The spinor and oscillator representation ANALOGY

Mathematics GR6434, Spring 2023

The oscillator representation of a symplectic group that we have been discussing is closely analogous to the spinor representation of the orthogonal group. Here we'll make this analogy very explicit. This parallelism is well-known in physics, where the "canonical formalism" in quantum mechanics comes in both a "bosonic" version, with canonical commutation relations, and a "fermionic" version, with canonical anti-commutation relations. Much of this material is worked out in great detail in [1].

Classical theory, Lie groups and Lie algebras 1

Q: Symmetric non-degenerate bilinear S: Antisymmetric non-degenerate biform on $V = \mathbf{R}^n$

Lie group SO(n) preserving Q, with Lie group $Sp(2d, \mathbf{R})$ preserving S, with Lie algebra $\mathfrak{so}(n)$.

 $\pi_1(SO(2n)) = \mathbf{Z}_2.$

Spin(n), double cover of SO(n).

 $\Lambda^*(V^*)$: anti-symmetric algebra on V^* . Polynomials in "anti-commuting variables $\xi_j, j = 1, 2, \dots n$. For physicists these are "fermionic" variables.

Poisson bracket $\{\cdot, \cdot\}_+$. Lie bracket for Poisson bracket $\{\cdot, \cdot\}_-$. Lie bracket for Lie superalgebra of "anti-commuting funcLie algebra of functions on V, detertions on V, determined by Q.

Lie superalgebra of anticommuting poly- Lie algebra of polynomials on V of denomials on V of degree 0, 1, 2. Semidirect product of a Lie superalgebra (degree 0 and 1) and the orthogonal Lie algebra $\mathfrak{so}(n, \mathbf{R})$ (degree 2).

Pseudo-classical mechanics.

linear form on $V = \mathbf{R}^{2d}$

Lie algebra $\mathfrak{sp}(2d)$

 $\pi_1(Sp(2n), \mathbf{R}) = \mathbf{Z}.$

 $Mp(2d, \mathbf{R})$, double cover of $Sp(2d, \mathbf{R})$.

 $S^*(V^*)$: symmetric algebra on V^* . Polynomial functions on V. Generated by a basis $q_i, p_k, j, k = 1, 2, \cdots d$ of V^* . For physicists these are "bosonic" variables.

mined by S.

gree 0, 1, 2. Semi-direct product of the Heisenberg Lie algebra \mathfrak{h}_{2d+1} (degree 0 and 1) and the symplectic Lie algebra $\mathfrak{sp}(2d, \mathbf{R})$ (degree 2).

Classical mechanics.

2 Quantum theory and representations

for n even.

Spin representation S (unitary) on a Oscillator representation (unitary) on complex vector space of dimension $2^{\frac{n}{2}}$ \mathcal{H} , an infinite-dimensional Hilbert space. Clifford algebra $\operatorname{Cliff}(n, \mathbf{C})$. For *n* even this is the algebra End(S), isomorphic to the matrix algebra $M(2^{\frac{n}{2}}, \mathbf{C})$.

The group SO(2n) acts by automorphisms on $\operatorname{Cliff}(n, \mathbf{C})$.

For *n* even, $\operatorname{Cliff}(n, \mathbf{C})$ has a single irreducible module, the spin module S. This is the spin representation as a Lie algebra representation of $\mathfrak{so}(2n)$. Integrating to the group, one gets a projective(up to \pm) representation of SO(n), a true representation of the double cover Spin(n).

For n even, The spin representation has two irreducible components, the half-irreducible components (an "even" and spinors S^+, S^- , each of dimension $2^{\frac{n}{2}-1}$

Generators γ_i of the Clifford algebra. On the spinor module S, identifying the Clifford algebra with a matrix algebra, these are the physicist's Dirac γ -matrices.

In even dimension, the Lie algebra representation operators for the spin representation are given by quadratic combinations of γ -matrices.

3 Polarizations

For *n* even, choosing a real polarization $V = M \oplus M^*$ one can realize the spinor module as anticommuting functions on M. This will be an irreducible representation of the real form SO(n, n), non-unitary.

For n = 2d even, an orthogonal complex structure on V is a linear map J satisfying $J^2 = -1$ and preserving the bilinear form Q. This picks out a $U(d) \subset SO(2d)$ and the space of such Weyl algebra $U(\mathfrak{h}_{2d+1})/(Z-1)$. This algebra is infinite-dimensional over **C**.

The group $Sp(2n, \mathbf{R})$ acts by automorphism on the Weyl algebra.

Stone-von Neumann theorem: the Weyl algebra has a single irreducible module \mathcal{H} that integrates to a representation of the Heisenberg group on \mathcal{H} . Integrating to the group, one gets a projective(up to \pm) representation of $Sp(2d, \mathbf{R})$, a true representation of the double cover $Mp(2d, \mathbf{R})$.

The oscillator representation has two an "odd" component).

Generators Q_i, P_k of the Weyl algebra.

The Lie algebra representation operators for the oscillator representation are given by quadratic combinations of the Q_i, P_k operators.

Choosing a real polarization $V = M \oplus$ M^* one can realize (the Schrödinger representation) the Q_j, P_j operators respectively as multiplication and differentiation operators on $L^2(M)$. This representation will be unitary, both as a representation of the Heisenberg group and the metaplectic group.

A symplectic complex structure on V is a linear map J satisfying $J^2 = -1$ and preserving the bilinear form S. This picks out a $U(n) \subset Sp(2n, \mathbf{R})$. Such J satisfying the positivity conditions complex structures is the compact space $S(\cdot, J \cdot)$ positive are parametrized by SO(2d)/U(n).the non-compact space $Sp(2n, \mathbf{R})/U(n)$.

Such a J gives a complex polarization $V \otimes \mathbf{C} = W_J^+ \oplus W_J^-$ (±*i* eigenspaces of J). This can be used to construct our representation as holomorphic functions (commuting or anticommuting) on W_J^+ .

For n even, taking complex linear combinations of the γ_j one can form adjoint operators a_j, a_j^{\dagger} on the spinor mod- ators a_j, a_j^{\dagger} on the spinor module, satule, satisfying the canonical anti-commutation relations

Taking complex linear combinations of the Q_j, P_k one can form adjoint operisfying the canonical commutation relations

$$[a,a^{\dagger}] = \mathbf{1}$$

 $[a, a^{\dagger}]_{+} = \mathbf{1}$

Still to do, write spinors as functions on W_J . Vacuum vectors, depend on J. a, a^{\dagger} as multiplication, differentiation. Line bundle, relation to det bundle. Representation at holomorphic sections of a line bundle.

More on the picture of space of polarizations. Non-positive polarizations?

Irreducible $C(n)$ module: $\Lambda^*(W_J)$	Irreducible H_n representation: $S^*(W_J)$
$S = \Lambda^*(W_J) \times (\Lambda^n(W_J))^{-\frac{1}{2}}$	$M = S^*$
Vacuum vector $\Omega_J \in S$	Vacuum vector $\Omega_J \in M$
Line bundle $L, L \otimes L = (det)^{-1}$	Line bundle $L, L \otimes L = \det$
$S = \Gamma_{hol}(L)$	$M = \Gamma_{hol}(L)$
Particle with spin $\frac{1}{2}$ in $2n$ dimensions	Harmonic oscillator with n degrees of freedom

References

- [1] Woit, P., Quantum theory, groups and representations, Springer, 2017.
- [2] Segal, G., Notes quantum field theory, andononmanifolds symplectic and quantization, available athttp://web.math.ucsb.edu/ drm/conferences/ITP99/segal/