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1 The Drinfeld Curve

G := SL2(Fq) for q a power of p a prime; F = F̄q.

Definition 1.1. The Drinfeld curve is the curve in A2(F) defined by

Y = {(x, y) ∈ A2(F) | xyq − yxq = 1}

• Affine, smooth, irreducible

• Smooth because differential is
(
yq −xq

)
(since we’re in characteristic 0) which is nowhere 0.

• Irreducible because XY Q−Y XQ−1 is irreducible; you do a change of variables Z = X/Y, T =
1/Y, write this as TQ+1−ZQ−Z, and use Eisenstein criterion (observe that (Z) is a maximal
ideal in F[Z]

• Equipped with actions from G, µq+1, and the Frobenius F (linear action by G, scalar multipli-
cation by µq+1, and raising to the power of q)

• Remark: the actions byG and µq+1 are free, but their product is not. Indeed, (−I,−1)·(x, y) =
(−1(−x+ 0),−1(0− y)) = (x, y).

• Note that an action by G permits an action by U (the unipotent matrices)

• g ◦ ζ = ζ ◦ g, F ◦ g = g ◦ ζ, F ◦ ζ = ζ−1 ◦ F

Proposition 1. If V and W are two irreducible varieties, φ : V → W a morphism between them,
and Γ a finite group acting on V such that

1. φ is surjective,

2. φ(v) = φ(v′) ⇐⇒ v = γv′ for some γ ∈ Γ,

3. There exists a regular value v0 of V ,

Then φ induces an isomorphism between V/Γ and W.

• γ : Y → A1(F), (x, y) 7→ xyq
2 − xq2y; µq+1 ⋊ F equivariant (for the action ζ · z 7→ ζ2z).

• ρ : Y → A1(F) \ {0}, (x, y) 7→ y, µq+1 ⋊ F equivariant (for regular µq+1) action
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• π : Y → P1(F) \P1(Fq), (x, y) 7→ [x : y], G× F equivariant

Proposition 2. γ̂ : Y/G → A1(F), ρ̂ : Y/U → A1(F) (where U is the subgroup of unipotent upper
triangular matrices), and π̂ : Y/µq+1 → P1(F) \P1(Fq) are all isomorphisms of varieties.

Proof. (for π.) First, observe that π(g(x, y)) = π(ax + by, cx + dy) = [ax + by : cx + dy] = g[x :
y] = g(π(x, y)) and π(F (x, y)) = π(xq, yq) = [xq : yq] = F (π(x, y)). We check that conditions 1, 2,
and 3 are satisfied by π.

1. Say we have some [1 : a] ∈ P1(F), and take any lift of this to A2(F); say, (1, a). Let r = aq−a.
Since F is algebraically closed, ∃u ∈ F such that uq+1 = r. So

aq

λq+1
− a

λq+1
= 1 =⇒ (1/λ, a/λ) ∈ Y,

and clearly [1/λ : a/λ] = [1 : a].

Don’t need to be concerned about r = 0 because that would mean

a = aq =⇒ a ∈ Fq.

2. Clear that [x : y] = [ζx : ζy].

If (x, y), (a, b) ∈ Y, [x : y] = [a : b], a.k.a. a = λx and b = λy, then

1 = λq+1xyq − λq+1yxq = λq+1(xyq − yxq) = λq+1

=⇒ λ ∈ µq+1

3. The differential is (
∂π
∂x

∂π
∂x

)
=

(
1
y

−x
y2

)
,

which is nonzero everywhere on Y, thus always surjective.

Some fixed points results under certain Frobeniuses (i.e. endomorphisms F ′ such that F ′n = F n

for some n):

• (Y)ζF = ∅, by the above (i.e. because (Y/µq+1)
F = ∅; if [aq : bq] = [a : b], then that would

imply a, b ∈ Fq

Theorem 3. For ζ ∈ µq+1,

#(YζF 2

) =

{
0 ζ ̸= −1

q3 − q ζ = −1

Proof. If (x, y) ∈ YζF 2

then x = ζxq2 , y = ζyq
2
, so

1 = (xyq − yxq)q = xqyq
2 − yqxq2 = ζ−1(xqy − yqx) = −ζ−1

so we must have ζ−1 = −1 =⇒ ζ = −1 to have fixed points.
In this case, we want solutions (x, y) to

x = −xq2 ,
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xyq − yxq = 1,

and
y = −yq

2

.

Solutions to the first two force something to be a solution to the last one; we have

yq
2

= (
1 + yxq

x
)q =

1 + yqxq2

xq
=

1− xyq

xq
= −y.

q2−1 nonzero solutions to the first equation, and given an x, q solutions to the second equation.

Remark. Y−F 2

has a single G-orbit, because G acts freely on Y.

What’s to come:

Definition 1.2. For θ a character of µq+1, Vθ a Kµq+1 (K=l-adic field with µq+1 r.o.u.) module
admitting that character, we define

R′(θ) = −
∑
i≥0

[H i
c(Y)⊗Kµq+1 Vθ]G

where []G is the character associated to a irreducible G-representation
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