Volume and topology III (Applications)

Marc Culler

June 9, 2009

Theorem (ACCS+A/CG+Density). Suppose that Γ is a non-abelian free Kleinian group with basis { $\gamma_1, \ldots, \gamma_n$ }. Fix $p \in \mathbb{H}^3$ and set $d_i = \operatorname{dist}(p, \gamma_i(p))$ for $i = 1, 2, \ldots n$. Then

$$\sum_{i=1}^n \frac{1}{1+e^{d_i}} \le \frac{1}{2}.$$

Corollary. If *M* is a closed hyperbolic 3-manifold and $\pi_1(M)$ is *k*-free then, for any $p \in \mathbb{H}^3$, we have $d_i \leq \log(2k - 1)$ for at least one index *i*.

Definition. A group Γ is *k*-free if every *k*-generator subgroup of Γ is a free group (possibly with rank < k).

(Note that Γ *k*-free $\implies \Gamma$ *j*-free for $0 \le j \le k$.)

Theorem (Jaco-Shalen). If *M* is a closed hyperbolic 3-manifold then either

- $\pi_1(M)$ is 2-free; or
- *M* has a finite cover with 2-generator fundamental group.

(More generally, if $\pi_1(M)$ is contains no surface subgroups of genus < k and if every k-generator subgroup of $\pi_1(M)$ has infinite index, then $\pi_1(M)$ is k-free.)

It is clear that if $H_1(M; \mathbb{Q})$ has dimension > k then every k-generator subgroup has infinite index. But this can also be detected with mod p homology.

Theorem (Shalen-Wagreich). Suppose that $H_1(M; \mathbb{Z}_p)$ has rank > k + 1 for some prime p. Then every k-generator subgroup of $\pi_1(M)$ has infinite index.

Corollary. If M is a closed hyperbolic 3-manifold and $\pi_1(M)$ is 2-free then the maximal injectivity radius of M is at least $\frac{1}{2}\log 3$.

Proof: Given a maximal cyclic subgroup $C < \pi_1(M)$, define

$$Z_{\lambda}(C) = \{x \in \mathbb{H}^3 | \operatorname{dist}(x, \gamma(x)) < \lambda) \text{ for some } \gamma \in C \}.$$

(If non-empty, this is an open cylinder around the axis of C.)

Take $\lambda = \log 3$. If $C_1 \neq C_2$ and $p \in Z_{\log 3}(C_1) \cap Z_{\log 3}(C_2)$ then there exist $\gamma_1 \in C_1$, $\gamma_2 \in C_2$, generating a free group of rank 2, with dist $(p, \gamma_i(p)) < \log 3$. This contradicts the log 3-Theorem, so $Z_{\log 3}(C_1) \cap Z_{\log 3}(C_2) = \emptyset$.

We cannot cover \mathbb{H}^3 with disjoint open cylinders. So there is $p \in \mathbb{H}^3$ not contained in any $Z_{\log 3}(C)$. Thus $\operatorname{dist}(p, \gamma(p)) > \log 3$ for all $\gamma \in \pi_1(M)$.

Packing

If *M* contains an embedded hyperbolic ball B = B(p, R) then the lifts of *B* to \mathbb{H}^3 are disjoint, and form a "ball-packing". Each lift $B(\tilde{p}, R)$ has a *Dirichlet domain*:

 $D(\tilde{p}) = \{x \in \mathbb{H}^3 : \operatorname{dist}(x, \tilde{p}) \leq \operatorname{dist}(x, \tilde{p}') \text{ for any lift } \tilde{p}' \text{ of } p\}$

which is a fundamental domain for M.

Böröczky gave an estimate of the "density" of an arbitrary ball-packing.

Theorem (Böröczky). Suppose $\{B(p_n, R)\}$ is a radius R ball-packing in \mathbb{H}^3 . Then for each n, $\operatorname{vol} D(p_n) \ge \operatorname{vol} B(p_n, R)/d(R)$.

Corollary. If *M* is a closed orientable hyperbolic 3-manifold and $\pi_1(M)$ is 2-free then vol $M > \text{vol } B(x, \frac{1}{2} \log 3)/d(\frac{1}{2} \log 3) = 0.929....$ Böröczky's result also applies to horoball packings, using the same definition of Dirichlet domain (which only compares distances to points on S^2_{∞}). The local density of a horoball packing is at most $d(\infty) = \lim_{R \to \infty} d(R) = 0.8532...$

Corollary. If *M* is a cusped hyperbolic 3-manifold and \mathcal{H} is a cusp neighborhood in *M* then vol $M > \operatorname{vol} H/d(\infty)$

One can also define a Dirichlet domain for a cylinder (banana) in a cylinder packing, replacing center points by the central axes of the cylinder. Andrew Przeworski has given estimates for the density.

Theorem (Przeworski). If M is a hyperbolic 3-manifold containing an embedded tube T of radius R then vol M > vol T/min(0.91, p(R)).

Theorem (Kerckhoff). If M is an orientable hyperbolic manifold with finite volume and C is an embedded geodesic in M then M - C admits a finite-volume hyperbolic metric.

The following theorem used Perelman's estimates for Ricci flow to give explicit estimates for the amount volume decreases under Dehn surgery:

Theorem (Agol, Storm, W. Thurston + Dunfield). Let M be a closed orientable hyperbolic 3-manifold, let C be a geodesic in M and let N be the hyperbolic manifold homeomorphic to M - C. If the maximal embedded tube around C has radius R then

$$\operatorname{vol} N \leq \operatorname{coth}^{3}(2R) \left(1 + \frac{1}{\operatorname{cosh}(2R)} \frac{\operatorname{vol} T}{\operatorname{vol} M}\right)$$

Corollary (using Przeworski). *if* $R > \frac{1}{2} \log 3$ *then* vol N < 3.018 vol M.

Tubes

Gabai, Meyerhoff and N. Thurston proved a stronger version of Mostow rigidity: If M is homotopy equivalent to a hyperbolic 3-manifold then M is hyperbolic.

Their proof implies the following result, which involves rigorous computation in the space of 2-generator Kleinian groups:

Theorem. Let M be a closed orientable hyperbolic 3-manifold and let C be a shortest geodesic in M. Then either

- the maximal embedded tube about C has radius $> \frac{1}{2} \log 3$; or
- M has a finite cover M
 M with 2-generator fundamental group, and π₁(M
 M) lies in one of 7 explicit boxes in the space Hom(F₂, PSL₂(C))/ ~.

On the other hand, the strong form of the log 3 theorem implies

Theorem (Anderson-Canary-C-Shalen). Suppose that M is a closed orientable hyperbolic 3-manifold with 2-free fundamental group. Let C be a closed geodesic in M of length L. Then the maximal tube about C has volume > V(L), and V(L) $\rightarrow \pi$ as

A better 2-free estimate

Theorem (Agol-C-Shalen). Suppose that M is a closed, orientable hyperbolic 3-manifold with such that $H_1(M; \mathbb{Z}_p)$ has rank > 3 for some prime p. Then vol M > 1.22.

(In fact, we prove this for $H_1(M; \mathbb{Z}_p)$ of rank > 2, $p \neq 2, 7$.)

Proof. Let *C* be the shortest geodesic in *M*. Since $\pi_1(M)$ is 2 - free, the maximal tube about *C* has radius $> \frac{1}{2} \log 3$. Drill out *C* to get a cusped hyperbolic manifold *N* and let \mathcal{H} be the cusp neighborhood in *N*.

Consider a framing (μ, λ) where μ is the meridian of N in M. Consider Dehn fillings $M_n = N(1/np)$. Then $H_1(M_n; \mathbb{Z}_p)$ has rank > 3, so $\pi_1(M_n)$ is 2-free.

By the hyperbolic Dehn-filling theorem, M_n is hyperbolic for large n. Let T_n be the maximal tube in M_n about the filling geodesic. The lengths of T_n converge to 0, so vol $T_n \rightarrow \pi$. But $T_n \rightarrow H$ geometrically, so vol $H > \pi$.

Thus $\pi/d(\infty) < \operatorname{vol} N < 3.018 \operatorname{vol} M \implies \operatorname{vol} M > 1.22$.

Theorem (CS, ACCS, Agol-CS+tameness). Suppose that *M* is a closed hyperbolic 3-manifold and $\pi_1(M)$ is 3-free. Then the maximal injectivity radius of *M* is at least $\frac{1}{2} \log 5$. (This implies vol M > 3.0879 by sphere-packing.)

Let C_{λ} be the set of maximal cyclic subgroups with $Z_{\lambda}(C) \neq \emptyset$. Take $\lambda = \log 5$.

It suffices to show that the cylinders $Z_{\lambda}(C)$ cannot cover \mathbb{H}^3 with $\lambda = \log 5$. To show this we work with a simplicial "nerve" of the covering. We show that the nerve cannot be contractible, a contradiction.

Given an open covering of \mathbb{H}^3 by cylinders $Z_{\lambda}(C)$, $C \in C_{\lambda}$, define a complex K_{λ} by

- the vertex set is \mathcal{C}_{λ} .
- (C_0, \ldots, C_m) is an *m*-simplex if $\bigcap_{i=0}^m Z_\lambda(C_i) \neq \emptyset$.

For an (open or closed) *m*-simplex Δ with vertices C_0, \ldots, C_m set $\Theta(\Delta) = \langle C_0 \cup \cdots \cup C_m \rangle < \pi_1(M)$.

If $\pi_1(M)$ is k-free and $\Delta = (C_0, \ldots, C_{k-1})$ is a (k-1)-simplex then $\Theta(\Delta)$ is free, but it has rank *less than* k. If $C_i = \langle \gamma_i \rangle$ then non-trivial relations hold among the γ_i .

If X is a subcomplex of K_{λ} , or a union of open simplices, define $\Theta(X)$ to be the group generated by the $\Theta(\Delta)$ as Δ ranges over the simplices in X.

Definition. A group has *local rank* $\leq r$ if every finitely generated subgroup is contained in a subgroup of rank $\leq r$.

Lemma. Suppose $\pi_1(M)$ is k-free, k > 2. Set $\lambda = \log(2k - 1)$ and fix r < k. Suppose $X \subset K_{\lambda}$ is a connected union of open (k - 1)- and (k - 2)-simplices, where $\Theta(\Delta)$ has rank r for each simplex Δ in X. Then $\Theta(X)$ has local rank r. (And hence is locally free.)

Induction step: Suppose $\Theta(Y)$ has local rank r and $Y' = Y \cup \Delta$ where Δ is a (k - 1)-simplex whose (k - 2)-face Φ is contained in Y. Then $\Theta(Y') = \langle \Theta(Y), C \rangle$ where C is the vertex (maximal cyclic subgroup) opposite the face Φ .

Let $A < \Theta(Y')$ be finitely generated. Then $A < A' = \langle B, C \rangle$ where *B* is (free) of rank $\leq r$. It suffices to show that *A'* has rank $\leq r$. If not, then $A' = B \star C$, and *B* has rank *r*. But then $\Theta(\Delta) = \Theta(\Phi) \star C$ which has rank r + 1, a contradiction. We can now sketch the 3-free theorem.

We have k = 3, $\lambda = \log 3$. Take X to be the union of the open 1and 2-simplices in K_{λ} . The log 3-Theorem implies that $\Theta(\Delta)$ is free of rank 2 for any 2-simplex Δ . Clearly $\Theta(\Delta)$ is free of rank 2 if Δ is a 1-simplex.

Next use geometry to show that the link of each vertex of K_{λ} is connected, so X is connected. The lemma shows that $\Theta(X)$ has local rank 2. Note that $\Theta(X)$ is a normal subgroup of $\pi_1(M)$.

Lemma. If Γ is a k-free group with a normal subgroup of local rank r < k then Γ has local rank $\leq r$.

Since $\Theta(X)$ is normal, $\pi_1(M)$ is free of rank 2, a contradiction.

What if $\pi_1(M)$ is 4-free? Now we take k = 4 and $\lambda = \log 7$.

If we could show that the $Z_{\lambda}(C)$ cannot cover \mathbb{H}^3 we would conclude that M has maximal injectivity radius at least $\frac{1}{2}\log 7$, which implies vol M > 5.7389. But that would be asking too much (I think).

We can show that there exists a point of \mathbb{H}^3 which lies in *at most* one cylinder $Z_{\lambda}(C)$. Geometrically, this means that there exists $x \in M$ such that any two geodesic loops at x with length $< \log 7$ represent commuting elements of $\pi_1(M)$. Call this a λ -semi-thick point.

Theorem (C-Shalen). If $\pi_1(M)$ is 4-free, then M has a log 7-semi-thick point.

Theorem (C-Shalen). If a closed hyperbolic 3-manifold has a $\log 7$ -semi-thick point then $\operatorname{vol} M > 3.44$.

Take k = 4, $\lambda = \log 7$, and consider the complex $K = K_{\lambda}$. Since $\pi_1(M)$ is 4-free, $\Theta(\Delta)$ is free of rank at most 3 (and at least 2) when Δ is a simplex of dimension 1, 2, or 3.

Let X_2 (X_3) be the union of all open simplices Δ in $\mathcal{K}^{(3)} - \mathcal{K}^{(0)}$ such that $\Theta(\Delta)$ is free of rank 2 (3).

As before, since X_3 contains only 2- and 3-simplices, $\Theta(X_3)$ has local rank at most 3.

We claim that $\Theta(X_2)$ has local rank at most 2. To prove this by induction we need an important special case of the Hanna Neumann conjecture:

Theorem (Kent, Louder-McReynolds 2009). If A and B are rank-2 subgroups of a free group, and $A \cap B$ has rank 2, then $\langle A \cup B \rangle$ has rank 2.

To prove the 4-free result, we construct a bipartite graph \mathcal{G} with a $\pi_1(M)$ -action as follows:

Vertices are components of X_2 or X_3 . Join V and W by an edge if some simplex of V (W) is a face of some simplex of W (V).

Lemma. If every point of \mathbb{H}^3 lies in two cylinders $Z_{\lambda}(C)$ then vertices of K have contractible links. In particular $K^{(3)} - K^{(0)}$ is simply-connected.

Lemma. The graph G is a homotopy retract of $K^{(3)} - K^{(0)}$. (Hence it is a tree.)

Thus $\pi_1(M)$ acts on a tree with locally free vertex stabilizers. That is absurd since edge groups must contain surface groups.