DELIGNE-LUSZTIG REPRESENTATIONS

WENQI LI

1. Fixing THE FrROBENIUS PROBLEM

Recall from last time that for G a connected linear reductive algebraic group over k = k of charac-
teristic p, we let X be the set of all Borel subgroups, which is then identified with G/ B for any fixed
Borel subgroup B, as G acts transitively on X by conjugation and the stabilizer (i.e. normalizer)
of B is B itself. This is a flag variety (so it’s projective). Also recall that W is the Weyl group and
F is the Frobenius on G.

Fix a F'-stable Borel subgroup B and its maximal torus 7. We defined X (w) for w € W as the set of
Borel subgroups B’ such that B’ and F'(B’) are in relative position w. We then defined Y = G/U
for U the unipotent radical of B, and

Y(w) ={gU | g~'F(g) € UnU}

and saw that Y (w) — X (w) is a T¥»-torsor where F,, = ad(w) o F is the Frobenius F twisted by w.
Now we will give a construction that produces a T¥ -torsor that is isomorphic to Y (w) — X (w).

What's going on here is that a Borel subgroup B’ is in X (w) if and only if B’ = gBg~! and F(B’) =
gwBw~lg™! for some g € G. Using the bijection G/B = X given by g — gBg~!, the g that gives
rise to B’ satisfies

F(g)BF(9)™! = gwBw™'g~".
This says w~ g~ 1F(g) normalizes B, which happens if and only if g~'F(g) € wB. Thus, we see
that the subset

{9eG g 'F(g) € wB}

parametrizes X (w). Two elements g1, g2 in this set represent the same Borel subgroup in X (w)
if and only if nggf1 = gngg1 and glew_lgf1 = gngw_lggl, which translates to g;lgl €
B NwBw™!. Thus, an alternative description of X (w) is

X(w)={g€G|g'F(9) € wB}/(BNwBw™").

Using B = TU and that w normalizes T, we have BN wBw~! = T(U N wUw™!). For each g with
g 1F(g9) € wB, we want to replace g by gt for some ¢t € T such that 7' F(g) € wU. For which ¢
would this work? We have

(gt) LF(gt) =t g7 F(9)F(t) € t *wUF(t) = t L (wUw ) (wF (t)w  )w
Since T commutes with U and 7' = wTw ™!, which see that the above becomes
(wUw™H) (™ (wF (tw™))w,
and this is in wU if and only if t}(wF (t)w™!) = 1,i.e. t € TT. Thus, we get that
X(w)={g9€G|g'F(g) € wU}/TH (U NnwUw™).
A similar computation shows that
Y(w)={g€G|g ' F(g9) € wU}/(UNwUw™).
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To get rid of the twist by w, we define

Definition 1.1. Let 7" be a F'-stable maximal torus. Let B’ be a Borel subgroup (no longer F-stable)
that contains 7" with unipotent radical U’. Define

Xpep ={9€G|g'F(g) € F(B"}/(B'nF(B")
={geG|g'F(g) e FU"}/T" U nFU")).

and
Yrep ={g€G|g ' F(g) € FU)}/(U' nFU").

Proposition 1.2. Let T", B’ be as above, but now assume B’ € X (w), i.e. B' and F(B') are in relative
position w. We can choose h € G such that h(T, B)h=' = (T", B'), so that the map g ~ gh™! gives an

isomorphism from the T v-torsor Yy, — X, to the T" F_torsor Yricp — Xpicpr.

Proof. Replacing h by ht we may assume h~'F(h) = w. If g is such that g1 F(g) € wU, then
(gh DY F(gh™) = hgT'F(g)F(h)™' € hwUF(h)™! = hwUw ' h= hwF (h)~.
The relative position w condition means
F(B') = hwBw™'h™!.
Since T is F-stable and normalized by w, this means F'(U’) = hwUw~'h~!. Thus gh~! satisfies the

condition of being in X7/ p.

2. REPRESENTATIONS

Recall from last time we defined the virtual representation

R, =3 (-1 HYY (w), Qn)[6)-

i
We will prove that this is independent of w, and its character is independent of I.

Proposition 2.1. Let X be a quasi-projective separated scheme that is finite type over an algebraically closed
field of characteristic p, and let o : X — X be an automorphism of finite order. Then

tr(o”, He (X, Qu))

is an integer independent of I.

Here o* is induced effect of 0 on cohomology, and H? (X, Q;) is the direct sum of all degrees. For
a map of graded vector space f : V* — V*, its trace is defined as

tr(f, V) => (=1 tx(f, V),

%

Proof. The scheme X lives over some finite field F, so let F' : X — X be the Frobenius. Forn > 1,
the composition F" o o is some other Frobenius, namely the one if we consider X as a scheme over
F . So the Lefschetz fixed point formula for Frobenius says that

tr((F" o 0)*, He (X, Q) = [ X777,
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which is also the number of the F» points.

On the other hand, since F’* and ¢* commutes (simultaneously diagonizable), and traces are sums
of eigenvalues, the value tr((F" o 0)*, H?(X, Q) as a function of n is of the form }, G~ axA™,
where all but finitely many a) = 0. So we have

D =X,
AeQ”

The right side is an integer, so it is fixed by any automorphism of Q;. Thus if 7 is an automorphism

of Q;, we have
Z T(a))T(A)" = Z ayA".
AeQ;” xeQ/”
The left side is equal to 3, .= 7(a;-1(x))A™ after re-indexing, and one can check by using a Van-
dermonde determinant that n — A" are linearly independent. So we conclude that

7(ar-1(n)) = ay, or equivalently 7(ay) = a, ().

forall A € Q;. Therefore tr(o*, H2(X, Q1)) = X, cq+ ax is fixed by any automorphism of Q;, so
it is in Q. Since ¢ has finite order, the traces are sums of roots of unity, and hence algebraic, so
being in Q implies that it is an integer. Also, these coefficients a) are independent of [ since they
are determined by the number of the F;» points of X. [ |

For independence of w, we will focus on the § = 1 case, which is where the hard work really is.
When 6 = 1, we have
Ry, => (~1)H(X(w), Q).

i

For w € W, we say an element is an F-conjugate of w if it is of the form wjwF (w;)~! for some
w1 € Ww.

Theorem 2.2. R} depends only on the F-conjugacy class of w.

To prove this theorem we will need to use the structure of the Weyl group as a Coxeter group. This
means W is generated by elements s, - - - , s, satisfying (s;s;)"% = 1 where m;; = 1 and m;; > 2
(could be 00). These generators are called fundamental reflections. For each w € W, its length is
denoted by I(w), and it is the length of the minimal expression w = s;, - - - s;,. Here is a lemma we
need to use:

Lemma 2.3. Let s,t be two fundamental reflections in W. For w € W, if [(swt) = l(w), then either
swt =wor l(sw) = l(w) — 1, or l(wt) = l(w) — 1.

Proof of Theorem 2.2. Since the fundamental reflections generated the group, it suffices to consider
w and w' = swF(s) for some fundamental reflection s. Exchanging the roles of w and w’, we
may assume [(w') > l(w). If [(w') = l(w), the previous lemma implies that either w = w’ or
l(sw) =l(w) — 1.

So there are only two cases to consider. The first one is w = wjws, and w’ = we F(w1), and I(w) =
l(w1) + l(wa) = l(we) + I(F(w)) = l(w'). In this case, for any B € X (w), we have B = gByg~! and

F(B) = gwlwngwglwflg_l
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So if we let 0B = gw; Bowy ‘g™, then (B,0B) € O(w1), and (¢ B, F(B)) € O(wy).

Now 0B is in X (w’), because F(B) and F(0B) are in relative position F(w;), so 0B and F(0B)
are in relative position wy F'(wy). This gives a map o : X (w) — X (v').

The same procedure can be used on wyF(wy) and F(w;)F(w2) = F(w), so we get a map 7 :
X (w') = X(F(w)). We have a commutative diagram

X(w) —7— X (w)
F / F
X(F(w)) — X(F(w"))

Now by étale cohomology magic, F' induces an equ1valence of étale sites, so o and 7 also induce
equivalences of étale sites. Thus we obtain an isomorphisms H{(X (w)) = H:(X (w")).

The second case is that [(w’) > I(w), and since w’ = swF'(s) this means [(w’) = I(w) + 2. Let B €
X (w') = X(swF(s)). Using the same method as before, we find vB and §B such that (B,vB) €
O(s), (vB,dB) € O(w), and (6B, F(B)) is in O(F(s)).
We define

X1 ={BeX)|éB=F(B)}and Xo ={B € X(vw') | 6B # F(yB)}.

Then X is a closed subset of X (w’) and Xy is its open complement. This decomposition gives a
long exact sequence

— H'(X1) = Hi(X2) = HI(X (W) » Hi(X1) -
So for any ¢g € G, we have
tr(g", H2 (X (w'))) = tr(g", HZ (X1)) + tr(g", HZ (X2))
We will show the first term is tr(g*, H? (X (w))) and the second term is 0. Then the representations

R! and R!, have the same character, so they are isomorphic.

After decomposing, we obtain the map v : X; — X (w). For each B’ € X (w), the fiber y~1(B’)
consists of Borel subgroups B such that (B, B') € O(s). This means the fiber y~!(B’) is an affine
line over & (?), so X; is a fiber bundle with fibers being affine lines. Thus

He(X1) = H7(X (w) (1)
This shows tr(g*, H2(X1)) = tr(g*, H3 (X (w))).
A similar but slightly more complicated analysis for X produces long exact sequence
- HyH (X (sw) = H{(X2) = Hi72 (X (sw))(=1) = H(X (sw)) = -+
which then implies tr(g*, H.(X2)) = 0. (The original DL paper gives a reference to Grothendieck.)

|
In terms of our new description X7/ and Y7+ p/, we can define
Definition 2.4. For a character § : TF — Q;, we define

Riyvcp = Z(_l)iHé(YT'CB’) [6]

7
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which is a virtual representation of G¥'.

We have RTch/ = RtZ}oad(w)‘

Corollary 2.5. The virtual representation R}, 5, depends only on the G¥-conjugacy class of the maximal
tori T".

Proof. We have R}, 5 = R., which depends only on the F-conjugacy class of w in W by the
previous theorem. This translates to dependence on the G¥'-conjugacy class of 7”, because F-
conjugacy classes in W parametrize G¥'-conjugacy classes of F-stable maximal tori. u

3. GreeN Functions AND THE CHARACTER FORMULA

Definition 3.1. Let 7" be an F-stable maximal torus of G. The Green function Q7 ¢ (u) is the restric-
tion to the unipotent elements in G of the character of the virtual representation R} 5, where B
is any Borel subgroup containing 7'.

By what’s in the previous section, Q7 c(u) doesn’t depend on B, so there is no subscript B in the
notation.

We will prove (probably next time)

Theorem 3.2. Let x = su be the Jordan decomposition of x € GT (so s is semisimple and u is unipotent).
Then

1
tr(x, R?ch) = Z W Z Qad ¢(T),20(s) (u)ad g(0)(s).
eGF
adg(gT)CZO(s)

This formula expresses the character of RY._j; in terms of only # and the some Green function, so
it shows that RY._  is independent of the choice of B.
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