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1 The Drinfeld Curve

G := SLy(F,) for ¢ a power of p a prime; F = F,.
Definition 1.1. The Drinfeld curve is the curve in A*(F) defined by
Y = {(z,y) € AX(F) | ay? — ya? = 1}
e Affine, smooth, irreducible

e Smooth because differential is (y? —?) (since we're in characteristic 0) which is nowhere 0.

e Irreducible because XY 9 —Y X9 —1 is irreducible; you do a change of variables Z = X/Y, T =
1/Y, write this as 79"t — Z9 — Z, and use Eisenstein criterion (observe that (Z) is a maximal
ideal in F[Z]

e Equipped with actions from G, ji,+1, and the Frobenius F(linear action by G, scalar multipli-
cation by fi,41, and raising to the power of ¢)

e Remark: the actions by G and p,1 are free, but their product is not. Indeed, (—1, —1)-(x,y) =
(=1(=2 +0), =10 - y)) = (z,y).

e Note that an action by G permits an action by U (the unipotent matrices)
® go(=(og, Fog=go(,Fo(=("oF

Proposition 1. If V and W are two irreducible varieties, ¢ : V. — W a morphism between them,
and I" a finite group acting on V' such that

1. ¢ is surjective,
2. o(v) = p(V') <= v="" for somey €T,
3. There exists a reqular value vy of V,
Then ¢ induces an isomorphism between V /T and W.
e v:Y = AYF), (z,y) — zy?’ — 29y, g1 X F equivariant (for the action ¢ - z — (?2).

e p: Y — AYF)\ {0}, (z,y) = y, pgr1 ¥ F equivariant (for regular 1, ;) action



e 7:Y = PF)\P'(F,), (z,y) — [z : y], G x F equivariant

Proposition 2. ¥ : Y/G — A'(F), p: Y/U — A*(F) (where U is the subgroup of unipotent upper
triangular matrices), and 7 : Y/ 1 — P'(F)\ P'(F,) are all isomorphisms of varieties.

Proof. (for w.) First, observe that 7(g(z,v)) = w(ax + by, cx + dy) = [ax + by : cx + dy] = g[z :
yl = g(n(z,y)) and 7(F(z,y)) = n(29,y?) = [z : ¥y = F(w(x,y)). We check that conditions 1,2,
and 3 are satisfied by 7.

1. Say we have some [1 : a] € P'(F), and take any lift of this to A*(F); say, (1,a). Let r = a7 —a.
Since F is algebraically closed, Ju € F such that w9t = r. So

al a

and clearly [1/A:a/\ =11 al.

Don’t need to be concerned about r = 0 because that would mean
a=a! = ack,
2. Clear that [z :y] = [(x : Cyl.
If (z,y),(a,b) €Y, [x:y] =[a:b], aka a= Arand b= Ay, then
1= May? — Nzt = N (gy? — yo?) = \IH!
= A€ Ugt1
3. The differential is
or Om\ _ (1 —z
(% %) - (y y2) )
which is nonzero everywhere on Y, thus always surjective. O]

Some fixed points results under certain Frobeniuses (i.e. endomorphisms F” such that F"* = F"
for some n):

e (Y)F = @, by the above (i.e. because (Y /1) = @; if [a? : b9] = [a : ], then that would
imply a,b € F,

Theorem 3. For ¢ € fig41,

2 0 ¢+ -1
Yot —
#HE) {(f’-q (=-1

Proof. If (z,y) € Y then o = (z?,y = Cy”, so

1= (zy" — ya?)? = 2%y" —y'a? = (M (ay — y'a) = —C!

so we must have (7! = —1 = ( = —1 to have fixed points.
In this case, we want solutions (z,y) to



ry? —yx? =1,

and
2

y=—y".

Solutions to the first two force something to be a solution to the last one; we have

2 1+ yaxt?

yT = (

_y'
x x4 x4

¢*> — 1 nonzero solutions to the first equation, and given an x, ¢ solutions to the second equation.
m

Remark. Y~ has a single G-orbit, because G acts freely on Y.

What’s to come:

Definition 1.2. For # a character of 41, Vp a K (K=l-adic field with 1,41 r.0.u.) module
admitting that character, we define

R(0) ==Y [HAY) @kppn, Vilc

>0

where [|¢ is the character associated to a irreducible G-representation



