An Introduction to the Volume Conjecture, I

Hitoshi Murakami
Tokyo Institute of Technology

6th June, 2009
(1) Link invariant from a Yang-Baxter operator
(2) Volume conjecture
(3) Proof of the volume conjecture for the figure-eight knot
(4) Hyperbolic geometry
(5) Proof of the volume conjecture for the figure-eight knot - conclusion
(6) Final remarks

Braid presentation of a link

Braid presentation of a link

Theorem (J.W. Alexander)
Any knot or link can be presented as the closure of a braid.

Braid presentation of a link

Theorem (J.W. Alexander)
Any knot or link can be presented as the closure of a braid.

Braid presentation of a link

Theorem (J.W. Alexander)
Any knot or link can be presented as the closure of a braid.

n-braid group has

Braid presentation of a link

Theorem (J.W. Alexander)
Any knot or link can be presented as the closure of a braid.

n-braid group has

- generators: $\sigma_{i}(i=1,2, \ldots, n-1)$:

Braid presentation of a link

Theorem (J.W. Alexander)

Any knot or link can be presented as the closure of a braid.

n-braid group has

- generators: $\sigma_{i}(i=1,2, \ldots, n-1)$:

- relations: $\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}(|i-j|>1)$,

Markov's theorem

Markov's theorem

Theorem (A.A. Markov)
β and β^{\prime} give equivalent links $\Leftrightarrow \beta$ and β^{\prime} are related by

Markov's theorem

Theorem (A.A. Markov)
β and β^{\prime} give equivalent links $\Leftrightarrow \beta$ and β^{\prime} are related by

- conjugation $(\alpha \beta \Leftrightarrow \beta \alpha)$:

Markov's theorem

Theorem (A.A. Markov)
β and β^{\prime} give equivalent links $\Leftrightarrow \beta$ and β^{\prime} are related by

- conjugation $(\alpha \beta \Leftrightarrow \beta \alpha)$:

- stabilization $\left(\beta \Leftrightarrow \beta \sigma_{n}^{ \pm 1}\right)$:

Yang-Baxter operator

Yang-Baxter operator

- V : a N-dimensional vector space over \mathbb{C}.

Yang-Baxter operator

- V : a N-dimensional vector space over \mathbb{C}.
- $R: V \otimes V \rightarrow V \otimes V(R$-matrix $), \mu: V \rightarrow V$: isomorphisms,

Yang-Baxter operator

- V : a N-dimensional vector space over \mathbb{C}.
- $R: V \otimes V \rightarrow V \otimes V(R$-matrix $), \mu: V \rightarrow V$: isomorphisms,
- a, b : non-zero complex numbers.

Yang-Baxter operator

- V : a N-dimensional vector space over \mathbb{C}.
- $R: V \otimes V \rightarrow V \otimes V(R$-matrix $), \mu: V \rightarrow V$: isomorphisms,
- a, b : non-zero complex numbers.

Definition (V. Turaev)
(R, μ, a, b) is called an enhanced Yang-Baxter operator if it satisfies

Yang-Baxter operator

- V : a N-dimensional vector space over \mathbb{C}.
- $R: V \otimes V \rightarrow V \otimes V(R$-matrix $), \mu: V \rightarrow V$: isomorphisms,
- a, b : non-zero complex numbers.

Definition (V. Turaev)
(R, μ, a, b) is called an enhanced Yang-Baxter operator if it satisfies

- $\left(R \otimes \mathrm{Id}_{v}\right)\left(\mathrm{Id}_{v} \otimes R\right)\left(R \otimes \mathrm{Id}_{v}\right)=\left(\mathrm{Id}_{v} \otimes R\right)\left(R \otimes \mathrm{Id}_{v}\right)\left(\mathrm{Id}_{v} \otimes R\right)$, (Yang-Baxter equation)

Yang-Baxter operator

- V : a N-dimensional vector space over \mathbb{C}.
- $R: V \otimes V \rightarrow V \otimes V(R$-matrix $), \mu: V \rightarrow V$: isomorphisms,
- a, b : non-zero complex numbers.

Definition (V. Turaev)

($R, \mu, a, b)$ is called an enhanced Yang-Baxter operator if it satisfies

- $\left(R \otimes \operatorname{ld}_{V}\right)\left(\operatorname{Id}_{v} \otimes R\right)\left(R \otimes \operatorname{ld}_{V}\right)=\left(\operatorname{Id}_{v} \otimes R\right)\left(R \otimes \operatorname{Id}_{V}\right)\left(\mathrm{Id}_{v} \otimes R\right)$, (Yang-Baxter equation)
- $R(\mu \otimes \mu)=(\mu \otimes \mu) R$,

Yang-Baxter operator

- V : a N-dimensional vector space over \mathbb{C}.
- $R: V \otimes V \rightarrow V \otimes V(R$-matrix $), \mu: V \rightarrow V$: isomorphisms,
- a, b : non-zero complex numbers.

Definition (V. Turaev)

($R, \mu, a, b)$ is called an enhanced Yang-Baxter operator if it satisfies

- $\left(R \otimes \mathrm{Id}_{V}\right)\left(\mathrm{Id}_{v} \otimes R\right)\left(R \otimes \mathrm{Id}_{v}\right)=\left(\mathrm{Id}_{v} \otimes R\right)\left(R \otimes \mathrm{Id}_{v}\right)\left(\mathrm{Id}_{v} \otimes R\right)$, (Yang-Baxter equation)
- $R(\mu \otimes \mu)=(\mu \otimes \mu) R$,
- $\operatorname{Tr}_{2}\left(R^{ \pm}(\operatorname{ld} v \otimes \mu)\right)=a^{ \pm 1} b \operatorname{ld}_{V}$.

Yang-Baxter operator

- V : a N-dimensional vector space over \mathbb{C}.
- $R: V \otimes V \rightarrow V \otimes V(R$-matrix $), \mu: V \rightarrow V$: isomorphisms,
- a, b : non-zero complex numbers.

Definition (V. Turaev)

($R, \mu, a, b)$ is called an enhanced Yang-Baxter operator if it satisfies

- $\left(R \otimes \mathrm{Id}_{V}\right)\left(\mathrm{Id}_{v} \otimes R\right)\left(R \otimes \mathrm{Id}_{v}\right)=\left(\mathrm{Id}_{v} \otimes R\right)\left(R \otimes \mathrm{Id}_{v}\right)\left(\mathrm{Id}_{v} \otimes R\right)$, (Yang-Baxter equation)
- $R(\mu \otimes \mu)=(\mu \otimes \mu) R$,
- $\operatorname{Tr}_{2}\left(R^{ \pm}(\operatorname{ld} v \otimes \mu)\right)=a^{ \pm 1} b \operatorname{ld}_{V}$.
$\mathrm{Tr}_{2}: V \otimes V \rightarrow V$ is the operator trace. (For $M \in \operatorname{End}(V \otimes V)$ given by a matrix $M_{k l}^{i j}, \operatorname{Tr}_{2}(M)$ is given by $\sum_{m} M_{k m}^{i m}$.)

Braid \Rightarrow endomorphism

Replace

Braid \Rightarrow endomorphism

Replace

with

Braid \Rightarrow endomorphism

Replace

Braid \Rightarrow endomorphism

Replace

Braid \Rightarrow endomorphism

Replace

Braid \Rightarrow endomorphism

Replace

$$
n \text {-braid } \beta \Rightarrow \text { homomorphism } \Phi(\beta): V^{\otimes n} \rightarrow V^{\otimes n}
$$

Braid \Rightarrow endomorphism

Replace

$$
n \text {-braid } \beta \Rightarrow \text { homomorphism } \Phi(\beta): V^{\otimes n} \rightarrow V^{\otimes n}
$$

Definition of an invariant

Definition
 n-braid $\beta \Rightarrow$ a link L.

Definition of an invariant

Definition

n-braid $\beta \Rightarrow$ a link L.

$$
T_{(R, \mu, a, b)}(L):=
$$

Definition of an invariant

Definition

n-braid $\beta \Rightarrow$ a link L.

$$
T_{(R, \mu, a, b)}(L):=a^{-w(\beta)} b^{-n} \operatorname{Tr}_{1}\left(\operatorname{Tr}_{2}\left(\cdots\left(\operatorname{Tr}_{n}\left(\Phi(\beta) \mu^{\otimes n}\right)\right) \cdots\right)\right),
$$

where $\operatorname{Tr}_{k}: V^{\otimes k} \rightarrow V^{\otimes(k-1)}$ is defined similarly.

Definition of an invariant

Definition

n-braid $\beta \Rightarrow$ a link L.

$$
T_{(R, \mu, a, b)}(L):=a^{-w(\beta)} b^{-n} \operatorname{Tr}_{1}\left(\operatorname{Tr}_{2}\left(\cdots\left(\operatorname{Tr}_{n}\left(\Phi(\beta) \mu^{\otimes n}\right)\right) \cdots\right)\right),
$$

where $\operatorname{Tr}_{k}: V^{\otimes k} \rightarrow V^{\otimes(k-1)}$ is defined similarly.

Invariance of $T_{(R, \mu, a, b)}(L)$ under braid relation and conjugation

Invariance of $T_{(R, \mu, a, b)}(L)$ under braid relation and conjugation

- Invariance under the braid relation $\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i}=\sigma_{i+1}$.

Invariance of $T_{(R, \mu, a, b)}(L)$ under braid relation and conjugation

- Invariance under the braid relation $\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i}=\sigma_{i+1}$.

Invariance of $T_{(R, \mu, a, b)}(L)$ under braid relation and conjugation

- Invariance under the braid relation $\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i}=\sigma_{i+1}$.

Invariance of $T_{(R, \mu, a, b)}(L)$ under braid relation and conjugation

- Invariance under the braid relation $\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i}=\sigma_{i+1}$.

- invariance under conjugation

Invariance of $T_{(R, \mu, a, b)}(L)$ under braid relation and conjugation

- Invariance under the braid relation $\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i}=\sigma_{i+1}$.

- invariance under conjugation

Invariance of $T_{(R, \mu, a, b)}(L)$ under braid relation and conjugation

- Invariance under the braid relation $\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i}=\sigma_{i+1}$.

- invariance under conjugation

Invariance of $T_{(R, \mu, a, b)}(L)$ under braid relation and conjugation

- Invariance under the braid relation $\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i}=\sigma_{i+1}$.

- invariance under conjugation

Invariance of $T_{(R, \mu, a, b)}(L)$ under stabilization

Invariance of $T_{(R, \mu, a, b)}(L)$ under stabilization

- invariance under stabilization

Invariance of $T_{(R, \mu, a, b)}(L)$ under stabilization

- invariance under stabilization

Invariance of $T_{(R, \mu, a, b)}(L)$ under stabilization

- invariance under stabilization

Invariance of $T_{(R, \mu, a, b)}(L)$ under stabilization

- invariance under stabilization

Theorem (Turaev)
$T_{(R, \mu, a, b)}$ is a link invariant.

Quantum (\mathfrak{g}, V) invariant

Quantum (\mathfrak{g}, V) invariant

- $\mathfrak{g}:$ a Lie algebra,
- V : its representation

Quantum (\mathfrak{g}, V) invariant

- $\mathfrak{g}:$ a Lie algebra,
- V : its representation
\Rightarrow
an enhanced Yang-Baxter operator (R, μ, a, b).

Quantum (\mathfrak{g}, V) invariant

- \mathfrak{g} : a Lie algebra,
- V : its representation
\Rightarrow
an enhanced Yang-Baxter operator (R, μ, a, b).
\Rightarrow
quantum (\mathfrak{g}, V) invariant.

Quantum (\mathfrak{g}, V) invariant

- $\mathfrak{g}:$ a Lie algebra,
- V : its representation
\Rightarrow
an enhanced Yang-Baxter operator (R, μ, a, b).
\Rightarrow
quantum (\mathfrak{g}, V) invariant.

Definition

The quantum $\left(s /(2, \mathbb{C}), V_{N}\right)$ invariant is called the N-dimensional colored Jones polynomial $J_{N}(L ; q)$. (q is a complex parameter.)

Quantum (\mathfrak{g}, V) invariant

- \mathfrak{g} : a Lie algebra,
- V : its representation
\Rightarrow
an enhanced Yang-Baxter operator (R, μ, a, b).
\Rightarrow
quantum (\mathfrak{g}, V) invariant.

Definition

The quantum $\left(s /(2, \mathbb{C}), V_{N}\right)$ invariant is called the N-dimensional colored Jones polynomial $J_{N}(L ; q)$. (q is a complex parameter.)

- $V_{N}: N$-dimensional irreducible representation of $s l(2, \mathbb{C})$.

Quantum (\mathfrak{g}, V) invariant

- \mathfrak{g} : a Lie algebra,
- V : its representation
\Rightarrow
an enhanced Yang-Baxter operator (R, μ, a, b).
\Rightarrow
quantum (\mathfrak{g}, V) invariant.

Definition

The quantum $\left(s /(2, \mathbb{C}), V_{N}\right)$ invariant is called the N-dimensional colored Jones polynomial $J_{N}(L ; q)$. (q is a complex parameter.)

- $V_{N}: N$-dimensional irreducible representation of $s l(2, \mathbb{C})$.
- $J_{2}(L ; q)$ is the ordinary Jones polynomial.

Quantum (\mathfrak{g}, V) invariant

- $\mathfrak{g}:$ a Lie algebra,
- V : its representation
\Rightarrow
an enhanced Yang-Baxter operator (R, μ, a, b).
\Rightarrow
quantum (\mathfrak{g}, V) invariant.

Definition

The quantum $\left(s /(2, \mathbb{C}), V_{N}\right)$ invariant is called the N-dimensional colored Jones polynomial $J_{N}(L ; q)$. (q is a complex parameter.)

- $V_{N}: N$-dimensional irreducible representation of $s l(2, \mathbb{C})$.
- $J_{2}(L ; q)$ is the ordinary Jones polynomial.
- $J_{N}($ unknot $; q)=1$.

Precise definition of the colored Jones polynomial

Precise definition of the colored Jones polynomial

- $V:=\mathbb{C}^{N}$.

Precise definition of the colored Jones polynomial

- $V:=\mathbb{C}^{N}$.
- $R_{k l}^{i j}:=\sum_{m=0}^{\min (N-1-i, j)} \delta_{l, i+m} \delta_{k, j-m} \frac{\{l\}!\{N-1-k\}!}{\{i\}!\{m\}!\{N-1-j\}!}$
$\times q^{(i-(N-1) / 2)(j-(N-1) / 2)-m(i-j) / 2-m(m+1) / 4}$, with $\{m\}:=q^{m / 2}-q^{-m / 2}$ and $\{m\}!:=\{1\}\{2\} \cdots\{m\}$.

Precise definition of the colored Jones polynomial

- $V:=\mathbb{C}^{N}$.
- $R_{k l}^{i j}:=\sum_{m=0}^{\min (N-1-i, j)} \delta_{l, i+m} \delta_{k, j-m} \frac{\{l\}!\{N-1-k\}!}{\{i\}!\{m\}!\{N-1-j\}!}$
$\times q^{(i-(N-1) / 2)(j-(N-1) / 2)-m(i-j) / 2-m(m+1) / 4}$, with $\{m\}:=q^{m / 2}-q^{-m / 2}$ and $\{m\}!:=\{1\}\{2\} \cdots\{m\}$.
- $\mu_{j}^{i}:=\delta_{i, j} q^{(2 i-N+1) / 2}$.

Precise definition of the colored Jones polynomial

- $V:=\mathbb{C}^{N}$.
- $R_{k l}^{i j}:=\sum_{m=0}^{\min (N-1-i, j)} \delta_{l, i+m} \delta_{k, j-m} \frac{\{l\}!\{N-1-k\}!}{\{i\}!\{m\}!\{N-1-j\}!}$

$$
\times q^{(i-(N-1) / 2)(j-(N-1) / 2)-m(i-j) / 2-m(m+1) / 4},
$$

with $\{m\}:=q^{m / 2}-q^{-m / 2}$ and $\{m\}!:=\{1\}\{2\} \cdots\{m\}$.

- $\mu_{j}^{i}:=\delta_{i, j} q^{(2 i-N+1) / 2}$.
- $R\left(e_{k} \otimes e_{l}\right):=\sum_{i, j=0}^{N-1} R_{k l}^{i j} e_{i} \otimes e_{j}$ and $\mu\left(e_{j}\right):=\sum_{i=0}^{N-1} \mu_{j}^{i} e_{i}$.

Precise definition of the colored Jones polynomial

- $V:=\mathbb{C}^{N}$.
- $R_{k l}^{i j}:=\sum_{m=0}^{\min (N-1-i, j)} \delta_{l, i+m} \delta_{k, j-m} \frac{\{I\}!\{N-1-k\}!}{\{i\}!\{m\}!\{N-1-j\}!}$

$$
\times q^{(i-(N-1) / 2)(j-(N-1) / 2)-m(i-j) / 2-m(m+1) / 4}
$$

with $\{m\}:=q^{m / 2}-q^{-m / 2}$ and $\{m\}!:=\{1\}\{2\} \cdots\{m\}$.

- $\mu_{j}^{i}:=\delta_{i, j} q^{(2 i-N+1) / 2}$.
- $R\left(e_{k} \otimes e_{l}\right):=\sum_{i, j=0}^{N-1} R_{k l}^{i j} e_{i} \otimes e_{j}$ and $\mu\left(e_{j}\right):=\sum_{i=0}^{N-1} \mu_{j}^{i} e_{i}$.
$\stackrel{\Rightarrow}{\left(R, \mu, q^{\left(N^{2}-1\right) / 4}, 1\right) \text { gives an enhanced Yang-Baxter operator. }}$

Precise definition of the colored Jones polynomial

- $V:=\mathbb{C}^{N}$.
- $R_{k l}^{i j}:=\sum_{m=0}^{\min (N-1-i, j)} \delta_{l, i+m} \delta_{k, j-m} \frac{\{l\}!\{N-1-k\}!}{\{i\}!\{m\}!\{N-1-j\}!}$

$$
\times q^{(i-(N-1) / 2)(j-(N-1) / 2)-m(i-j) / 2-m(m+1) / 4},
$$

with $\{m\}:=q^{m / 2}-q^{-m / 2}$ and $\{m\}!:=\{1\}\{2\} \cdots\{m\}$.

- $\mu_{j}^{i}:=\delta_{i, j} q^{(2 i-N+1) / 2}$.
- $R\left(e_{k} \otimes e_{l}\right):=\sum_{i, j=0}^{N-1} R_{k l}^{i j} e_{i} \otimes e_{j}$ and $\mu\left(e_{j}\right):=\sum_{i=0}^{N-1} \mu_{j}^{i} e_{i}$.
\Rightarrow
$\left(R, \mu, q^{\left(N^{2}-1\right) / 4}, 1\right)$ gives an enhanced Yang-Baxter operator.

Definition

$J_{N}(L ; q):=T_{\left(R, \mu, q^{\left.\left(N^{2}-1\right) / 4,1\right)}\right.}(K) \times \frac{\{1\}}{\{N\}}:$ colored Jones polynomial.

Volume conjecture

Conjecture (Volume Conjecture, R. Kashaev, J. Murakami+H.M.)
K: knot

$$
2 \pi \lim _{N \rightarrow \infty} \frac{\log \left|J_{N}(K ; \exp (2 \pi \sqrt{-1} / N))\right|}{N}=\operatorname{Vol}\left(S^{3} \backslash K\right) .
$$

Volume conjecture

Conjecture (Volume Conjecture, R. Kashaev, J. Murakami+H.M.)
K: knot

$$
2 \pi \lim _{N \rightarrow \infty} \frac{\log \left|J_{N}(K ; \exp (2 \pi \sqrt{-1} / N))\right|}{N}=\operatorname{Vol}\left(S^{3} \backslash K\right) .
$$

Definition (Simplicial volume (Gromov norm))

$$
\operatorname{Vol}\left(S^{3} \backslash K\right):=\sum_{H_{i} \text { :hyperbolic piece }} \text { Hyperbolic Volume of } H_{i} \text {. }
$$

Volume conjecture

Conjecture (Volume Conjecture, R. Kashaev, J. Murakami+H.M.)
K: knot

$$
2 \pi \lim _{N \rightarrow \infty} \frac{\log \left|J_{N}(K ; \exp (2 \pi \sqrt{-1} / N))\right|}{N}=\operatorname{Vol}\left(S^{3} \backslash K\right) .
$$

Definition (Simplicial volume (Gromov norm))

$$
\operatorname{Vol}\left(S^{3} \backslash K\right):=\sum_{H_{i}: \text { hyperbolic piece }} \text { Hyperbolic Volume of } H_{i} \text {. }
$$

Definition (Jaco-Shalen-Johannson decomposition)
$S^{3} \backslash K$ can be uniquely decomposed as

$$
S^{3} \backslash K=\left(\bigsqcup H_{i}\right) \sqcup\left(\bigsqcup E_{j}\right)
$$

with H_{i} hyperbolic and E_{j} Seifert-fibered.

Example of JSJ decomposition

Colored Jones polynomial of (8)

Proof of the VC for 8 is given by T. Ekholm.

Colored Jones polynomial of (B)

Proof of the VC for 8 is given by T. Ekholm.
Theorem (K. Habiro, T. Lê)

$$
\left.J_{N}(8) ; q\right)=\sum_{j=0}^{N-1} \prod_{k=1}^{j}\left(q^{(N-k) / 2}-q^{-(N-k) / 2}\right)\left(q^{(N+k) / 2}-q^{-(N+k) / 2}\right)
$$

Colored Jones polynomial of (B)

Proof of the VC for 8 is given by T. Ekholm.
Theorem (K. Habiro, T. Lê)

$$
J_{N}(\text { (6) } ; q)=\sum_{j=0}^{N-1} \prod_{k=1}^{j}\left(q^{(N-k) / 2}-q^{-(N-k) / 2}\right)\left(q^{(N+k) / 2}-q^{-(N+k) / 2}\right)
$$

$q \mapsto \exp (2 \pi \sqrt{-1} / N)$

$$
\left.J_{N}(\S) ; \exp (2 \pi \sqrt{-1} / N)\right)=\sum_{j=0}^{N-1} \prod_{k=1}^{j} f(N ; k)
$$

with $f(N ; k):=4 \sin ^{2}(k \pi / N)$.

Find the maximum of the summands

Find the maximum of the summands

$J_{N}\left(\right.$ (6) $\left.; e^{2 \pi \sqrt{-1} / N}\right)=\sum_{j=0}^{N-1} \prod_{k=1}^{j} f(N ; k)$ with $f(N ; k):=4 \sin ^{2}(k \pi / N)$.

Find the maximum of the summands

$\left.J_{N}(\S) ; e^{2 \pi \sqrt{-1} / N}\right)=\sum_{j=0}^{N-1} \prod_{k=1}^{j} f(N ; k)$ with $f(N ; k):=4 \sin ^{2}(k \pi / N)$.

Find the maximum of the summands

$\left.J_{N}(\S) ; e^{2 \pi \sqrt{-1} / N}\right)=\sum_{j=0}^{N-1} \prod_{k=1}^{j} f(N ; k)$ with $f(N ; k):=4 \sin ^{2}(k \pi / N)$.

Put $g(N ; j):=\prod_{k=1}^{j} f(N ; k)$.

Find the maximum of the summands
$J_{N}\left(\right.$ § $\left.; e^{2 \pi \sqrt{-1} / N}\right)=\sum_{j=0}^{N-1} \prod_{k=1}^{j} f(N ; k)$ with $f(N ; k):=4 \sin ^{2}(k \pi / N)$.

Put $g(N ; j):=\prod_{k=1}^{j} f(N ; k)$.

j	0	\cdots	$N / 6$	\cdots	$5 N / 6$	\cdots	1

Find the maximum of the summands
$J_{N}\left(\right.$ § $\left.; e^{2 \pi \sqrt{-1} / N}\right)=\sum_{j=0}^{N-1} \prod_{k=1}^{j} f(N ; k)$ with $f(N ; k):=4 \sin ^{2}(k \pi / N)$.

Put $g(N ; j):=\prod_{k=1}^{j} f(N ; k)$.

j	0	\cdots	$N / 6$	\cdots	$5 N / 6$	\cdots	1
$f(N ; k)$		<1	1	>1	1	<1	

Find the maximum of the summands
$J_{N}\left(\S ; e^{2 \pi \sqrt{-1} / N}\right)=\sum_{j=0}^{N-1} \prod_{k=1}^{j} f(N ; k)$ with $f(N ; k):=4 \sin ^{2}(k \pi / N)$.

Put $g(N ; j):=\prod_{k=1}^{j} f(N ; k)$.

j	0	\cdots	$N / 6$	\cdots	$5 N / 6$	\cdots	1
$f(N ; k)$		<1	1	>1	1	<1	
$g(N ; j)$	1	\searrow		\nearrow	maximum	\searrow	

Limit of the sum is the limit of the maximum

Limit of the sum is the limit of the maximum

- Maximum of $\{g(N ; j)\}_{0 \leq j \leq N-1}$ is $g(N ; 5 N / 6)$.

Limit of the sum is the limit of the maximum

- Maximum of $\{g(N ; j)\}_{0 \leq j \leq N-1}$ is $g(N ; 5 N / 6)$.
- $J_{N}($ 8 $; \exp (2 \pi \sqrt{-1} / N))=\sum_{j=0}^{N-1} g(N ; j)$.

Limit of the sum is the limit of the maximum

- Maximum of $\{g(N ; j)\}_{0 \leq j \leq N-1}$ is $g(N ; 5 N / 6)$.
- $J_{N}(\widehat{8} ; \exp (2 \pi \sqrt{-1} / N))=\sum_{j=0}^{N-1} g(N ; j)$.
\Downarrow

Limit of the sum is the limit of the maximum

- Maximum of $\{g(N ; j)\}_{0 \leq j \leq N-1}$ is $g(N ; 5 N / 6)$.
- $J_{N}($ 8 $; \exp (2 \pi \sqrt{-1} / N))=\sum_{j=0}^{N-1} g(N ; j)$.
\Downarrow

$$
\left.g(N ; 5 N / 6) \leq J_{N}(\S) ; \exp (2 \pi \sqrt{-1} / N)\right) \leq N \times g(N ; 5 N / 6)
$$

Limit of the sum is the limit of the maximum

- Maximum of $\{g(N ; j)\}_{0 \leq j \leq N-1}$ is $g(N ; 5 N / 6)$.
- $\left.J_{N}(8) ; \exp (2 \pi \sqrt{-1} / N)\right)=\sum_{j=0}^{N-1} g(N ; j)$.
\Downarrow

$$
\begin{gathered}
g(N ; 5 N / 6) \leq J_{N}(\text { § } ; \exp (2 \pi \sqrt{-1} / N)) \leq N \times g(N ; 5 N / 6) \\
\Downarrow \\
\frac{\log g(N ; 5 N / 6)}{N} \leq \frac{\log J_{N}}{N} \leq \frac{\log N}{N}+\frac{\log g(N ; 5 N / 6)}{N}
\end{gathered}
$$

Limit of the sum is the limit of the maximum

- Maximum of $\{g(N ; j)\}_{0 \leq j \leq N-1}$ is $g(N ; 5 N / 6)$.
- $J_{N}($ 8 $; \exp (2 \pi \sqrt{-1} / N))=\sum_{j=0}^{N-1} g(N ; j)$.
\Downarrow

$$
\begin{gathered}
\left.g(N ; 5 N / 6) \leq J_{N}(\varnothing) ; \exp (2 \pi \sqrt{-1} / N)\right) \leq N \times g(N ; 5 N / 6) \\
\frac{\log g(N ; 5 N / 6)}{N} \leq \frac{\log J_{N}}{N} \leq \frac{\log N}{N}+\frac{\log g(N ; 5 N / 6)}{N} \\
\Downarrow \\
\lim _{N \rightarrow \infty} \frac{\log g(N ; 5 N / 6)}{N} \leq \lim _{N \rightarrow \infty} \frac{\log J_{N}}{N} \leq \lim _{N \rightarrow \infty} \frac{\log N}{N}+\lim _{N \rightarrow \infty} \frac{\log g(N ; 5 N / 6)}{N}
\end{gathered}
$$

Limit of the sum is the limit of the maximum

- Maximum of $\{g(N ; j)\}_{0 \leq j \leq N-1}$ is $g(N ; 5 N / 6)$.
- $J_{N}($ 8 $; \exp (2 \pi \sqrt{-1} / N))=\sum_{j=0}^{N-1} g(N ; j)$.
\Downarrow

$$
\begin{gathered}
\left.g(N ; 5 N / 6) \leq J_{N}(\S) ; \exp (2 \pi \sqrt{-1} / N)\right) \leq N \times g(N ; 5 N / 6) \\
\frac{\log g(N ; 5 N / 6)}{N} \leq \frac{\log J_{N}}{N} \leq \frac{\log N}{N}+\frac{\log g(N ; 5 N / 6)}{N} \\
\Downarrow \\
\lim _{N \rightarrow \infty} \frac{\log g(N ; 5 N / 6)}{N} \leq \lim _{N \rightarrow \infty} \frac{\log J_{N}}{N} \leq \lim _{N \rightarrow \infty} \frac{\log N}{N}+\lim _{N \rightarrow \infty} \frac{\log g(N ; 5 N / 6)}{N}
\end{gathered}
$$

Limit of the sum is the limit of the maximum

- Maximum of $\{g(N ; j)\}_{0 \leq j \leq N-1}$ is $g(N ; 5 N / 6)$.
- $J_{N}($ 8 $; \exp (2 \pi \sqrt{-1} / N))=\sum_{j=0}^{N-1} g(N ; j)$.
\Downarrow

$$
\begin{gathered}
\left.g(N ; 5 N / 6) \leq J_{N}(8) ; \exp (2 \pi \sqrt{-1} / N)\right) \leq N \times g(N ; 5 N / 6) \\
\frac{\log g(N ; 5 N / 6)}{N} \leq \frac{\log J_{N}}{N} \leq \frac{\log N}{N}+\frac{\log g(N ; 5 N / 6)}{N} \\
\lim _{N \rightarrow \infty} \frac{\log g(N ; 5 N / 6)}{N} \leq \lim _{N \rightarrow \infty} \frac{\log J_{N}}{N} \leq \quad \lim _{N \rightarrow \infty} \frac{\log g(N ; 5 N / 6)}{N}
\end{gathered}
$$

Limit of the sum is the limit of the maximum

- Maximum of $\{g(N ; j)\}_{0 \leq j \leq N-1}$ is $g(N ; 5 N / 6)$.
- $J_{N}($ 8 $; \exp (2 \pi \sqrt{-1} / N))=\sum_{j=0}^{N-1} g(N ; j)$.
\Downarrow

$$
\begin{gathered}
\left.g(N ; 5 N / 6) \leq J_{N}(8) ; \exp (2 \pi \sqrt{-1} / N)\right) \leq N \times g(N ; 5 N / 6) \\
\frac{\log g(N ; 5 N / 6)}{N} \leq \frac{\log J_{N}}{N} \leq \frac{\log N}{N}+\frac{\log g(N ; 5 N / 6)}{N} \\
\lim _{N \rightarrow \infty} \frac{\log g(N ; 5 N / 6)}{N} \leq \lim _{N \rightarrow \infty} \frac{\log J_{N}}{N} \leq \quad \lim _{N \rightarrow \infty} \frac{\log g(N ; 5 N / 6)}{N} \\
\lim _{N \rightarrow \infty} \frac{\log J_{N}}{N}=\lim _{N \rightarrow \infty} \frac{\log g(N ; 5 N / 6)}{N}
\end{gathered}
$$

Calculation of the limit of the maximum

Calculation of the limit of the maximum

$$
\lim _{N \rightarrow \infty} \frac{\log J_{N}(\S ; \exp (2 \pi \sqrt{-1} / N))}{N}=\lim _{N \rightarrow \infty} \frac{\log g(N ; 5 N / 6)}{N}
$$

Calculation of the limit of the maximum

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} \frac{\left.\log J_{N}(\S) ; \exp (2 \pi \sqrt{-1} / N)\right)}{N}=\lim _{N \rightarrow \infty} \frac{\log g(N ; 5 N / 6)}{N} \\
= & \lim _{N \rightarrow \infty} \frac{1}{N} \sum_{k=1}^{5 N / 6} \log f(N ; k)
\end{aligned}
$$

Calculation of the limit of the maximum

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} \frac{\left.\log J_{N}(\bigotimes) ; \exp (2 \pi \sqrt{-1} / N)\right)}{N}=\lim _{N \rightarrow \infty} \frac{\log g(N ; 5 N / 6)}{N} \\
= & \lim _{N \rightarrow \infty} \frac{1}{N} \sum_{k=1}^{5 N / 6} \log f(N ; k)=2 \lim _{N \rightarrow \infty} \frac{1}{N} \sum_{k=1}^{5 N / 6} \log (2 \sin (k \pi / N))
\end{aligned}
$$

Calculation of the limit of the maximum

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} \frac{\left.\log J_{N}(8) ; \exp (2 \pi \sqrt{-1} / N)\right)}{N}=\lim _{N \rightarrow \infty} \frac{\log g(N ; 5 N / 6)}{N} \\
= & \lim _{N \rightarrow \infty} \frac{1}{N} \sum_{k=1}^{5 N / 6} \log f(N ; k)=2 \lim _{N \rightarrow \infty} \frac{1}{N} \sum_{k=1}^{5 N / 6} \log (2 \sin (k \pi / N)) \\
= & \frac{2}{\pi} \int_{0}^{5 \pi / 6} \log (2 \sin x) d x
\end{aligned}
$$

Calculation of the limit of the maximum

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} \frac{\left.\log J_{N}(8) ; \exp (2 \pi \sqrt{-1} / N)\right)}{N}=\lim _{N \rightarrow \infty} \frac{\log g(N ; 5 N / 6)}{N} \\
= & \lim _{N \rightarrow \infty} \frac{1}{N} \sum_{k=1}^{5 N / 6} \log f(N ; k)=2 \lim _{N \rightarrow \infty} \frac{1}{N} \sum_{k=1}^{5 N / 6} \log (2 \sin (k \pi / N)) \\
= & \frac{2}{\pi} \int_{0}^{5 \pi / 6} \log (2 \sin x) d x=-\frac{2}{\pi} \Lambda(5 \pi / 6)
\end{aligned}
$$

Calculation of the limit of the maximum

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} \frac{\left.\log J_{N}(8) ; \exp (2 \pi \sqrt{-1} / N)\right)}{N}=\lim _{N \rightarrow \infty} \frac{\log g(N ; 5 N / 6)}{N} \\
= & \lim _{N \rightarrow \infty} \frac{1}{N} \sum_{k=1}^{5 N / 6} \log f(N ; k)=2 \lim _{N \rightarrow \infty} \frac{1}{N} \sum_{k=1}^{5 N / 6} \log (2 \sin (k \pi / N)) \\
= & \frac{2}{\pi} \int_{0}^{5 \pi / 6} \log (2 \sin x) d x=-\frac{2}{\pi} \Lambda(5 \pi / 6)=0.323066 \ldots,
\end{aligned}
$$

Calculation of the limit of the maximum

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} \frac{\left.\log J_{N}(8) ; \exp (2 \pi \sqrt{-1} / N)\right)}{N}=\lim _{N \rightarrow \infty} \frac{\log g(N ; 5 N / 6)}{N} \\
= & \lim _{N \rightarrow \infty} \frac{1}{N} \sum_{k=1}^{5 N / 6} \log f(N ; k)=2 \lim _{N \rightarrow \infty} \frac{1}{N} \sum_{k=1}^{5 N / 6} \log (2 \sin (k \pi / N)) \\
= & \frac{2}{\pi} \int_{0}^{5 \pi / 6} \log (2 \sin x) d x=-\frac{2}{\pi} \Lambda(5 \pi / 6)=0.323066 \ldots,
\end{aligned}
$$

where $\Lambda(\theta):=-\int_{0}^{\theta} \log |2 \sin x| d x$ is the Lobachevsky function.

Calculation of the limit of the maximum

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} \frac{\left.\log J_{N}(8) ; \exp (2 \pi \sqrt{-1} / N)\right)}{N}=\lim _{N \rightarrow \infty} \frac{\log g(N ; 5 N / 6)}{N} \\
= & \lim _{N \rightarrow \infty} \frac{1}{N} \sum_{k=1}^{5 N / 6} \log f(N ; k)=2 \lim _{N \rightarrow \infty} \frac{1}{N} \sum_{k=1}^{5 N / 6} \log (2 \sin (k \pi / N)) \\
= & \frac{2}{\pi} \int_{0}^{5 \pi / 6} \log (2 \sin x) d x=-\frac{2}{\pi} \Lambda(5 \pi / 6)=0.323066 \ldots,
\end{aligned}
$$

where $\Lambda(\theta):=-\int_{0}^{\theta} \log |2 \sin x| d x$ is the Lobachevsky function. What is $\Lambda(5 \pi / 6)$?

Lobachevsky function $\Lambda(\theta)$

Lobachevsky function $\Lambda(\theta)$
 Some properties of $\Lambda:=-\int_{0}^{\theta} \log |2 \sin x| d x$.

Lobachevsky function $\Lambda(\theta)$

Some properties of $\Lambda:=-\int_{0}^{\theta} \log |2 \sin x| d x$.

- Λ is an odd function and has period π.

Lobachevsky function $\Lambda(\theta)$

Some properties of $\Lambda:=-\int_{0}^{\theta} \log |2 \sin x| d x$.

- Λ is an odd function and has period π.
- $\Lambda(2 \theta)=2 \Lambda(\theta)+2 \Lambda(\theta+\pi / 2)$.

Lobachevsky function $\Lambda(\theta)$

Some properties of $\Lambda:=-\int_{0}^{\theta} \log |2 \sin x| d x$.

- Λ is an odd function and has period π.
- $\Lambda(2 \theta)=2 \Lambda(\theta)+2 \Lambda(\theta+\pi / 2)$. $\left(\Lambda(n \theta)=n \sum_{k=1}^{n-1} \Lambda(\theta+k \pi / n)\right.$ in general.)

Lobachevsky function $\Lambda(\theta)$

Some properties of $\Lambda:=-\int_{0}^{\theta} \log |2 \sin x| d x$.

- Λ is an odd function and has period π.
- $\Lambda(2 \theta)=2 \Lambda(\theta)+2 \Lambda(\theta+\pi / 2)$. $\left(\Lambda(n \theta)=n \sum_{k=1}^{n-1} \Lambda(\theta+k \pi / n)\right.$ in general.)
The first property is easy.

Lobachevsky function $\Lambda(\theta)$

Some properties of $\Lambda:=-\int_{0}^{\theta} \log |2 \sin x| d x$.

- Λ is an odd function and has period π.
- $\Lambda(2 \theta)=2 \Lambda(\theta)+2 \Lambda(\theta+\pi / 2)$. $\left(\Lambda(n \theta)=n \sum_{k=1}^{n-1} \Lambda(\theta+k \pi / n)\right.$ in general.)
The first property is easy.
To prove the second, we use the double angle formula of sine:

Lobachevsky function $\Lambda(\theta)$

Some properties of $\Lambda:=-\int_{0}^{\theta} \log |2 \sin x| d x$.

- Λ is an odd function and has period π.
- $\Lambda(2 \theta)=2 \Lambda(\theta)+2 \Lambda(\theta+\pi / 2)$. $\left(\Lambda(n \theta)=n \sum_{k=1}^{n-1} \Lambda(\theta+k \pi / n)\right.$ in general.)
The first property is easy.
To prove the second, we use the double angle formula of sine:

$$
\sin (2 x)=2 \sin x \cos x
$$

Lobachevsky function $\Lambda(\theta)$

Some properties of $\Lambda:=-\int_{0}^{\theta} \log |2 \sin x| d x$.

- Λ is an odd function and has period π.
- $\Lambda(2 \theta)=2 \Lambda(\theta)+2 \Lambda(\theta+\pi / 2)$. $\left(\Lambda(n \theta)=n \sum_{k=1}^{n-1} \Lambda(\theta+k \pi / n)\right.$ in general.)
The first property is easy.
To prove the second, we use the double angle formula of sine:

$$
\sin (2 x)=2 \sin x \cos x
$$

$\Rightarrow \quad \log |2 \sin (2 x)|=\log |2 \sin x|+\log |2 \sin (x+\pi / 2)|$.

Lobachevsky function $\Lambda(\theta)$

Some properties of $\Lambda:=-\int_{0}^{\theta} \log |2 \sin x| d x$.

- Λ is an odd function and has period π.
- $\Lambda(2 \theta)=2 \Lambda(\theta)+2 \Lambda(\theta+\pi / 2)$. $\left(\Lambda(n \theta)=n \sum_{k=1}^{n-1} \Lambda(\theta+k \pi / n)\right.$ in general.)
The first property is easy.
To prove the second, we use the double angle formula of sine:

$$
\sin (2 x)=2 \sin x \cos x
$$

$\Rightarrow \quad \log |2 \sin (2 x)|=\log |2 \sin x|+\log |2 \sin (x+\pi / 2)|$.
So we have

$$
\Lambda(5 \pi / 6)=-\Lambda(\pi / 6)
$$

$$
\Lambda(\pi / 3)=2 \wedge(\pi / 6)+2 \wedge(2 \pi / 3)=2 \wedge(\pi / 6)-2 \wedge(\pi / 3)
$$

Lobachevsky function $\Lambda(\theta)$

Some properties of $\Lambda:=-\int_{0}^{\theta} \log |2 \sin x| d x$.

- Λ is an odd function and has period π.
- $\Lambda(2 \theta)=2 \Lambda(\theta)+2 \Lambda(\theta+\pi / 2)$. $\left(\Lambda(n \theta)=n \sum_{k=1}^{n-1} \Lambda(\theta+k \pi / n)\right.$ in general.)
The first property is easy.
To prove the second, we use the double angle formula of sine:

$$
\sin (2 x)=2 \sin x \cos x
$$

$\Rightarrow \quad \log |2 \sin (2 x)|=\log |2 \sin x|+\log |2 \sin (x+\pi / 2)|$.
So we have

$$
\Lambda(5 \pi / 6)=-\Lambda(\pi / 6)
$$

$$
\Lambda(\pi / 3)=2 \Lambda(\pi / 6)+2 \Lambda(2 \pi / 3)=2 \wedge(\pi / 6)-2 \wedge(\pi / 3)
$$

\Rightarrow

$$
\Lambda(5 \pi / 6)=-\frac{3}{2} \Lambda(\pi / 3)
$$

Lobachevsky function $\Lambda(\theta)$

Some properties of $\Lambda:=-\int_{0}^{\theta} \log |2 \sin x| d x$.

- Λ is an odd function and has period π.
- $\Lambda(2 \theta)=2 \Lambda(\theta)+2 \Lambda(\theta+\pi / 2)$. $\left(\Lambda(n \theta)=n \sum_{k=1}^{n-1} \Lambda(\theta+k \pi / n)\right.$ in general.)
The first property is easy.
To prove the second, we use the double angle formula of sine:

$$
\sin (2 x)=2 \sin x \cos x
$$

$\Rightarrow \quad \log |2 \sin (2 x)|=\log |2 \sin x|+\log |2 \sin (x+\pi / 2)|$.
So we have

$$
\Lambda(5 \pi / 6)=-\Lambda(\pi / 6)
$$

$$
\Lambda(\pi / 3)=2 \Lambda(\pi / 6)+2 \Lambda(2 \pi / 3)=2 \Lambda(\pi / 6)-2 \Lambda(\pi / 3)
$$

\Rightarrow
$\Lambda(5 \pi / 6)=-\frac{3}{2} \Lambda(\pi / 3)$.
\Rightarrow

Decomposition of $S^{3} \backslash(8)$ into two tetrahedra

Decomposition of $S^{3} \backslash()$ into two tetrahedra

What is $6 \Lambda(\pi / 3)$?

Decomposition of $S^{3} \backslash($ into two tetrahedra

What is $6 \Lambda(\pi / 3)$?
Theorem (W. Thurston)

We can regard both pieces in the right hand side as regular ideal hyperbolic tetrahedra.

Decomposition of $S^{3} \backslash$ into two tetrahedra

What is $6 \Lambda(\pi / 3)$?
Theorem (W. Thurston)

We can regard both pieces in the right hand side as regular ideal hyperbolic tetrahedra.
$\Rightarrow S^{3} \backslash($ possesses a complete hyperbolic structure.

Ideal hyperbolic tetrahedron

Ideal hyperbolic tetrahedron

- $\mathbb{H}^{3}:=\{(x, y, z) \mid z>0\}$: with hyperbolic metric $d s:=\frac{\sqrt{d x^{2}+d y^{2}+d z^{2}}}{z}$.

Ideal hyperbolic tetrahedron

- $\mathbb{H}^{3}:=\{(x, y, z) \mid z>0\}:$ with hyperbolic metric $d s:=\frac{\sqrt{d x^{2}+d y^{2}+d z^{2}}}{z}$.
- Ideal hyperbolic tetrahedron: tetrahedron with geodesic faces with four vertices in the boundary at infinity.

Ideal hyperbolic tetrahedron

- $\mathbb{H}^{3}:=\{(x, y, z) \mid z>0\}$: with hyperbolic metric $d s:=\frac{\sqrt{d x^{2}+d y^{2}+d z^{2}}}{z}$.
- Ideal hyperbolic tetrahedron : tetrahedron with geodesic faces with four vertices in the boundary at infinity.
- We may assume
- One vertex is at (∞, ∞, ∞).
- The other three are on $x y$-plane.

Ideal hyperbolic tetrahedron

- $\mathbb{H}^{3}:=\{(x, y, z) \mid z>0\}$: with hyperbolic metric $d s:=\frac{\sqrt{d x^{2}+d y^{2}+d z^{2}}}{z}$.
- Ideal hyperbolic tetrahedron : tetrahedron with geodesic faces with four vertices in the boundary at infinity.
- We may assume
- One vertex is at (∞, ∞, ∞).
- The other three are on $x y$-plane.

Ideal hyperbolic
tetrahedron

Ideal hyperbolic tetrahedron

- $\mathbb{H}^{3}:=\{(x, y, z) \mid z>0\}:$ with hyperbolic metric $d s:=\frac{\sqrt{d x^{2}+d y^{2}+d z^{2}}}{z}$.
- Ideal hyperbolic tetrahedron : tetrahedron with geodesic faces with four vertices in the boundary at infinity.
- We may assume
- One vertex is at (∞, ∞, ∞).
- The other three are on $x y$-plane.

Ideal hyperbolic
tetrahedron
$\Delta(\alpha, \beta, \gamma)$

Ideal hyperbolic tetrahedron

- $\mathbb{H}^{3}:=\{(x, y, z) \mid z>0\}:$ with hyperbolic metric $d s:=\frac{\sqrt{d x^{2}+d y^{2}+d z^{2}}}{z}$.
- Ideal hyperbolic tetrahedron : tetrahedron with geodesic faces with four vertices in the boundary at infinity.
- We may assume
- One vertex is at (∞, ∞, ∞).
- The other three are on $x y$-plane.

Ideal hyperbolic
tetrahedron

$$
\Delta(\alpha, \beta, \gamma)
$$

Ideal hyperbolic tetrahedron is defined (up to isometry) by the similarity class of this triangle.

$$
\operatorname{Vol}(\Delta(\alpha, \beta, \gamma))=\Lambda(\alpha)+\Lambda(\beta)+\Lambda(\gamma)
$$

Proof of VC - conclusion

Proof of VC - conclusion

$$
\left.2 \pi J_{N}(母) ; \exp (2 \pi \sqrt{-1} / N)\right)=6 \wedge(\pi / 3)
$$

Proof of VC - conclusion

$$
\begin{aligned}
\left.2 \pi J_{N}(\S) ; \exp (2 \pi \sqrt{-1} / N)\right) & =6 \wedge(\pi / 3) \\
& =2 \text { Vol(regular ideal hyperbolic tetrahedron) }
\end{aligned}
$$

Proof of VC - conclusion

$$
\begin{aligned}
\left.2 \pi J_{N}(\S) ; \exp (2 \pi \sqrt{-1} / N)\right) & =6 \Lambda(\pi / 3) \\
& =2 \mathrm{Vol}(\text { regular ideal hyperbolic tetrahedron }) \\
& =\operatorname{Vol}\left(S^{3} \backslash 8\right)
\end{aligned}
$$

Proof of VC - conclusion

$$
\begin{aligned}
\left.2 \pi J_{N}(8) ; \exp (2 \pi \sqrt{-1} / N)\right) & =6 \Lambda(\pi / 3) \\
& =2 \mathrm{Vol}(\text { regular ideal hyperbolic tetrahedron }) \\
& =\operatorname{Vol}\left(S^{3} \backslash 8\right)
\end{aligned}
$$

\Rightarrow Volume Conjecture for .

So far the Volume Conjecture is proved for
 - torus knots (Kashaev and Tirkkonen)

So far the Volume Conjecture is proved for

- torus knots (Kashaev and Tirkkonen)
- torus links of type ($2,2 m$) (Hikami)

So far the Volume Conjecture is proved for

- torus knots (Kashaev and Tirkkonen)
- torus links of type ($2,2 m$) (Hikami)
- figure-eight knot (Ekholm)

So far the Volume Conjecture is proved for

- torus knots (Kashaev and Tirkkonen)
- torus links of type ($2,2 m$) (Hikami)
- figure-eight knot (Ekholm)
- 52 knot (hyperbolic) (Kashaev and Yokota)

So far the Volume Conjecture is proved for

- torus knots (Kashaev and Tirkkonen)
- torus links of type ($2,2 m$) (Hikami)
- figure-eight knot (Ekholm)
- 52 knot (hyperbolic) (Kashaev and Yokota)
- Whitehead doubles of torus knots (Zheng)

So far the Volume Conjecture is proved for

- torus knots (Kashaev and Tirkkonen)
- torus links of type ($2,2 m$) (Hikami)
- figure-eight knot (Ekholm)
- 5_{2} knot (hyperbolic) (Kashaev and Yokota)
- Whitehead doubles of torus knots (Zheng)
- twisted Whitehead links (Zheng)

So far the Volume Conjecture is proved for

- torus knots (Kashaev and Tirkkonen)
- torus links of type ($2,2 m$) (Hikami)
- figure-eight knot (Ekholm)
- 52 knot (hyperbolic) (Kashaev and Yokota)
- Whitehead doubles of torus knots (Zheng)
- twisted Whitehead links (Zheng)
- Borromean rings (Garoufalidis and Lê)

So far the Volume Conjecture is proved for

- torus knots (Kashaev and Tirkkonen)
- torus links of type ($2,2 m$) (Hikami)
- figure-eight knot (Ekholm)
- 5_{2} knot (hyperbolic) (Kashaev and Yokota)
- Whitehead doubles of torus knots (Zheng)
- twisted Whitehead links (Zheng)
- Borromean rings (Garoufalidis and Lê)
- Whitehead chains (van der Veen)

