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The irreducible representation of the Heisenberg group we have been study-
ing provides a projective representation of the symplectic group. This has vari-
ous names, of which we’ll choose Roger Howe’s “oscillator representation” (also
popular is the “Weil representation”). For more details of, a good source is [1].

1 The symplectic group and automorphisms of
the Heisenberg Lie group

Since the definition of the Heisenberg Lie algebra and Lie group only depend on
the antisymmetric bilinear form S on V = R2n, the group Sp(2n,R) of linear
maps preserving S acts on this Lie algebra and group as automorphisms. Using
(v, z) ∈ V ⊕ R as coordinates on H2n+1, the action of g ∈ Sp(2n,R) on the
Heisenberg group is

Φg(v, z) = (gv, z)

Using this automorphism, one can construct the semi-direct product

H2n+1 ⋊ Sp(2n,R)

which is sometimes called the “Jacobi group.”
We also can use these automorphisms to act on the set of representations of

H2n+1, taking
π → πg

where
πg(v, z) = π(Φg(v, z))

If π is irreducible, πg will also be irreducible, and by the Stone-von Neumann
theorem there will be unitary operators Ug such that

πg = UgπSU
−1
g

By Schur’s lemma, these operators will be unique up to a phase factor. The will
then provide a representation of Sp(2n,R) up to a phase factor (a projective
representation)

Ug1Ug2 = eiθ(g1,g2)Ug1g2

By changing the Ug by a phase factor

Ug → V (g) = eiϕ(g)U(g)

one can try and remove the projective factor from the multiplication law. It
turns out though that there will this can only be done up to sign, a problem
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much like that which occurs in the case of the spin representation of the rotation
group. As in the case of the rotation group, one can get a true representation
by going to a double cover of Sp(2n,R), which we’ll denote Mp(2n,R) and call
the “metaplectic group.” Two differences from the rotation group case are:

• In the rotation group case π1(SO(n)) = Z2 and the double cover Spin(n)
is universal cover. In the symplectic case π1(Sp(2n,R)) = Z and the
metaplectic double cover is just one of many possible covering groups.

• Spin(n) can be identified with a group of finite-dimensional matrices. This
is not true forMp(2n,R), a group which has no finite-dimensional faithful
representations. It provides a very unusual example of where thinking of
Lie theory just in terms of matrix groups is inadequate.

2 The Poisson bracket and the Lie algebras h2n+1

and sp(2n,R)

As is usual in the subject of Lie groups and their representations, it is much
easier to work with a Lie algebra and its representation then with the corre-
sponding Lie group and its representation. This is especially true in the case we
are now considering: the semi-direct product of the Heisenberg and metaplectic
groups and the oscillator representation. One aspect of the problem is that the
metaplectic group is not a matrix group and thus hard to describe explicitly.
On the other hand, the Lie algebra of the metaplectic group is the same as the
Lie algebra of the symplectic group and can be described by matrices.

It is however often much more convenient to work with a realization of the
Lie algebra not as matrices, but as low degree polynomial functions. The Lie
bracket is then the Poisson bracket on functions, which we’ll now describe. We
take V = R2n, with coordinates qj , pk for j, k = 1, 2, · · · , n. Then

Definition 1 (Poisson bracket). The Poisson bracket of two functions f1, f2 on
V is the function

{f, g} =

n∑
j=1

(
∂f1
∂qj

∂f2
∂pj

− ∂f2
∂qj

∂f1
∂pj

)
In the Hamiltonian form of classical mechanics, V will be the phase space

and functions on V observables. There will be a distinguished function, the
Hamiltonian h, which determines the dynamics, with time dependence of ob-
servables given by Hamilton’s equation:

df

dt
= {f, h}

The Poisson bracket can easily be seen to satisfy the following properties:

• Anti-symmetry:
{f1, f2} = −{f2, f1}
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• Jacobi identity:

{f1, {f2, f3}}+ {f3, {f1, f2}}+ {f2, {f3, f1}} = 0

• Leibniz rule (derivation property)

{f1, f2f3} = {f1, f2}f3 + f2{f1, f3}

The first two properties imply that the Poisson bracket provides a Lie algebra
structure on the space of functions on V . This is an infinite-dimensional Lie
algebra. The corresponding infinite dimensional group is the subgroup of all dif-
feomorphisms of R2n that preserve a symplectic form (“symplectomorphisms”).

The Leibniz rule implies that, at least for polynomial functions, the Poisson
bracket is determined by what it does on linear functions, where

{qj , qk} = {pj , pk} = 0, {qj , pk} = δjk

These are just the Lie bracket relations for the 2n + 1-dimensional Heisenberg
Lie algebra h2n+1. Thinking of the qj , pk as basis elements of V ∗, we have a Lie
algebra structure on

R⊕ V ∗

the polynomial functions of degree less than or equal to one on V . As we have
seen earlier, a more basis-independent point of view is that we have a symplectic
form S on V ∗, with qj , pk the basis of V ∗ that puts S in standard form.

The space of degree two monomials on V has a basis of the 2n2+n elements
qjqk, pjpk for j ≤ k and all qjpk. The Poisson bracket of two of these is a
linear combination of degree two monomials, so these provide a real Lie algebra
of dimension 2n2 + n. As an exercise, show that this is isomorphic to the Lie
algebra sp(2n,R). One way to see this is to look at the Poisson brackets between
degree two and degree one monomials, which are the infinitesimal version of the
action by the symplectic group on the Heisenberg Lie algebra as automorphisms.

Here we will work out explicitly what happens for n = 1. The Heisenberg
Lie algebra h3 has basis q, p, 1 with only non-zero Lie bracket

{q, p} = 1

The symplectic Lie algebra sp(2,R) has basis q2, p2, qp with non-zero Lie brack-
ets

{q
2

2
,
p2

2
} = qp, {qp, p2} = 2p2, {qp, q2} = −2q2

This is isomorphic to the Lie algebra sl(2,R) of 2 by 2 traceless real matrices,
with bracket the commutator, where a conventional basis is

E =

(
0 1
0 0

)
, F =

(
0 0
1 0

)
, G =

(
1 0
0 −1

)
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The isomorphism is explicitly given by

q2

2
↔ E, −p

2

2
↔ F, qp↔ G

or by

−aqp+ bq2

2
− cp2

2
↔

(
a b
c −a

)
−

The semi-direct product of H3 and SL(2,R) puts the above two Lie algebras
together, with the action of SL(2,R) on H3 by automorphisms reflected in the
non-zero Lie brackets

{qp, q} = −q. {qp, p} = p

{p
2

2
, q} = −p, {q

2

2
, p} = q

From these relations one can see that

qp↔
(
1 0
0 −1

)
generates a group R acting on the q direction in the qp plane by et, on the p
direction by e−t. The element

1

2
(q2 + p2) ↔

(
0 1
−1 0

)
generates an SO(2) subgroup of rotations in the qp plane.

3 The Schrödinger model for the oscillator rep-
resentation

We have seen that the Schrödinger representation is given as a representation
of h3 by the operators

π′
S(q) = −iQ = −iq, π′

S(p) = −iP = − d

dq
, π′

S(1) = −i1

Dirac’s original definition of “quantization” asked for an extension of this rep-
resentation from linear functions to all functions on phase space, i.e. a choice
of operators that would take any polynomial in q and p to an operator, with
Poisson bracket of functions going to commutator of operators, so a Lie algebra
homomorphism. But going from functions of q and p to operators built out of
Q and P , one runs into “operator-ordering” ambiguities since Q and P do not
commute. It turns out that one can get a Lie algebra homomorphism for poly-
nomials up to degree two, but this is impossible in higher degree (Groenewold-
van Hove theorem).
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What works in degree two is to extend the Schrödinger representation to a
representation of sl(2,R) (and of the semi-direct product with h3) by taking

π′
S(q

2) = −iQ2 = −iq2, π′
S(p

2) = −iP 2 = i
d2

dq2

and making the choice (which gives a skew-adjoint operator)

π′
S(qp) = −i1

2
(QP + PQ) = −i1

2
(2QP − i1) = −q d

dq
− 1

2
1

These operators will satisfy the commutation relations given by the Lie
bracket of sl(2,R). One would like to exponentiate them to get a representation
of the Lie group SL(2,R), which we will call the “oscillator representation” (it
is also often known as the “Weil representation”). In the case of π′

S(qp) the op-
erator exponentiates to an operator on functions which rescalesin the q variable.
But it is unclear how to exponentiate the second order differential operator

−iP 2 = i
d2

dq2

If one takes Fourier transform to turn derivatives in q into multiplications op-
erators, the problem just moves to the operator −iQ2 which changes from a
multiplication operator to a second-order differential operator.

The problem is best thought of as having to do with exponentiating the Lie
algebra element

1

2
(q2 + p2)

which generates the SO(2) ⊂ SL(2,R) subgroup of rotations in the qp plane.
So, for the oscillator representation, we need to explictly construct the operator

eθπ
′
S( 1

2 (q
2+p2))

where

π′
S

(
1

2
(q2 + p2)

)
= −i1

2
(Q2 + P 2) = −i1

2
(q2 − d2

dq2
)

Changing notation from θ to t, this is just the standard physics problem of
solving the Schrödinger equation for the Hamiltonian H = 1

2 (Q
2 + P 2) and so

constructing the unitary operator

U(t) = e−it 1
2 (Q

2+P 2)

With some effort (see for instance exercises 4 and 5 of chapter III of [2]), one can
derive a formula for the kernel Kt(q, q

′) (known in physics as the “propagator”)
where

(U(t)ψ)(q) =

∫
R

Kt(q, q
′)ψ(q′)dq′
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One finds

Kt(q, q
′) =

1√
2π sin t

exp

(
−1

2

(
q q′

)( cos t
sin t − 1

sin t
− 1

sin t
cos t
sin t

)(
q
q′

))
This expression requires interpretation as a distribution defined as a boundary
value of a holomorphic function, replacing t by t − iϵ and taking the limit as
positive ϵ vanishes.

One can show that
lim

ϵ→0+
U(
π

2
− iϵ) = ei

π
4 F

This corresponds to a π
2 rotation in the q, p plane, interchanging the role of q

and p. By the Stone-von Neumann theorem, one expects this operator to be
the Fourier transform, up to a phase factor. The calculation of the propagator
fixes the phase factor. In some sense, rotations by arbitrary values of t will give
“fractional Fourier transforms.”

Rotation by π is given by
iF2

. The F2 is as expected since F2 acts on functions by

ψ(q) → F2ψ(q) = ψ(−q)

corresponding to a rotation by π taking q to −q. Rotation by 2π is given by
−F4 = −1 rather than the 1 expected if U(t) is to be a true (rather than
up to ±1) representation of SO(2) ⊂ SL(2,R). This is a precise analog of
what happens when we take the spinor Lie algebra representation of SO(3) and
exponentiate: we find that rotating around an axis by 2π gives a factor of −1.
The representation is only a projective (up to sign) representation of SO(3). To
get a true representation, one needs the double cover Spin(3) = SU(2). Here
again we have a representation up to sign and need a double cover of Sp(2,R).
This will be the metaplectic group Mp(2,R), which is not a matrix group.

4 The Bargmann-Fock model for the oscillator
representation

The best way to calculate the phase factors in the exponentialed version of
the oscillator representation is not to use the Schrödinger version of the repre-
sentation, but to instead use the Bargmann-Fock version. This is based upon
choosing a compatible positive complex structure J , using it to get a complex
polarization

V ⊗C =WJ ⊕WJ

and realizing the representation on the space of polynomial functions on WJ .
We will just do this in the simplest case, n = 1 and J the standard choice for
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such a complex structure. In this case Wj the space of polynomials C[w] (with
the Bargmann-Fock inner product) and the operators

a =
1√
2
(Q+ iP ) =

d

dw
, a† =

1√
2
(Q− iP ) = w

provide a representation of the complexified Heisenberg Lie algebra (which is
the standard one on the real Lie algebra).

As in the Schrödinger case, one can extend this representation to the os-
cillator representation of sp(2n,R) by taking quadratic combinations of the
Heisenberg Lie algebra opertors. In particular, using

1

2
(Q2 + P 2) =

1

2
(a†a+ aa†) = a†a+

1

2

one has (writing elements of sl(2,R) both as quadratic polynomials and as
matrices)

π′
BF (

1

2
(q2 + p2)) = π′

BF (

(
0 1
−1 0

)
) = −i(a†a+ 1

2
) = −i(w d

dw
+

1

2
)

This operator can easily be exponentiated:

eθπ
′
BF ( 1

2 (q
2+p2))

act on C[w] by multiplying the monomial wn by e−iθ(n+ 1
2 ). This gives the minus

sign previously discusses for θ = 2π.
In this represntation the other two basis elements of sl(2,R) are

π′
BF (qp) = π′

BF (

(
1 0
0 −1

)
) = − i

2
((a†)2 + a2)

π′
BF (q

2 − p2) = π′
BF (

(
0 1
1 0

)
) = −1

2
((a†)2 − a2)

Note that these operators do not change the parity of monomials they act
on, and you can get from any monomial of a given parity to any other other
of the same parity by applying these operators repeatedly. So, the oscillator
representations we have constructed here is the sum of two irreducibles (all
polynomials of even degree, and all polynomials of odd degree).

Say more about dependence on J , and the existence of a lowest weight
vector?
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