Volume and topology III (Applications)

Marc Culler

June 9, 2009

Theorem (ACCS + A/CG+Density). Suppose that Γ is a non-abelian free Kleinian group with basis $\left\{\gamma_{1}, \ldots, \gamma_{n}\right\}$. Fix $p \in \mathbb{H}^{3}$ and set $d_{i}=\operatorname{dist}\left(p, \gamma_{i}(p)\right)$ for $i=1,2, \ldots n$. Then

$$
\sum_{i=1}^{n} \frac{1}{1+e^{d_{i}}} \leq \frac{1}{2}
$$

Corollary. If M is a closed hyperbolic 3-manifold and $\pi_{1}(M)$ is k-free then, for any $p \in \mathbb{H}^{3}$, we have $d_{i} \leq \log (2 k-1)$ for at least one index i.

Definition. A group Γ is k-free if every k-generator subgroup of Γ is a free group (possibly with rank $<k$).
(Note that Γk-free $\Longrightarrow \Gamma j$-free for $0 \leq j \leq k$.)
Theorem (Jaco-Shalen). If M is a closed hyperbolic 3-manifold then either

- $\pi_{1}(M)$ is 2-free; or
- M has a finite cover with 2-generator fundamental group.
(More generally, if $\pi_{1}(M)$ is contains no surface subgroups of genus $<k$ and if every k-generator subgroup of $\pi_{1}(M)$ has infinite index, then $\pi_{1}(M)$ is k-free.)
It is clear that if $H_{1}(M ; \mathbb{Q})$ has dimension $>k$ then every k-generator subgroup has infinite index. But this can also be detected with $\bmod p$ homology.
Theorem (Shalen-Wagreich). Suppose that $H_{1}\left(M ; \mathbb{Z}_{p}\right)$ has rank $>k+1$ for some prime p. Then every k-generator subgroup of $\pi_{1}(M)$ has infinite index.

Corollary. If M is a closed hyperbolic 3-manifold and $\pi_{1}(M)$ is 2 -free then the maximal injectivity radius of M is at least $\frac{1}{2} \log 3$.

Proof: Given a maximal cyclic subgroup $C<\pi_{1}(M)$, define

$$
\left.Z_{\lambda}(C)=\left\{x \in \mathbb{H}^{3} \mid \operatorname{dist}(x, \gamma(x))<\lambda\right) \text { for some } \gamma \in C\right\} .
$$

(If non-empty, this is an open cylinder around the axis of C.)
Take $\lambda=\log 3$. If $C_{1} \neq C_{2}$ and $p \in Z_{\log 3}\left(C_{1}\right) \cap Z_{\log 3}\left(C_{2}\right)$ then there exist $\gamma_{1} \in C_{1}, \gamma_{2} \in C_{2}$, generating a free group of rank 2 , with $\operatorname{dist}\left(p, \gamma_{i}(p)\right)<\log 3$. This contradicts the $\log 3$-Theorem, so $Z_{\log 3}\left(C_{1}\right) \cap Z_{\log 3}\left(C_{2}\right)=\emptyset$.

We cannot cover \mathbb{H}^{3} with disjoint open cylinders. So there is $p \in \mathbb{H}^{3}$ not contained in any $Z_{\log 3}(C)$. Thus dist $(p, \gamma(p))>\log 3$ for all $\gamma \in \pi_{1}(M)$.

Packing

If M contains an embedded hyperbolic ball $B=B(p, R)$ then the lifts of B to \mathbb{H}^{3} are disjoint, and form a "ball-packing". Each lift $B(\tilde{p}, R)$ has a Dirichlet domain:

$$
D(\tilde{p})=\left\{x \in \mathbb{H}^{3}: \operatorname{dist}(x, \tilde{p}) \leq \operatorname{dist}\left(x, \tilde{p}^{\prime}\right) \text { for any lift } \tilde{p}^{\prime} \text { of } p\right\}
$$

which is a fundamental domain for M.
Böröczky gave an estimate of the "density" of an arbitrary ball-packing.

Theorem (Böröczky). Suppose $\left\{B\left(p_{n}, R\right)\right\}$ is a radius R ball-packing in \mathbb{H}^{3}. Then for each n, $\operatorname{vol} D\left(p_{n}\right) \geq \operatorname{vol} B\left(p_{n}, R\right) / d(R)$.

Corollary. If M is a closed orientable hyperbolic 3-manifold and $\pi_{1}(M)$ is 2-free then
$\operatorname{vol} M>\operatorname{vol} B\left(x, \frac{1}{2} \log 3\right) / d\left(\frac{1}{2} \log 3\right)=0.929 \ldots$

Böröczky's result also applies to horoball packings, using the same definition of Dirichlet domain (which only compares distances to points on S_{∞}^{2}). The local density of a horoball packing is at most $d(\infty)=\lim _{R \rightarrow \infty} d(R)=0.8532 \ldots$.

Corollary. If M is a cusped hyperbolic 3-manifold and \mathcal{H} is a cusp neighborhood in M then $\operatorname{vol} M>\operatorname{vol} H / d(\infty)$

One can also define a Dirichlet domain for a cylinder (banana) in a cylinder packing, replacing center points by the central axes of the cylinder. Andrew Przeworski has given estimates for the density.

Theorem (Przeworski). If M is a hyperbolic 3-manifold containing an embedded tube T of radius R then $\operatorname{vol} M>\operatorname{vol} T / \min (0.91, p(R))$.

Theorem (Kerckhoff). If M is an orientable hyperbolic manifold with finite volume and C is an embedded geodesic in M then $M-C$ admits a finite-volume hyperbolic metric.

The following theorem used Perelman's estimates for Ricci flow to give explicit estimates for the amount volume decreases under Dehn surgery:

Theorem (Agol, Storm, W. Thurston + Dunfield). Let M be a closed orientable hyperbolic 3-manifold, let C be a geodesic in M and let N be the hyperbolic manifold homeomorphic to $M-C$. If the maximal embedded tube around C has radius R then

$$
\operatorname{vol} N \leq \operatorname{coth}^{3}(2 R)\left(1+\frac{1}{\cosh (2 R)} \frac{\operatorname{vol} T}{\operatorname{vol} M}\right)
$$

Corollary (using Przeworski). if $R>\frac{1}{2} \log 3$ then $\operatorname{vol} N<3.018 \operatorname{vol} M$.

Gabai, Meyerhoff and N . Thurston proved a stronger version of Mostow rigidity: If M is homotopy equivalent to a hyperbolic 3-manifold then M is hyperbolic.
Their proof implies the following result, which involves rigorous computation in the space of 2-generator Kleinian groups:
Theorem. Let M be a closed orientable hyperbolic 3-manifold and let C be a shortest geodesic in M. Then either

- the maximal embedded tube about C has radius $>\frac{1}{2} \log 3$; or
- M has a finite cover \tilde{M} with 2-generator fundamental group, and $\pi_{1}(\tilde{M})$ lies in one of 7 explicit boxes in the space $\operatorname{Hom}\left(F_{2}, P S L_{2}(\mathbb{C})\right) / \sim$.
On the other hand, the strong form of the log 3 theorem implies Theorem (Anderson-Canary-C-Shalen). Suppose that M is a closed orientable hyperbolic 3-manifold with 2-free fundamental group. Let C be a closed geodesic in M of length L. Then the maximal tube about C has volume $>V(L)$, and $V(L) \rightarrow \pi$ as

Theorem (Agol-C-Shalen). Suppose that M is a closed, orientable hyperbolic 3-manifold with such that $H_{1}\left(M ; \mathbb{Z}_{p}\right)$ has rank >3 for some prime p. Then $\operatorname{vol} M>1.22$.
(In fact, we prove this for $H_{1}\left(M ; \mathbb{Z}_{p}\right)$ of rank $>2, p \neq 2,7$.)
Proof. Let C be the shortest geodesic in M. Since $\pi_{1}(M)$ is 2 - free, the maximal tube about C has radius $>\frac{1}{2} \log 3$. Drill out C to get a cusped hyperbolic manifold N and let \mathcal{H} be the cusp neighborhood in N.
Consider a framing (μ, λ) where μ is the meridian of N in M.
Consider Dehn fillings $M_{n}=N(1 / n p)$. Then $H_{1}\left(M_{n} ; \mathbb{Z}_{p}\right)$ has rank >3, so $\pi_{1}\left(M_{n}\right)$ is 2-free.
By the hyperbolic Dehn-filling theorem, M_{n} is hyperbolic for large n. Let T_{n} be the maximal tube in M_{n} about the filling geodesic. The lengths of T_{n} converge to 0 , so vol $T_{n} \rightarrow \pi$. But $T_{n} \rightarrow H$ geometrically, so $\operatorname{vol} H>\pi$.
Thus $\pi / d(\infty)<\operatorname{vol} N<3.018 \operatorname{vol} M \Longrightarrow \operatorname{vol} M>1.22$.

Theorem (CS, ACCS, Agol-CS+tameness). Suppose that M is a closed hyperbolic 3-manifold and $\pi_{1}(M)$ is 3-free. Then the maximal injectivity radius of M is at least $\frac{1}{2} \log 5$. (This implies $\operatorname{vol} M>3.0879$ by sphere-packing.)

Let \mathcal{C}_{λ} be the set of maximal cyclic subgroups with $Z_{\lambda}(C) \neq \emptyset$. Take $\lambda=\log 5$.

It suffices to show that the cylinders $Z_{\lambda}(C)$ cannot cover \mathbb{H}^{3} with $\lambda=\log 5$. To show this we work with a simplicial "nerve" of the covering. We show that the nerve cannot be contractible, a contradiction.

Given an open covering of \mathbb{H}^{3} by cylinders $Z_{\lambda}(C), C \in \mathcal{C}_{\lambda}$, define a complex K_{λ} by

- the vertex set is \mathcal{C}_{λ}.
- $\left(C_{0}, \ldots, C_{m}\right)$ is an m-simplex if $\cap_{i=0}^{m} Z_{\lambda}\left(C_{i}\right) \neq \emptyset$.

For an (open or closed) m-simplex Δ with vertices C_{0}, \ldots, C_{m} set $\Theta(\Delta)=\left\langle C_{0} \cup \cdots \cup C_{m}\right\rangle<\pi_{1}(M)$.

If $\pi_{1}(M)$ is k-free and $\Delta=\left(C_{0}, \ldots, C_{k-1}\right)$ is a $(k-1)$-simplex then $\Theta(\Delta)$ is free, but it has rank less than k. If $C_{i}=\left\langle\gamma_{i}\right\rangle$ then non-trivial relations hold among the γ_{i}.

If X is a subcomplex of K_{λ}, or a union of open simplices, define $\Theta(X)$ to be the group generated by the $\Theta(\Delta)$ as Δ ranges over the simplices in X.

Definition. A group has local rank $\leq r$ if every finitely generated subgroup is contained in a subgroup of rank $\leq r$.

Lemma. Suppose $\pi_{1}(M)$ is k-free, $k>2$. Set $\lambda=\log (2 k-1)$ and fix $r<k$. Suppose $X \subset K_{\lambda}$ is a connected union of open $(k-1)$ - and $(k-2)$-simplices, where $\Theta(\Delta)$ has rank r for each simplex Δ in X. Then $\Theta(X)$ has local rank r. (And hence is locally free.)

Induction step: Suppose $\Theta(Y)$ has local rank r and $Y^{\prime}=Y \cup \Delta$ where Δ is a $(k-1)$-simplex whose $(k-2)$-face Φ is contained in Y. Then $\Theta\left(Y^{\prime}\right)=\langle\Theta(Y), C\rangle$ where C is the vertex (maximal cyclic subgroup) opposite the face Φ.

Let $A<\Theta\left(Y^{\prime}\right)$ be finitely generated. Then $A<A^{\prime}=\langle B, C\rangle$ where B is (free) of rank $\leq r$. It suffices to show that A^{\prime} has rank $\leq r$. If not, then $A^{\prime}=B \star C$, and B has rank r. But then $\Theta(\Delta)=\Theta(\Phi) * C$ which has rank $r+1$, a contradiction.

We can now sketch the 3-free theorem.
We have $k=3, \lambda=\log 3$. Take X to be the union of the open 1 and 2 -simplices in K_{λ}. The log 3-Theorem implies that $\Theta(\Delta)$ is free of rank 2 for any 2 -simplex Δ. Clearly $\Theta(\Delta)$ is free of rank 2 if Δ is a 1 -simplex.

Next use geometry to show that the link of each vertex of K_{λ} is connected, so X is connected. The lemma shows that $\Theta(X)$ has local rank 2. Note that $\Theta(X)$ is a normal subgroup of $\pi_{1}(M)$.

Lemma. If Γ is a k-free group with a normal subgroup of local rank $r<k$ then Γ has local rank $\leq r$.

Since $\Theta(X)$ is normal, $\pi_{1}(M)$ is free of rank 2 , a contradiction.

What if $\pi_{1}(M)$ is 4 -free? Now we take $k=4$ and $\lambda=\log 7$.
If we could show that the $Z_{\lambda}(C)$ cannot cover \mathbb{H}^{3} we would conclude that M has maximal injectivity radius at least $\frac{1}{2} \log 7$, which implies vol $M>5.7389$. But that would be asking too much (I think).

We can show that there exists a point of \mathbb{H}^{3} which lies in at most one cylinder $Z_{\lambda}(C)$. Geometrically, this means that there exists $x \in M$ such that any two geodesic loops at x with length $<\log 7$ represent commuting elements of $\pi_{1}(M)$. Call this a λ-semi-thick point.

Theorem (C-Shalen). If $\pi_{1}(M)$ is 4-free, then M has a $\log 7$-semi-thick point.

Theorem (C-Shalen). If a closed hyperbolic 3-manifold has a $\log 7$-semi-thick point then $\operatorname{vol} M>3.44$.

Take $k=4, \lambda=\log 7$, and consider the complex $K=K_{\lambda}$. Since $\pi_{1}(M)$ is 4-free, $\Theta(\Delta)$ is free of rank at most 3 (and at least 2) when Δ is a simplex of dimension 1,2 , or 3 .

Let $X_{2}\left(X_{3}\right)$ be the union of all open simplices Δ in $K^{(3)}-K^{(0)}$ such that $\Theta(\Delta)$ is free of rank 2 (3).

As before, since X_{3} contains only 2- and 3-simplices, $\Theta\left(X_{3}\right)$ has local rank at most 3.

We claim that $\Theta\left(X_{2}\right)$ has local rank at most 2. To prove this by induction we need an important special case of the Hanna Neumann conjecture:

Theorem (Kent, Louder-McReynolds 2009). If A and B are rank-2 subgroups of a free group, and $A \cap B$ has rank 2 , then $\langle A \cup B\rangle$ has rank 2.

To prove the 4-free result, we construct a bipartite graph \mathcal{G} with a $\pi_{1}(M)$-action as follows:

Vertices are components of X_{2} or X_{3}. Join V and W by an edge if some simplex of $V(W)$ is a face of some simplex of $W(V)$.

Lemma. If every point of \mathbb{H}^{3} lies in two cylinders $Z_{\lambda}(C)$ then vertices of K have contractible links. In particular $K^{(3)}-K^{(0)}$ is simply-connected.

Lemma. The graph \mathcal{G} is a homotopy retract of $K^{(3)}-K^{(0)}$. (Hence it is a tree.)

Thus $\pi_{1}(M)$ acts on a tree with locally free vertex stabilizers. That is absurd since edge groups must contain surface groups.

