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Does Anyone Understand Quantum Mechanics?

“No One Understands Quantum Mechanics”

”I think it is safe to say that no one
understands quantum mechanics”
Richard Feynman
The Character of Physical Law, 1967
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Does Anyone Understand Quantum Mechanics?

Outline

Today would like to

Explain how Lie groups and unitary representations are related to
quantum mechanics, providing some sort of “understanding” of the
structure of the subject.

Advertise a recently completed book

Quantum Theory, Groups and Representations: An
Introduction

Available any day now from Springer, or at
http://www.math.columbia.edu/~woit/QM/qmbook.pdf

Explain some points about the relations between quantum theory and
mathematics that became clear to me while writing the book, may be
similarly enlightening to others.
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Does Anyone Understand Quantum Mechanics?

What We Really Don’t Understand About Quantum
Mechanics

While representation theory gives insight into the basic structure of the
quantum mechanics formalism, a mystery remains

The mystery of classical mechanics

We don’t understand well at all how “classical” behavior emerges when
one considers macroscopic quantum systems.

This is the problem of “measurement theory” or “interpretation” of
quantum mechanics. Does understanding this require some addition to the
fundamental formalism? Nothing to say today about this.
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Quantum Mechanics

What is Quantum Mechanics?

Three Basic Axioms of Quantum Mechanics

The states of a quantum system are given by vectors ψ ∈ H where H
is a complex vector space with a Hermitian inner product. In the
finite-dimensional case, for vectors v,w ∈ Cn, the inner product is

v ·w = v1w1 + v2w2 + · · ·+ vnwn

Observables correspond to self-adjoint linear operators on H. In the
finite dimensional case these are matrices M satisfying
M = M† = MT .

There is a distinguished observable, the Hamiltonian H, and time
evolution of states ψ is given by the Schrödinger equation (~ = 1)

i
d

dt
ψ = Hψ
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Quantum Mechanics

Where (what mathematical structure) do these axioms
come from?

Our claim is that a
unitary representation of the Lie algebra g of a Lie group G
gives exactly these mathematical structures. To explain this mathematical
structure need to explain

What is a Lie group?

What is a Lie algebra?

What is a unitary representation of a Lie algebra?
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Lie groups, Lie algebras, and unitary representations

What is a Lie group?

For our purposes, best to think of a Lie group G as a group of matrices,
with product the matrix product. Some examples are

The group SO(2) of rotations of the plane. This is isomorphic to
U(1), the group of rotations of the complex plane, by(

cos θ sin θ
− sin θ cos θ

)
∈ SO(2)↔ e iθ ∈ U(1)

The group U(n) of unitary transformations of Cn. These are matrices
U with U† = U−1.

The group GL(n,R) of all invertible linear transformations of Rn

The group SO(3) of rotations of R3.

The additive group R, which can be written as matrices(
1 a
0 1

)
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Lie groups, Lie algebras, and unitary representations

If G is a group of matrices M, near the identity matrix we can write such
group elements using the exponential as

M = eX = 1 + X +
1

2!
X 2 +

1

3!
X 3 + · · ·

The X are the elements of g.
The possible non-commutativity of the group elements M is reflected in
the non-zero commutator of elements of the Lie algebra. One has
(Baker-Campbell-Hausdorff formula):

eX1eX2 = eX1+X2+
1
2
[X1,X2]+···

where
[X1,X2] = X1X2 − X2X1

is the commutator, and the higher order terms above can be written as
iterated commutators of X1 and X2.

Peter Woit (Columbia University) Quantum Theory and Group Representations November 2017 8 / 30



Lie groups, Lie algebras, and unitary representations

Examples of Lie algebras

The Lie algebras corresponding to our examples of Lie groups are

For G = SO(2) the Lie algebra is g = R, which can be identified with
the rotation angle.

For G = U(n) elements of the Lie algebra u(n) are n by n complex
matrices X that are “skew-adjoint”: X † = −X . Exponentiating these
gives unitary matrices.

For G = GL(n,R) elements of the Lie algebra gl(n,R) are all n by n
real matrices.

For G = SO(3) elements of the Lie algebra so(3,R) are 3 by 3
antisymmetric real matrices.

For G = R the Lie algebra is again R, identified with matrices(
0 a
0 0

)
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Lie groups, Lie algebras, and unitary representations

What is a unitary representation of a Lie group?

If you think of groups as “symmetries” of some object, the group is just
the set of possible transformations. The object acted on together with the
action of the group on it is the representation. We will be interested in
“linear representations”, where the object is a vector space and the
transformations are linear transformations. In particular we will take our
vector spaces to be complex (Cn in the finite dimensional case). “Unitary”
means that the transformations preserve the Hermitian inner product on
Cn, so are in U(n). We have the following abstract definition:

Unitary representation of a Lie group

A unitary representation π on Cn of a Lie group G is a homomorphism
π : G → U(n). This means that for every g ∈ G we have a unitary n by n
matrix π(g) ∈ U(n), and these satisfy

π(g1g2) = π(g1)π(g2)
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Lie groups, Lie algebras, and unitary representations

Examples of unitary representations of Lie groups

If G = U(n), taking π to be the identity map gives a unitary
representation on Cn, the “defining representation”.
There are many more possibilities. We will see that quantum mechanics
produces more examples.
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Lie groups, Lie algebras, and unitary representations

What is a unitary representation of a Lie algebra?

Given a unitary representation π of a Lie group G we can define a unitary
representation π′ of the Lie algebra g to be the derivative at the identity:

π′(X ) =
d

dt
π(etX )t=0

These will give a map

π′ : X ∈ g→ π′(X ) ∈ u(n)

satisfying the so-called Lie algebra homomorphism property

π′([X1,X2]) = [π′(X1), π′(X2)]

These linear approximations to the representations π are much easier to
work with than the non-linear maps π
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Lie groups, Lie algebras, and unitary representations

What is a unitary representation of a Lie algebra?

A unitary representation of a Lie algebra is giving us a set of linear
operators π′(X ), one for each element X of the Lie algebra. These act in
the finite dimensional case on a complex vector space Cn with Hermitian
inner product. Since they are in the Lie algebra u(n) the π(X ) are
skew-adjoint

(π(X ))† = −π(X )

but if we multiply by i we get self-adjoint operators

(iπ(X ))† = (iπ(X ))

We see that we have self-adjoint operators acting on a complex vector
space with Hermitian inner product, the same structure that appears in
quantum mechanics.
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Quantum Mechanics and Unitary Representations

Relating Quantum Mechanics and Representations

Basic Principle

Quantum mechanical systems carry unitary representations π of various
Lie groups G on their state spaces H. The corresponding Lie algebra
representations π′ give the operators for observables of the system.

Significance for physicists

Identifying observables of one’s quantum system as coming from a unitary
representation of a Lie group allows one to use representation theory to
say many non-trivial things about the quantum system.

Significance for mathematicians

Whenever physicists have a physical system with a Lie group G acting on
its description, the state space H and the operators for observables should
provide a unitary representation of G . This is a fertile source of interesting
unitary representations of Lie groups.
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Some Examples and Their Significance

G = U(1)

If a physical system has a group G = U(1) acting on it, we expect the
quantum system to be a unitary representation of U(1). It turns out that
all unitary representations of U(1) can by decomposed into
one-dimensional ones πN , classified by an integer N. The πN are given by

πN(e iθ) = e iNθ

The corresponding Lie algebra representation is given by

π′N(θ) = iNθ

Multiplying by i to get a self-adjoint operator, we get i(iN)θ = −Nθ.
These self-adjoint operators are characterized by an integer N. So, for
physical systems with U(1) acting, we expect states to be characterized by
integers.
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Some Examples and Their Significance

The “quantum” comes from U(1)

Where “quantum” comes from

In a very real sense, this is the origin of the name “quantum”: many
physical systems have a U(1) group acting on them, so states are
characterized by an integer, thus we get “quantization” of some
observables.

Some examples are

Spatial rotations about some chosen axis, e.g. the z-axis. We find
that atomic energy levels are classified by an integer: “angular
momentum in z-direction.”

Electromagnetic systems have a “gauge” symmetry given by a U(1)
action. Such states are classified by an integer: the electric charge.

The classical phase space of a harmonic oscillator has a U(1)
symmetry. The quantized harmonic oscillator has states classified by
an integer: the number of “quanta”.
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Some Examples and Their Significance

Example: time translations, G = R

Physical systems all come with an action of the group G = R by time
translations. In quantum mechanics we expect to have a unitary
representation of the Lie algebra of this group (the Lie algebra of R is also
R). Such a unitary representation is given by a skew-adjoint operator
which we write as −iH where H is self-adjoint. This is just the
Hamiltonian operator, and the Schrödinger equation

d

dt
ψ = −iHψ

is just the statement that this operator gives the infinitesimal action of
time translations.
Unitary representations of G = R can, like those of U(1), be decomposed
into one-dimensional representations. In this case these representations are
characterized by an arbitrary real number rather than an integer. For the
case of the Hamiltonian, this real number will be the energy.
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Some Examples and Their Significance

Example: translations in space, G = R3

Physics takes place in a space R3. One can consider the Lie group G = R3

of spatial translations.
The quantum state space H will provide a unitary representation of this
group. The Lie algebra representation operators are called the
“momentum operators”

Pj , j = 1, 2, 3

and states can be decomposed into one-dimensional representations, which
now will be characterized by an element of R3, the momentum vector.
When states ψ are taken to be functions on space (“wavefunctions”), the
momentum operators are related to infinitesimal translation by

∂

∂xj
ψ = iPjψ
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Some Examples and Their Significance

Example: Rotations, G = SO(3)

The group G = SO(3) acts on physical space R3 by rotations about the
origin.
Unitary representations of SO(3) break up into direct sums of irreducible
components πl on C2l+1, where l = 0, 1, 2, . . .. Physicists call these the
“angular momentum l” representations. It is a major part of any course in
quantum mechanics to discuss the angular momentum operators L1, L2, L3.
These are the Lie algebra representation operators coming from the fact
that the quantum mechanical state space has a unitary representation of
SO(3). Unlike the Pj , the operators Lj do not commute, providing a much
more non-trivial example of a Lie algebra and its representations.
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Some Examples and Their Significance

Example: The Euclidean group of translations and
rotations of R3

One can put together the two previous examples and consider the group
G = E (3) of all translations and rotations of R3. Studying the possible
unitary representations of this group, one recovers essentially the usual
quantum theory of a free particle moving in R3.
This generalizes to the relativistic case of four-dimensional space-time,
where the symmetry group is the Poincaré group. Its unitary
representations can be decomposed into pieces which correspond to the
possible quantum mechanical systems of relativistic free particles.
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Symmetries

Lie Group Representations and Symmetries

When the action of a Lie group G on a quantum system commutes with
the Hamiltonian operator, G is said to be a “symmetry group” of the
system, acting as “symmetries” of the quantum system. Then one has

Conservation Laws

Since the observable operators O corresponding to Lie algebra elements of
G commute with H, which gives infinitesimal time translations, if a state
is an eigenstate of O with a given eigenvalue at a given time, it will have
the same property at all times. The eigenvalue will be “conserved.”

Degeneracy of Energy Eigenstates

Eigenspaces of H will break up into irreducible representations of G . One
will see multiple states with the same energy eigenvalue, with dimension
given by the dimension of an irreducible representation of G .
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Symmetries

Lie Group Representations Are Not Always Symmetries

When G acts on a classical system, the state space of a corresponding
quantum system will be a unitary representation of G , even when this
action of G on the state space is not a symmetry, i.e. does not commute
with the Hamiltonian.
The basic structure of quantum mechanics involves a unitary group
representation in a much more fundamental way than the special case
where there are symmetries. This has to do with a group (and its Lie
algebra) that already is visible in classical mechanics. This group does not
commute with any non-trivial Hamiltonian, but it plays a fundamental role
in both the classical and quantum theories.
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Quantization

Classical (Hamiltonian) Mechanics

The theory of classical mechanical systems, in the Hamiltonian form, is
based on the following structures

An even dimensional vector space R2n, called the “phase space” M,
with coordinate functions that break up into position coordinates
q1, · · · , qn and momentum coordinates p1, · · · , pn.

The “Poisson bracket”, which takes as arguments two functions f , g
on M and gives a third such function

{f , g} =
n∑

j=1

(
∂f

∂qj

∂g

∂pj
− ∂f

∂pj

∂g

∂qj
)

A state is a point in M, observables are functions on M. There is a
distinguished function, h, the Hamiltonian, and observables evolve in time
by

df

dt
= {f , h}
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Quantization

First-year Physics Example

A classical particle of mass m moving in a potential V (q1, q2, q3) in R3 is
described by the Hamilton function h on phase space R6

h =
1

2m
(p21 + p22 + p23) + V (q1, q2, q3)

where the first term is the kinetic energy, the second the potential energy.
Calculating Poisson brackets, one finds

dqj
dt

= {qj , h} =
pj
m

=⇒ pj = m
dqj
dt

and
dpj
dt

= {pj , h} = −∂V
∂qj

where the first equation says momentum is mass times velocity, and the
next is Newton’s second law (F = −∇V = ma).
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Quantization

The Lie algebra of functions on phase space

The Poisson bracket has the right algebraic properties to play the role of
the commutator in the matrix case, and make the functions on phase
space a Lie algebra (infinite dimensional). This Lie algebra (and its
corresponding Lie group) are responsible for much of the structure of
Hamiltonian mechanics.
There are finite-dimensional subalgebras, including (for the case n = 1)

The functions with basis 1, q, p, since

{q, p} = 1

and all other Poisson brackets amongst these vanish. This is the
“Heisenberg Lie algebra”. Note that this Lie algebra already appears
in classical mechanics, while it usually first appears in discussion of
quantum mechanics.
The functions with basis q2, p2, qp. The Poisson bracket relations of
these are the same as the commutator relations of a basis of the Lie
algebr of SL(2,R) (invertible matrices with determinant 1).
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Quantization

Heisenberg Commutation Relations

The quantum theory of a single particle includes not just momentum
operators P, but also position operators Q, satisfying the Heisenberg
commutator relation

[Q,P] = i1

Soon after the discovery (1925) by physicists of this relation, Hermann
Weyl realized that it is the Lie bracket relation satisfied by a certain Lie
algebra, the Heisenberg Lie algebra mentioned above (it’s isomorphic to
the Lie algebra of strictly upper-triangular 3 by 3 matrices). There’s a
corresponding group, the Heisenberg group (sometimes called the “Weyl
group” by physicists).
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Quantization

Dirac and Quantization

Dirac noticed the similarity of the Poisson bracket relation {q, p} = 1 and
the Heisenberg operator relation [Q,P] = i and proposed the following
method for “quantizing” any classical mechanical system

Dirac Quantization

To functions f on phase space, quantization takes

f → Of

where Of are operators satisfying the relations

O{f ,g} = −i [Of ,Og ]
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Quantization

Quantization and Symplectomorphisms

Dirac’s proposal can be stated very simply in terms of representation
theory, it just says

Dirac quantization

A quantum system is a unitary representation of the Lie algebra of
functions on phase space.

The Lie algebra representation is a homomorphism taking functions on
phase space to operators, with the Poisson bracket going to the
commutator. The factor of i appears because of the difference between
the physicist’s self-adjoint and the mathematicians skew-adjoint unitary
representation operators. Unfortunately it turns out this doesn’t work....
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Quantization

Bad News and Good News

It turns out that if one tries to follow Dirac’s suggestion one finds

Bad News, Groenewold-van Hove

No-go theorem: there is a representation that quantizes polynomial
functions on phase space of degree up to two, but this can’t be done
consistently for higher degrees.

but also

Good News, Stone-von Neumann

The quantization of polynomials of degree ≤ 2 is unique, there is only one
possible unitary representation of this Lie algebra (fixing ~, and that
integrates to a representation of the group). This is what physicists know
and love as “canonical quantization”.
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Summary

Summary

Representation theory is a subject that brings together many different
areas of mathematics, providing an often surprising “unification” of
mathematics.
It is remarkable that exactly this sort of mathematics underlies and gives
us some understanding of our most fundamental physical theory, quantum
mechanics.
There likely is much more to be learned about the relation of fundamental
physics and mathematics, with representation theory like to play a major
role.
Thanks for your attention!
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