J and we should perhaps better think of it as MJ ,
generated by a set of operators (aJ)†i , corresponding to a basis of WJ , acting on
a “vacuum vector” ΩJ .
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The set of possible complex structures J that we want to consider is different
than in the orthogonal case. Here everything is based not upon an underlying
symmetric form, but instead an underlying non-degenerate antisymmetric two-
form S(·, ·). Such a two-form S is called a symplectic form. A choice of complex
structure J should preserve S, i.e.:

S(v, w) = S(Jv, Jw)

We will call such a complex structure a symplectic complex structure.

Claim 1.
(v, w)J = S(Jv, w)

is a non-degenerate symmetric form.

This is true because

(v, w)J = S(Jv, w) = S(JJv, Jw) = −S(v, Jw) = S(Jw, v) = (w, v)J

Definition 2. For each choice of symplectic complex structure J , there is a
hermitian form

< v, w >J= S(Jv, w) + iS(v, w)

This is hermitian since

< w, v >J= < v, w >J

Note that we could have done the same thing in the orthogonal case where we
started with an inner product < ·, · > and could have constructed a hermitian
form

< v, w >J=< v,w > +i < Jv,w >

In the orthogonal case, if we started with a positive definite inner product, the
hermitian form would be positive definite. In the symplectic case, if we want
our hermitian form to be positive definite, we need to impose that as a separate
condition. The set of symplectic complex structures corresponding to positive
definite hermitian forms is called the Siegel space, i.e.

Definition 3. The Siegel space associated to (R2n, S(·, ·)) is the space of linear
maps

J : R2n → R2n

such that

1.
J2 = −1

2.
S(Jv, Jw) = S(v, w)
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3.
< v, v >J= S(Jv, v) ≥ 0, v 6= 0

The Siegel space can be identified with Sp(2n,R)/U(n) since each J is in
Sp(2n,R) and different elements of Sp(2n,R) that give the same decomposition
R2n ⊗C = WJ ⊕ W̄J are related by a U(n) ⊂ Sp(2n,R).

To any choice of J in the Siegel space, there is an associated Fock space

Definition 4. HJ is the space of entire functions on WJ such that

(f1(w), f2(w))J =
1
πn

∫
WJ

f1(w)f2(w)e−<w·w>J

In a similar fashion to the spin case, one can pick a single J = J0 and
then represent the metaplectic representation for other choices of J on HJ0 by
choosing a varying vacuum vector ΩJ ∈ HJ0 , which will be given by a Gaussian
function. The complex lines generated by ΩJ define a complex line bundle over
the Siegel space and an invariant definition of the metaplectic representation
is as holomorphic sections of this line bundle. This is quite analogous to the
Borel-Weil construction of the spin representation, but the non-compactness of
the Siegel space makes the analysis trickier and the representation is infinite
dimensional.

4 The Schrödinger Representation

The Fock representation of Heisenberg commutation relations is not the first
one generally considered in quantum mechanics texts. One can also represent
the Heisenberg commutation relations on L2(Rn) with qi coordinates on Rn

and the generators represented as operators as follows

Qi = multiplication by qi

Pi = −i
∂

∂qi

By the Stone-von Neumann theorem, this representation must be unitarily
related to the Fock representation. The unitary transformation that takes an
L2 function of the qi to a holomorphic function of n complex variables is called
the Bargmann transform. For details about it, see [1]. It can be interpreted as
the transform that takes

f → Analytic continuation of e−∆/2f

5 A Detailed Analogy

The analogous constructions of the spin and metaplectic representations that we
have been discussing are often dealt with by physicists as analogous construc-
tions using “odd” (anti-commuting) and “even” (commuting) variables. We
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haven’t pursued this sort of language, but some of the details of the analogy
between the spin and the metapectic cases are contained in the following table:

Spin Metaplectic
R2n “odd” variables R2n “even” variables

Q: Symmetric Quadratic Form on R2n S: Antisymmetric 2-form on R2n

Clifford Algebra C(2n) Heisenberg Algebra hn

CAR algebra CCR algebra
– Heisenberg group Hn

Exterior algebra Λ∗(R2n) Symmetric algebra S∗(R2n)
SO(2n): Automorphisms of C(2n) Sp(2n,R): Automorphisms of hn

Spin(2n): Double cover of SO(2n) Mp(2n,R): Double cover of Sp(2n,R)
spin(2n): quadratic elements of C(2n) mp(2n): quadratic elements of hn

J : Orthogonal complex structure J : Symplectic complex structure
R2n = WJ ⊕ W̄J R2n = WJ ⊕ W̄J

Irreducible C(n) module: Λ∗(WJ) Irreducible Hn representation: S∗(WJ)
S = Λ∗(WJ)× (Λn(WJ))−

1
2 M = S∗(WJ)× (Λn(WJ))

1
2

S: Projective Rep. of SO(2n) M : Projective Rep. of Sp(2n,R)
S: Spinor Rep., Rep. of Spin(2n) M : Metaplectic Rep., as Rep. of Mp(2n,R)

S = S+ + S− M = M+ + M−

SO(2n)/U(n): Orthogonal complex structures Sp(2n,R)/U(n): Symplectic complex structures
Vacuum vector ΩJ ∈ S Vacuum vector ΩJ ∈ M

Line bundle L, L⊗ L = (det)−1 Line bundle L, L⊗ L = det
S = Γhol(L) M = Γhol(L)

Particle with spin 1
2 in 2n dimensions Harmonic oscillator with n degrees of freedom
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