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The oscillator representation of a symplectic group that we have been dis-
cussing is closely analogous to the spinor representation of the orthogonal group.
Here we’ll make this analogy very explicit. This parallelism is well-known in
physics, where the “canonical formalism” in quantum mechanics comes in both
a “bosonic” version, with canonical commutation relations, and a “fermionic”
version, with canonical anti-commutation relations. Much of this material is
worked out in great detail in [1].

1 Classical theory, Lie groups and Lie algebras

Q: Symmetric non-degenerate bilinear
form on V = Rn

S: Antisymmetric non-degenerate bi-
linear form on V = R2d

Lie group SO(n) preserving Q, with
Lie algebra so(n).

Lie group Sp(2d,R) preserving S, with
Lie algebra sp(2d)

π1(SO(2n)) = Z2. π1(Sp(2n),R) = Z.

Spin(n), double cover of SO(n). Mp(2d,R), double cover of Sp(2d,R).

Λ∗(V ∗): anti-symmetric algebra on V ∗.
Polynomials in “anti-commuting vari-
ables ξj , j = 1, 2, · · ·n. For physicists
these are “fermionic” variables.

S∗(V ∗): symmetric algebra on V ∗. Poly-
nomial functions on V . Generated by
a basis qj , pk, j, k = 1, 2, · · · d of V ∗.
For physicists these are “bosonic” vari-
ables.

Poisson bracket {·, ·}+. Lie bracket for
Lie superalgebra of “anti-commuting func-
tions on V , determined by Q.

Poisson bracket {·, ·}. Lie bracket for
Lie algebra of functions on V , deter-
mined by S.

Lie superalgebra of anticommuting poly-
nomials on V of degree 0, 1, 2. Semi-
direct product of a Lie superalgebra
(degree 0 and 1) and the orthogonal
Lie algebra so(n,R) (degree 2).

Lie algebra of polynomials on V of de-
gree 0, 1, 2. Semi-direct product of the
Heisenberg Lie algebra h2d+1 (degree 0
and 1) and the symplectic Lie algebra
sp(2d,R) (degree 2).

Pseudo-classical mechanics. Classical mechanics.

2 Quantum theory and representations

Spin representation S (unitary) on a
complex vector space of dimension 2

n
2

for n even.

Oscillator representation (unitary) on
H, an infinite-dimensional Hilbert space.
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Clifford algebra Cliff(n,C). For n even
this is the algebra End(S), isomorphic
to the matrix algebra M(2

n
2 ,C).

Weyl algebra U(h2d+1)/(Z − 1). This
algebra is infinite-dimensional over C.

The group SO(2n) acts by automor-
phisms on Cliff(n,C).

The group Sp(2n,R) acts by automor-
phism on the Weyl algebra.

For n even, Cliff(n,C) has a single ir-
reducible module, the spin module S.
This is the spin representation as a Lie
algebra representation of so(2n). Inte-
grating to the group, one gets a projec-
tive(up to ±) representation of SO(n),
a true representation of the double cover
Spin(n).

Stone-von Neumann theorem: theWeyl
algebra has a single irreducible mod-
ule H that integrates to a represen-
tation of the Heisenberg group on H.
Integrating to the group, one gets a
projective(up to ±) representation of
Sp(2d,R), a true representation of the
double cover Mp(2d,R).

For n even, The spin representation
has two irreducible components, the half-
spinors S+, S−, each of dimension 2

n
2 −1

The oscillator representation has two
irreducible components (an “even” and
an “odd” component).

Generators γj of the Clifford algebra.
On the spinor module S, identifying
the Clifford algebra with a matrix al-
gebra, these are the physicist’s Dirac
γ-matrices.

Generators Qj , Pk of the Weyl algebra.

In even dimension, the Lie algebra rep-
resentation operators for the spin rep-
resentation are given by quadratic com-
binations of γ-matrices.

The Lie algebra representation oper-
ators for the oscillator representation
are given by quadratic combinations of
the Qj , Pk operators.

3 Polarizations

For n even, choosing a real polarization
V = M⊕M∗ one can realize the spinor
module as anticommuting functions on
M . This will be an irreducible rep-
resentation of the real form SO(n, n),
non-unitary.

Choosing a real polarization V = M ⊕
M∗ one can realize (the Schrödinger
representation) theQj , Pj operators re-
spectively as multiplication and differ-
entiation operators on L2(M). This
representation will be unitary, both as
a representation of the Heisenberg group
and the metaplectic group.

For n = 2d even, an orthogonal com-
plex structure on V is a linear map
J satisfying J2 = −1 and preserving
the bilinear form Q. This picks out a
U(d) ⊂ SO(2d) and the space of such

A symplectic complex structure on V is
a linear map J satisfying J2 = −1 and
preserving the bilinear form S. This
picks out a U(n) ⊂ Sp(2n,R). Such
J satisfying the positivity conditions
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complex structures is the compact space
SO(2d)/U(n).

S(·, J ·) positive are parametrized by
the non-compact space Sp(2n,R)/U(n).

Such a J gives a complex polarization V ⊗C = W+
J ⊕W−

J (±i eigenspaces of
J). This can be used to construct our representation as holomorphic functions
(commuting or anticommuting) on W+

J .

For n even, taking complex linear com-
binations of the γj one can form ad-

joint operators aj , a
†
j on the spinor mod-

ule, satisfying the canonical anti-com-
mutation relations

[a, a†]+ = 1

Taking complex linear combinations of
the Qj , Pk one can form adjoint oper-

ators aj , a
†
j on the spinor module, sat-

isfying the canonical commutation re-
lations

[a, a†] = 1

Still to do, write spinors as functions on WJ .
Vacuum vectors, depend on J .
a, a† as multiplication, differentiation.
Line bundle, relation to det bundle.
Representation at holomorphic sections of a line bundle.
More on the picture of space of polarizations. Non-positive polarizations?

Irreducible C(n) module: Λ∗(WJ) Irreducible Hn representation: S∗(WJ)

S = Λ∗(WJ)× (Λn(WJ))
− 1

2 M = S∗

Vacuum vector ΩJ ∈ S Vacuum vector ΩJ ∈ M
Line bundle L, L⊗ L = (det)−1 Line bundle L, L⊗ L = det

S = Γhol(L) M = Γhol(L)
Particle with spin 1

2 in 2n dimensions Harmonic oscillator with n degrees of freedom
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