Deligne-Lusztig varieties

Introduction

We begin by setting some notation:

G* is our finite group of Lie type, being the fixed points under Frobenius of some (con-
nected) linear algebraic group G.

Let B be a fixed Borel subgroup of G, with a maximal torus 7. These pairs are mutually
conjugate, meaning if there is some other Borel B’ which cotnains a maximal torus 7”,
then there exists g € G such that gBg~! = B’ and gTg~' =T".

Denote by W := Ng(T)/T the Weyl group of your torus 7 C B. Note that all Weyl groups
are isomorphic via conjugation, so we speak of *the* Weyl group of G.

We denote by X the flag variety of all Borel subgroups, and note that since they are mu-
tually conjugate (and furthermore, Ng(B) = B), X = G/B. Recall from Amal’s lecture
that X is not a group scheme as B is not normal (unless X has only one element), but it is
a projective variety.

Note that by Lang’s theorem, since G is connected and it acts on X transitively, and fur-
thermore, F(B') is a Borel subgroup for any Borel B’ (here F is the associated Frobe-
nius), by Lang’s theorem, we find that there is a Borel subgroup B’ such that F(B') = B'.
So, WLOG we may pick B to be F'-stable.

Stratification of X

Let B, B” be two Borel subgroups of G. We say B’ and B” are in relative position w € W
iff. there exists some g € G such that B’ = g- B and B” = (gW) - B (here W is a lift of w to

Ng(T)).
Note that if we look at X x X, then from Amal’s talk, we have
X XX 2 UyewO(w)

where 0(w) = G- (B,w- B). As aresult, we have that B', B” are in relative position w iff.
(B',B") € O(w).

There is an alternative characterization of &'(w) as the set
O(w)={(g1-B,g2-B) : g7 '¢2 € BWB}
Now, F : X — X gives us its graph I'r C X x X. We then define,

X(w):=TpNO(w)

One should note that X (w) is not empty for any w € W by surjectivity of the Lang map.
Indeed, given w, find some g € G such that g~'F(g) = w. Then, F(gBg~!) = (gw)F (B)(gw) L.
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One can check that this intersection is transverse, so it is smooth, and since dim&'(w) =
dimX +/(w), we find that dim(X (w)) = I(w).

Note that if you have (B', F(B')) € X(w), then for any g € G'', g- (B',F(B')) = (g
B',F(g-B')) € T'r and naturally g- (B, F(B')) € &(w). Thus, X (w) admits a left action of
G".

Note that
X(w)={gBeX:g 'F(g) e BWB} C X

and in fact,
X = |—|W€WX (W)

Thus, we have a stratification of X which is respected by the action of G/'. Therefore, we
may work over any X (w) individually.

The Deligne-Lusztig Variety

We now define Y := G /U where U is the unipotent radical of B (think upper triangular
matrices with 1 on the diagonal). There is then a natural map,

Y =G/U—G/B=X

and note that since B =T x U, T normalizes U in B, and so Y admits a right-action by
T over X. In other (slight cooler/more complicated) words, Y is a T-torsor over X (think
T-bundle).

We then define
Y(w)={gU :g"'F(g)eUWU} CY

Note that ¥ (w) lies over X (w), and it admits a left G action which is equivariant with
respect to 7, : Y (w) — X (w).

Also note that if t € T, then gtU € Y (w) for gU € Y (w), iff. t g~ F(g)F(t) € UWU. But
then since gU € Y (w), we have t 1g~'F(g)F(t) € t 'UWUF(t) = U(t'"WwF(t))U. By
Bruhat decomposition, we therefore find that gtU € Y (w) iff. ad(w)(F(r)) = ¢. Letting
F,, = ad(W) o F, we therefore find that ¥ (w) is a Tt»-torsor over X (w). Note that because
W is finite, F,, is a Frobenius morphism.

This Y (w) is what we call a Deligne-Lusztig variety (note that there is some discrepancy:
Deligne and Lusztig seem to consider X (w) the Deligne-Lusztig variety, and then the
Y (w) are additional varieties over X (w) which give representations [slightly unclear]).

Also note, everywhere, we’ve put Y (w) and not Y (W) even though we use w in the defi-
nition of ¥ (w). This is actually okay, because if w' =t for some ¢ € T, then by finding
some t; € T such thatt = ad(w~!)(#;), we can check that gU + gt,U gives an isomor-
phism from Y (W) to Y (W'). Therefore, we may speak of ¥ (w).

So, since Y (w) is equipped with a left-action by G and a right action by T*», these two
groups also act on the /-adic cohomology of ¥ (w), and so we get a (G*, T7*)-bimodule,
and so we can decompose the cohomology of Y (w) via characters 6 of T,
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Thus, for every character 8 of ¥+, we get an induced virtual representation,

Ro =Y (~1)'H.(Y (w),Q)[6]

i
This is the so-called Deligne-Lusztig induced representation of the character 6 (more on
this next week).

This may devastate you, as twisted Frobenii might be unpleasant to handle. But we will
be able to give an isomorphic construction description which is a T'* -torsor.

Rough idea:
We may express, X (w) as

X(w):={g€G:¢g 'F(g) ewU}/T™UNnwUW )
and similarly express,

Y(w):={geG:g 'F(g) ewU}/(UnwUWw )

We may then define,
Xrp:={¢€G:¢g 'F(g) €F(B)}/(BNF(B))
Yrp:={¢€G:¢ 'F(g) e F(U)}/(UNF(U))
Then, Y7 p — Xrpisa TF -torsor.

(See next week’s talk for more detail, we won’t need it for this week).

Recovering the Drinfeld Curve

Let us look at the case of G = SL,. Then, of course G = SLz(IFq), B is the group of
upper triangular matrices, U the group of upper triangular matrices with the diagonal
being having 1. The torus is clear. The Weyl group here is the 2-element group < 1,w >
where w;j = 0 if i = j and wp; = —wj2 = 1. Using the fact that G/U = A% —(0,0), itis
not hard to check from definitions that Y (w) is the Drinfeld curve.

(Actual talk should spell out how this works).

The author of these notes is not aware of a more intrinsic way of seeing this realization
(say, via flags).

Quasi-Affinity of Deligne-Lusztig Varieties

The Deligne-Lusztig varieties we have produced are, in fact, quasi-affine (i.e. there is an
immersion into an affine scheme). We sketch a proof below. For more details, see Repre-
sentation Theory of Finite Reductive Groups (link on website).
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Sidebar

If we have a variety X /k (k = k) equipped with a free G action, then let us assume that
we may form the quotient variety X /G. We have a functor,

Fin- k[G]-Mod — Coh(X/G)

In other words, to every finite dimensional (over k) k[G]-module M, we can associate a
coherent Oy /G-module Zx /G(M ). On an affine open G-stable subset U = SpecA, we
have that,

Lx)6(M)|y = (M @y A)°

where we give the tensor product the diagonal action.

We state a few more properties of this functor in the special case that X 5X /G is locally
trivial (i.e. on some open cover U; of X /G, n~ 1 (U;) 2 U; x G).

Lx16(M) = (ZLx )6(M))

Zx)(MRN) = Ly )6(M) @0y, Lx /6(N)

Pullback Theorem: Suppose & : G’ C G is a subgroup, and we are given X equipped
with a G-action and X’ equipped with a G’-action. Suppose further that there is an o-
equivariant morphism ¢ : X’ — X (i.e. ¢(xg’) = ¢(x)ct(g’)). This descends to a map,

¢:X'/G = X/G

Then, we have ¢ (% 16(M)) = Ly /61(M?*), where M* denotes the k-vector space M
equipped with the canonical G’ action coming from a.

End of Sidebar

Now, returning to the proof, for every character of the torus A € X(7'), we can look at
the one-dimensional k-vector space it generates (viewed as a T-module). We can then
further view it as a one-dimensional B-module by first projecting to 7 C B. This gives us
coherent sheaves,

Z6/5(4)

on G/B. Hereafter, we switch to additive notation for X (7) (i.e. A; + 4, := A1 A2). Then,
since G — G/B is locally trivial, we have that .Z;5(A) is invertible for all A.

Let j: X(w) — X = G/B. We then claim that j* % /p(A o F) = j* % p(A(ad(w))).

From this claim, we will be able to prove that the structure sheaf of X (w) is ample (which
is equivalent to X (w) being quasi-affine).



How does this follow? Well, # +— ad(w)(¢) "' F () is surjective from T to T by Lang’s
theorem, and hence the dual map X(7') — X(T),

A— Aoad(w)—AoF
is injective. But this means the map of lattices has finite cokernel.

Now, from some magic, we can find some @ € X(T') such that £ p(®) is ample (see
Representations of Algebraic Groups by Jens Jantzen (II. 4.3 - 4.4) for a proof).

Thus, for some m € N, we can find a A € X(T) such that A cad(w) — A o F = m®. But
ma@ is still ample. Therefore, its pullback to X (w) is ample, and now its straightforward
to conclude, via the claim above, that Oy, is ample.

The proof of the claim is a fairly technical application of the pullback theorem (see Rep-
resentation Theory of Finite Reductive Groups for more details).

We end by remarking that, to the author’s knowledge, it is an open conjecture that Deligne-
Lusztig varieties are actually affine. This is known for sufficiently large g.



