An Introduction to the Volume Conjecture, II Why we expect the conjecture is true.

Hitoshi Murakami

Tokyo Institute of Technology

8th June, 2009
(1) Geometric interpretation of the R-matrix
(2) Example
(3) Approximation of the colored Jones polynomial
(4) Geometric interpretation of the limit

Review of the definition

$$
\begin{aligned}
R_{k l}^{i j}:= & \sum_{m=0}^{\min (N-1-i, j)} \delta_{l, i+m} \delta_{k, j-m} \frac{\{l\}!\{N-1-k\}!}{\{i\}!\{m\}!\{N-1-j\}!} \\
& \times q^{(i-(N-1) / 2)(j-(N-1) / 2)-m(i-j) / 2-m(m+1) / 4}, \\
\left(R^{-1}\right)_{k l}^{i j}:= & \sum_{m=0}^{\min (N-1-i, j)} \delta_{l, i-m} \delta_{k, j+m} \frac{\{k\}!\{N-1-l\}!}{\{j\}!\{m\}!\{N-1-i\}!} \\
& \times q^{-(i-(N-1) / 2)(j-(N-1) / 2)-m(i-j) / 2+m(m+1) / 4},
\end{aligned}
$$

with $\{m\}:=q^{m / 2}-q^{-m / 2}$ and $\{m\}!:=\{1\}\{2\} \cdots\{m\}$.

An example of calculation

$$
J_{N}(L ; q):=T_{\left(R, \mu, q^{\left(N^{2}-1\right) / 4}, 1\right)}(L) \times \frac{\{1\}}{\{N\}}
$$

To calculate $J_{N}(L ; q)$ we leave the left-most strand without closing.

This gives a linear map $\varphi: \mathbb{C}^{N} \rightarrow \mathbb{C}^{N}$, which is a scalar multiple by Schur's lemma.

We fix a basis $\left\{e_{0}, e_{1}, \ldots, e_{N-1}\right\}$ of C^{N}. The linear map is a scalar multiple and so e_{i} is multiplied by S for any i. Since

$$
\begin{aligned}
T_{\left(R, \mu, q^{\left(N^{2}-1\right) / 4}, 1\right)}(L) & =q^{-w(\beta)\left(N^{2}-1\right) / 4} \operatorname{Tr}_{1}(\phi \mu) \\
& =q^{-w(\beta)\left(N^{2}-1\right) / 4} \sum_{i=0}^{N-1} S q^{(2 i-N+1) / 2} \\
& =q^{-w(\beta)\left(N^{2}-1\right) / 4} \frac{\{N\}}{\{1\}} S
\end{aligned}
$$

we have $J_{N}(L ; q)=S$.

How to label arcs

colored Jones polynomial

Quantum factorial at the N-th root of unity

$$
\begin{aligned}
q= & \zeta_{N}:=\exp (2 \pi \sqrt{-1} / N) \\
\Rightarrow & \{k\}!\{N-k-1\}! \\
= & \pm\left(\text { a power of } \zeta_{N}\right) \times\left(1-\zeta_{N}\right)\left(1-\zeta_{N}^{2}\right) \cdots\left(1-\zeta_{N}^{k}\right) \\
& \times\left(1-\zeta_{N}\right)\left(1-\zeta_{N}^{2}\right) \cdots\left(1-\zeta_{N}^{N-1-k}\right) \\
= & \pm\left(a \text { power of } \zeta_{N}\right) \times\left(1-\zeta_{N}\right)\left(1-\zeta_{N}^{2}\right) \cdots\left(1-\zeta_{N}^{k}\right) \\
& \times\left(1-\zeta_{N}^{N-1}\right)\left(1-\zeta_{N}^{N-2}\right) \cdots\left(1-\zeta_{N}^{k+1}\right) \\
= & \pm\left(\text { a power of } \zeta_{N}\right) \times 2^{N-1} \sin (\pi / N) \sin (2 \pi / N) \cdots \sin ((N-1) \pi / N) \\
= & \pm\left(\text { a power of } \zeta_{N}\right) \times N
\end{aligned}
$$

- $\left(\zeta_{N}\right)_{k^{+}}:=\left(1-\zeta_{N}\right) \cdots\left(1-\zeta_{N}^{k}\right),\left(\zeta_{N}\right)_{k^{-}}:=\left(1-\zeta_{N}\right) \cdots\left(1-\zeta_{N}^{N-1-k}\right)$.
- $\left(\zeta_{N}\right)_{k^{+}}\left(\zeta_{N}\right)_{k^{-}}= \pm\left(\right.$a power of $\left.\zeta_{N}\right) \times N$.
- $\{k\}!= \pm\left(\right.$ a power of $\left.\zeta_{N}\right) \times\left(\zeta_{N}\right)_{k^{+}}$, $\{N-1-k\}!= \pm\left(\right.$ a power of $\left.\zeta_{N}\right) \times\left(\zeta_{N}\right)_{k^{-}}$.

R-matrix as a product of quantum factorial

$$
\begin{aligned}
& R_{k l}^{i j}=\sum_{m} \pm\left(\text { a power of } \zeta_{N}\right) \times \delta_{l, i+m} \delta_{k, j-m} \frac{\{l\}!\{N-1-k\}!}{\{i\}!\{m\}!\{N-1-j\}!} \\
&=\sum_{m} \delta_{l, i+m} \delta_{k, j-m} \frac{ \pm\left(\text { a power of } \zeta_{N}\right) \times N^{2}}{\left(\zeta_{N}\right)_{m^{+}}\left(\zeta_{N}\right)_{i^{+}}\left(\zeta_{N}\right)_{k^{+}}\left(\zeta_{N}\right)_{j-}\left(\zeta_{N}\right)_{l^{-}}} \\
&\left(R^{-1}\right)_{k l}^{i j}=\sum_{m} \delta_{l, i-m} \delta_{k, j+m} \frac{ \pm\left(a \text { power of } \zeta_{N}\right) \times N^{-2}}{\left(\zeta_{N}\right)_{m^{+}}\left(\zeta_{N}\right)_{i^{-}-}\left(\zeta_{N}\right)_{k^{-}}\left(\zeta_{N}\right)_{j^{+}}\left(\zeta_{N}\right)_{l^{+}}} \\
& \Rightarrow \\
& J_{N}\left(K ; \zeta_{N}\right)=\sum_{\substack{\text { labellings } \\
i, j,, l \\
\text { on arcs }}}\left(\prod_{ \pm- \text {crossings }} \frac{ \pm\left(\text { a power of } \zeta_{N}\right) \times N^{ \pm 2}}{\left(\zeta_{N}\right)_{m^{+}}\left(\zeta_{N}\right)_{i^{ \pm}\left(\zeta_{N}\right)_{k^{ \pm}}\left(\zeta_{N}\right)_{j^{\mp}}\left(\zeta_{N}\right)_{l^{F}}}}\right)
\end{aligned}
$$

Approximation of the quantum factorial

$$
\begin{aligned}
& \log \left(\zeta_{N}\right)_{k^{+}}=\sum_{j=1}^{k} \log \left(1-\zeta_{N}^{j}\right) \\
&=\sum_{j=1}^{k} \log (1-\exp (2 \pi \sqrt{-1} j / N)) \\
&(x:=j / N) \\
& \approx N \int_{0}^{k / N} \log (1-\exp (2 \pi \sqrt{-1} x)) d x \\
&(y:=\exp (2 \pi \sqrt{-1} x)) \\
&=\frac{N}{2 \pi \sqrt{-1}} \int_{1}^{\exp (2 \pi \sqrt{-1} k / N)} \frac{\log (1-y)}{y} d y
\end{aligned}
$$

Approximation of the quantum factorial by dilogarithm

- (dilog function)

$$
\begin{gathered}
\operatorname{Li}_{2}(z):=-\int_{0}^{z} \frac{\log (1-y)}{y} d y=\sum_{n=1}^{\infty} \frac{z^{n}}{n^{2}} \\
\log \left(\zeta_{N}\right)_{k^{+}} \underset{N \rightarrow \infty}{\approx} \frac{N}{2 \pi \sqrt{-1}}\left[\operatorname{Li}_{2}(1)-\operatorname{Li}_{2}\left(\zeta_{N}^{k}\right)\right] . \\
\left(\zeta_{N}\right)_{k^{ \pm}} \underset{N \rightarrow \infty}{\approx} \exp \left[-\frac{N}{2 \pi \sqrt{-1}} \operatorname{Li}_{2}\left(\zeta_{N}^{ \pm k}\right)\right]
\end{gathered}
$$

Approximation of the colored Jones polynomial by dilogarithm

$J_{N}\left(K ; \zeta_{N}\right) \underset{N \rightarrow \infty}{\approx}$
$\sum($ polynomial of $N) \times\left(\right.$ power of $\left.\zeta_{N}\right)$
labellings
$\exp \left[\frac{N}{2 \pi \sqrt{-1}}\right.$
$\sum_{\text {crossings }}\left\{\operatorname{Li}_{2}\left(\zeta_{N}^{m}\right)+\operatorname{Li}_{2}\left(\zeta_{N}^{ \pm i}\right)+\operatorname{Li}_{2}\left(\zeta_{N}^{\mp j}\right)+\operatorname{Li}_{2}\left(\zeta_{N}^{ \pm k}\right)+\operatorname{Li}_{2}\left(\zeta_{N}^{\mp \prime}\right)+\right.$ log terms $\}$
where a log term comes from powers of ζ_{N}. For example

$$
q^{k^{2}}=\exp \left(\frac{N}{2 \pi \sqrt{-1}}\left(\frac{2 \pi \sqrt{-1} k}{N}\right)^{2}\right)=\exp \left[\frac{N}{2 \pi \sqrt{-1}}\left(\log \zeta_{N}^{k}\right)^{2}\right] .
$$

Approximation of the colored Jones polynomial by integral

$$
J_{N}\left(K ; \zeta_{N}\right) \underset{N \rightarrow \infty}{ } \sum_{i_{1}, \ldots, i_{c}}(\text { polynomial of } N) \exp \left[\frac{N}{2 \pi \sqrt{-1}} V\left(\zeta_{N}^{i_{1}}, \ldots, \zeta_{N}^{i_{c}}\right)\right]
$$

(ignore polynomials since exp grows much bigger)

$$
\begin{aligned}
& \underset{N \rightarrow \infty}{\approx} \sum_{i_{1}, \ldots, i_{c}} \exp \left[\frac{N}{2 \pi \sqrt{-1}} V\left(\zeta_{N}^{i_{1}}, \ldots, \zeta_{N}^{i_{c}}\right)\right] \\
& \approx \underset{N \rightarrow \infty}{\approx} \int_{J_{1}} \cdots \int_{J_{c}} \exp \left[\frac{N}{2 \pi \sqrt{-1}} V\left(z_{1}, \ldots, z_{c}\right) d z_{1} \cdots d z_{c}\right],
\end{aligned}
$$

where

- i_{1}, \ldots, i_{c} : labellings on arcs.

$$
\begin{aligned}
& V\left(\zeta_{N}^{i_{1}}, \ldots, \zeta_{N}^{i_{c}}\right):= \\
& \sum_{\sim}\left\{\operatorname{Li}_{2}\left(\zeta_{N}^{m}\right)+\operatorname{Li}_{2}\left(\zeta_{N}^{ \pm i}\right)+\operatorname{Li}_{2}\left(\zeta_{N}^{\mp j}\right)+\operatorname{Li}_{2}\left(\zeta_{N}^{ \pm k}\right)+\operatorname{Li}_{2}\left(\zeta_{N}^{\mp \prime}\right)\right\}
\end{aligned}
$$

- J_{1}, \ldots, J_{c} crossings contours.

Saddle point method

$V\left(x_{1}, \ldots, x_{c}\right)$: the 'maximum' of $\left\{\operatorname{Im} V\left(z_{1}, \ldots, z_{c}\right)\right\}_{\left(z_{1}, \ldots, z_{c}\right) \in J_{1} \times \cdots \times J_{c}}$ to find the maximum of $\left|\exp \left[\frac{N}{2 \pi \sqrt{-1}} V\left(z_{1}, \ldots, z_{c}\right) d z_{1} \cdots d z_{c}\right]\right|$. \Rightarrow

$$
J_{N}\left(K ; \zeta_{N}\right) \underset{N \rightarrow \infty}{\approx} \exp \left[\frac{N}{2 \pi \sqrt{-1}} V\left(x_{1}, \ldots, x_{c}\right)\right]
$$

By the saddle point method, $\left(x_{1}, \ldots, x_{c}\right)$ satisfies the following.

$$
\begin{gathered}
\frac{\partial V}{\partial z_{k}}\left(x_{1}, \ldots, x_{c}\right)=0 \quad(k=1, \ldots, c) \\
2 \pi \sqrt{-1} \lim _{N \rightarrow \infty} \frac{J_{N}\left(K ; \zeta_{N}\right)}{N}=V\left(x_{1}, \ldots, x_{c}\right)
\end{gathered}
$$

Difficulties

Difficulties so far:

- Replacing the summation into an integral

$$
\sum_{i_{1}, \ldots, i_{c}} \exp \left[\frac{N}{2 \pi \sqrt{-1}} V\left(\zeta_{N}^{i_{1}}, \ldots, \zeta_{N}^{i_{c}}\right)\right]
$$

$$
\underset{N \rightarrow \infty}{\approx} \int_{J_{1}} \cdots \int_{J_{c}} \exp \left[\frac{N}{2 \pi \sqrt{-1}} V\left(z_{1}, \ldots, z_{c}\right) d z_{1} \cdots d z_{c}\right]
$$

- How to apply the saddle point method. In particular, which saddle point to choose. In general, we have many solutions to the system of equations.

$$
\begin{array}{r}
\int_{J_{1}} \cdots \int_{J_{c}} \exp \left[\frac{N}{2 \pi \sqrt{-1}} V\left(z_{1}, \ldots, z_{c}\right) d z_{1} \cdots d z_{c}\right] \\
\underset{N \rightarrow \infty}{\approx} \exp \left[\frac{N}{2 \pi \sqrt{-1}} V\left(x_{1}, \ldots, x_{c}\right)\right]
\end{array}
$$

Decomposition into octahedra (by D. Thurston)

Decompose the knot complement into (topological, truncated) tetrahedra.

- Around each crossing, put an octahedron:

- Decompose the octahedron into five tetrahedra:

Decomposition into topological tetrahedra

- Pull the vertices to the point at infinity:

- $S^{3} \backslash K$ is now decomposed into topological, truncated tetrahedra, decorated with complex numbers $\zeta_{N}^{i_{k}}$.

Decomposition into hyperbolic tetrahedra

- Each topological, truncated tetrahedron is decorated with a complex number $\zeta_{N}^{i_{k}}$.
- We want to regard it as a hyperbolic, ideal tetrahedron.
- Recall that we have replaced a summation over i_{k} into an integral over z_{k}.
- Replace $\zeta_{N}^{i_{k}}$ with a complex variable z_{k}.
- Regard the tetrahedron decorated with z_{k} as an hyperbolic, ideal tetrahedron parametrized by z_{k}.

Hyperbolic structure on the knot complement

- Now the knot complement is decomposed into ideal, hyperbolic tetrahedra parametrized by z_{1}, \ldots, z_{c}.
- Choose z_{1}, \ldots, z_{c} so that we can glue these tetrahedra well, that is,
- around each edge, the sum of angles is 2π,
- the triangles that appear in the boundary torus make the torus Euclidean.
- These conditions are the same as the system of equations that we used in the saddle point method!

$$
\frac{\partial V}{\partial z_{k}}\left(x_{1}, \ldots, x_{c}\right)=0 \quad(k=1, \ldots, c)
$$

- $\Rightarrow\left(x_{1}, \ldots, x_{c}\right)$ gives the complete hyperbolic structure.
- Then, what does $V\left(x_{1}, \ldots, x_{c}\right)\left(=2 \pi \sqrt{-1} \lim _{N \rightarrow \infty} \frac{J_{N}\left(K, \zeta_{N}\right)}{N}\right)$ mean?

Geometric meaning of the limit

Recall: $V\left(x_{1}, \ldots, x_{c}\right)$ is the sum of $\operatorname{Li}_{2}\left(x_{k}\right)$ (and log), where x_{k} defines an ideal hyperbolic tetrahedron. We use the following formula:

Vol(tetrahedron parametrized by $z)=\operatorname{Im} \operatorname{Li}_{2}(z)-\log |z| \arg (1-z)$.
Therefore we finally have

$$
\begin{gathered}
\operatorname{Im}\left(2 \pi \sqrt{-1} \lim _{N \rightarrow \infty} \frac{J_{N}\left(K, \zeta_{N}\right)}{N}\right)=\operatorname{Vol}\left(S^{3} \backslash K\right) \\
2 \pi \lim _{N \rightarrow \infty} \frac{\left|J_{N}\left(K, \zeta_{N}\right)\right|}{N}=\operatorname{Vol}\left(S^{3} \backslash K\right)
\end{gathered}
$$

which is the Volume Conjecture.

