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The log(2k − 1)-Theorem

Theorem (ACCS+A/CG+Density). Suppose that Γ is a

non-abelian free Kleinian group with basis {γ1, . . . , γn}. Fix

p ∈ H3 and set di = dist(p, γi(p)) for i = 1, 2, . . . n. Then

n∑
i=1

1

1 + edi
≤

1

2
.

Corollary. If M is a closed hyperbolic 3-manifold and π1(M) is

k-free then, for any p ∈ H3, we have di ≤ log(2k − 1) for at least

one index i .



k-free groups

Definition. A group Γ is k-free if every k-generator subgroup of

Γ is a free group (possibly with rank < k).

(Note that Γ k-free =⇒ Γ j-free for 0 ≤ j ≤ k .)

Theorem (Jaco-Shalen). If M is a closed hyperbolic

3-manifold then either

• π1(M) is 2-free; or
• M has a finite cover with 2-generator fundamental group.

(More generally, if π1(M) is contains no surface subgroups of

genus < k and if every k-generator subgroup of π1(M) has

infinite index, then π1(M) is k-free.)

It is clear that if H1(M;Q) has dimension > k then every

k-generator subgroup has infinite index. But this can also be

detected with mod p homology.

Theorem (Shalen-Wagreich). Suppose that H1(M;Zp) has

rank > k + 1 for some prime p. Then every k-generator subgroup

of π1(M) has infinite index.



2-freeness and geometry

Corollary. If M is a closed hyperbolic 3-manifold and π1(M) is

2-free then the maximal injectivity radius of M is at least 12 log 3.

Proof: Given a maximal cyclic subgroup C < π1(M), define

Zλ(C ) = {x ∈ H3| dist(x , γ(x)) < λ) for some γ ∈ C }.

(If non-empty, this is an open cylinder around the axis of C .)

Take λ = log 3. If C1 6= C2 and p ∈ Zlog 3(C1) ∩ Zlog 3(C2) then

there exist γ1 ∈ C1, γ2 ∈ C2, generating a free group of rank 2,

with dist(p, γi(p)) < log 3. This contradicts the log 3-Theorem,

so Zlog 3(C1) ∩ Zlog 3(C2) = ∅.

We cannot cover H3 with disjoint open cylinders. So there is

p ∈ H3 not contained in any Zlog 3(C ). Thus dist(p, γ(p)) > log 3

for all γ ∈ π1(M).



Packing

If M contains an embedded hyperbolic ball B = B(p,R) then the

lifts of B to H3 are disjoint, and form a “ball-packing”. Each lift

B(p̃,R) has a Dirichlet domain:

D(p̃) = {x ∈ H3 : dist(x , p̃) ≤ dist(x , p̃′) for any lift p̃′ of p}

which is a fundamental domain for M.

Böröczky gave an estimate of the “density” of an arbitrary

ball-packing.

Theorem (Böröczky). Suppose {B(pn,R)} is a radius R

ball-packing in H3. Then for each n,

vol D(pn) ≥ vol B(pn,R)/d(R).

Corollary. If M is a closed orientable hyperbolic 3-manifold and

π1(M) is 2-free then

vol M > vol B(x , 12 log 3)/d(12 log 3) = 0.929....



More packing

Böröczky’s result also applies to horoball packings, using the

same definition of Dirichlet domain (which only compares

distances to points on S2∞). The local density of a horoball

packing is at most d(∞) = limR→∞ d(R) = 0.8532....

Corollary. If M is a cusped hyperbolic 3-manifold and H is a cusp

neighborhood in M then vol M > vol H/d(∞)

One can also define a Dirichlet domain for a cylinder (banana) in

a cylinder packing, replacing center points by the central axes of

the cylinder. Andrew Przeworski has given estimates for the

density.

Theorem (Przeworski). If M is a hyperbolic 3-manifold

containing an embedded tube T of radius R then

vol M > vol T/min(0.91, p(R)).



Filling

Theorem (Kerckhoff). If M is an orientable hyperbolic

manifold with finite volume and C is an embedded geodesic in M

then M − C admits a finite-volume hyperbolic metric.

The following theorem used Perelman’s estimates for Ricci flow

to give explicit estimates for the amount volume decreases under

Dehn surgery:

Theorem (Agol, Storm, W. Thurston + Dunfield). Let M

be a closed orientable hyperbolic 3-manifold, let C be a geodesic

in M and let N be the hyperbolic manifold homeomorphic to

M − C . If the maximal embedded tube around C has radius R

then

vol N ≤ coth3(2R)

(
1 +

1

cosh(2R)

vol T

vol M

)
.

Corollary (using Przeworski). if R > 1
2 log 3 then

vol N < 3.018 vol M.



Tubes

Gabai, Meyerhoff and N. Thurston proved a stronger version of

Mostow rigidity: If M is homotopy equivalent to a hyperbolic

3-manifold then M is hyperbolic.

Their proof implies the following result, which involves rigorous

computation in the space of 2-generator Kleinian groups:

Theorem. Let M be a closed orientable hyperbolic 3-manifold

and let C be a shortest geodesic in M. Then either

• the maximal embedded tube about C has radius > 1
2 log 3; or

• M has a finite cover M̃ with 2-generator fundamental group,

and π1(M̃) lies in one of 7 explicit boxes in the space

Hom(F2,PSL2(C))/ ∼.

On the other hand, the strong form of the log 3 theorem implies

Theorem (Anderson-Canary-C-Shalen). Suppose that M is a

closed orientable hyperbolic 3-manifold with 2-free fundamental

group. Let C be a closed geodesic in M of length L. Then the

maximal tube about C has volume > V (L), and V (L)→ π as

L→ 0.



A better 2-free estimate

Theorem (Agol-C-Shalen). Suppose that M is a closed,

orientable hyperbolic 3-manifold with such that H1(M;Zp) has

rank > 3 for some prime p. Then vol M > 1.22.

(In fact, we prove this for H1(M;Zp) of rank > 2 ,p 6= 2, 7.)

Proof. Let C be the shortest geodesic in M. Since π1(M) is

2− free, the maximal tube about C has radius > 1
2 log 3. Drill out

C to get a cusped hyperbolic manifold N and let H be the cusp

neighborhood in N.

Consider a framing (µ, λ) where µ is the meridian of N in M.

Consider Dehn fillings Mn = N(1/np). Then H1(Mn;Zp) has rank

> 3, so π1(Mn) is 2-free.

By the hyperbolic Dehn-filling theorem, Mn is hyperbolic for large

n. Let Tn be the maximal tube in Mn about the filling geodesic.

The lengths of Tn converge to 0, so vol Tn → π. But Tn → H

geometrically, so vol H > π.

Thus π/d(∞) < vol N < 3.018 vol M =⇒ vol M > 1.22.



3-freeness and geometry

Theorem (CS, ACCS, Agol-CS+tameness). Suppose that

M is a closed hyperbolic 3-manifold and π1(M) is 3-free. Then

the maximal injectivity radius of M is at least 12 log 5. (This

implies vol M > 3.0879 by sphere-packing.)

Let Cλ be the set of maximal cyclic subgroups with Zλ(C ) 6= ∅.
Take λ = log 5.

It suffices to show that the cylinders Zλ(C ) cannot cover H3 with

λ = log 5. To show this we work with a simplicial “nerve” of the

covering. We show that the nerve cannot be contractible, a

contradiction.



Nerves

Given an open covering of H3 by cylinders Zλ(C ), C ∈ Cλ, define

a complex Kλ by

• the vertex set is Cλ.

• (C0, . . . ,Cm) is an m-simplex if ∩mi=0Zλ(Ci) 6= ∅.

For an (open or closed) m-simplex ∆ with vertices C0, . . . ,Cm set

Θ(∆) = 〈C0 ∪ · · · ∪ Cm〉 < π1(M).

If π1(M) is k-free and ∆ = (C0, . . . ,Ck−1) is a (k − 1)-simplex

then Θ(∆) is free, but it has rank less than k . If Ci = 〈γi〉 then

non-trivial relations hold among the γi .

If X is a subcomplex of Kλ, or a union of open simplices, define

Θ(X ) to be the group generated by the Θ(∆) as ∆ ranges over

the simplices in X .



Local rank

Definition. A group has local rank ≤ r if every finitely generated

subgroup is contained in a subgroup of rank ≤ r .

Lemma. Suppose π1(M) is k-free, k > 2. Set λ = log(2k − 1)
and fix r < k. Suppose X ⊂ Kλ is a connected union of open

(k − 1)- and (k − 2)-simplices, where Θ(∆) has rank r for each

simplex ∆ in X . Then Θ(X ) has local rank r . (And hence is

locally free.)

Induction step: Suppose Θ(Y ) has local rank r and Y ′ = Y ∪∆
where ∆ is a (k − 1)-simplex whose (k − 2)-face Φ is contained in

Y . Then Θ(Y ′) = 〈Θ(Y ),C 〉 where C is the vertex (maximal

cyclic subgroup) opposite the face Φ.

Let A < Θ(Y ′) be finitely generated. Then A < A′ = 〈B,C 〉
where B is (free) of rank ≤ r . It suffices to show that A′ has rank

≤ r . If not, then A′ = B ? C , and B has rank r . But then

Θ(∆) = Θ(Φ) ∗ C which has rank r + 1, a contradiction.



3-free redux

We can now sketch the 3-free theorem.

We have k = 3, λ = log 3. Take X to be the union of the open 1-

and 2-simplices in Kλ. The log 3-Theorem implies that Θ(∆) is

free of rank 2 for any 2-simplex ∆. Clearly Θ(∆) is free of rank 2

if ∆ is a 1-simplex.

Next use geometry to show that the link of each vertex of Kλ is

connected, so X is connected. The lemma shows that Θ(X ) has

local rank 2. Note that Θ(X ) is a normal subgroup of π1(M).

Lemma. If Γ is a k-free group with a normal subgroup of local

rank r < k then Γ has local rank ≤ r .

Since Θ(X ) is normal, π1(M) is free of rank 2, a contradiction.



4-freeness and geometry

What if π1(M) is 4-free? Now we take k = 4 and λ = log 7.

If we could show that the Zλ(C ) cannot cover H3 we would

conclude that M has maximal injectivity radius at least 12 log 7,

which implies vol M > 5.7389. But that would be asking too

much (I think).

We can show that there exists a point of H3 which lies in at most

one cylinder Zλ(C ). Geometrically, this means that there exists

x ∈ M such that any two geodesic loops at x with length < log 7

represent commuting elements of π1(M). Call this a λ-semi-thick

point.

Theorem (C-Shalen). If π1(M) is 4-free, then M has a

log 7-semi-thick point.

Theorem (C-Shalen). If a closed hyperbolic 3-manifold has a

log 7-semi-thick point then vol M > 3.44.



Joins

Take k = 4, λ = log 7, and consider the complex K = Kλ. Since

π1(M) is 4-free, Θ(∆) is free of rank at most 3 (and at least 2)

when ∆ is a simplex of dimension 1, 2, or 3.

Let X2 (X3) be the union of all open simplices ∆ in K (3) − K (0)

such that Θ(∆) is free of rank 2 (3).

As before, since X3 contains only 2- and 3-simplices, Θ(X3) has

local rank at most 3.

We claim that Θ(X2) has local rank at most 2. To prove this by

induction we need an important special case of the Hanna

Neumann conjecture:

Theorem (Kent, Louder-McReynolds 2009). If A and B are

rank-2 subgroups of a free group, and A ∩ B has rank 2, then

〈A ∪ B〉 has rank 2.



A tree!

To prove the 4-free result, we construct a bipartite graph G with

a π1(M)-action as follows:

Vertices are components of X2 or X3. Join V and W by an edge

if some simplex of V (W ) is a face of some simplex of W (V ).

Lemma. If every point of H3 lies in two cylinders Zλ(C ) then

vertices of K have contractible links. In particular K (3) − K (0) is

simply-connected.

Lemma. The graph G is a homotopy retract of K (3) − K (0).

(Hence it is a tree.)

Thus π1(M) acts on a tree with locally free vertex stabilizers.

That is absurd since edge groups must contain surface groups.


