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Gromov’s invariant

Definition (Gromov). If x ∈ Hk(X ;R) is a singular homology

class, define

||x || = inf
{∑

|ai | :
∑
aiσi ∈ x

}
.

This is a seminorm. If M is an orientable n-manifold, let

[M] ∈ Hn(M;R) denote its fundamental class, and define

||M|| = ||[M]||.

Pessimists might expect ||M|| to always be 0, but clearly it is a

topological invariant, and has these important properties:

• If f : X → Y and x ∈ Hk(X ) then ||x || ≥ ||f∗(x)||.
• If M and N are orientable n-manifolds and f : M → N has

degree n then ||M|| ≥ n||N||.

Theorem (Gromov). If M is an orientable hyperbolic
n-manifold then ||M|| = volM/vn where vn is the volume of a
regular ideal hyperbolic n-simplex.



Measure homology

W. Thurston improved on Gromov’s definition by inventing a

variant which makes the proof of Gromov’s Theorem clean and

elegant. It required a new homology theory.

Definition. A measure k-chain on a CW-complex X is a

compactly supported, signed Borel measure of bounded total

variation on the space C1(∆k ,X ).

So an ordinary smooth k-chain is a special case of a measure

k-chain, where the measure is a weighted sum of Dirac masses

supported on a finite set of singular simplices.

If we let Ck(X ) denote the abelian group of measure k-chains,

this gives an inclusion ιk : Ck(X )→ Ck(X ).



Measure homology

Let fi : ∆k−1 → ∆k denote the face inclusions, which induce

f ∗i : C1(∆k ,X )→ C1(∆k−1,X ). For a measure k-chain µ, define

∂n(µ) =
∑
i

(−1)i(f ∗i )∗(µ).

This makes C∗ into a chain complex and ι into a chain map.

Write the homology groups as Hk .

Define the total variation of a measure-chain as

||µ|| = sup

{∫
f µ : |f (σ)| ≤ 1 for all σ ∈ C1(∆k ,X )

}
.

Define a seminorm on Hk by ||x || = inf {||µ|| : µ ∈ x} .

We still have:

• If f : X → Y and x ∈ Hk(X ) then ||f∗(x)|| ≤ ||x ||.



Löh’s Theorem and Thurston’s definition

Theorem (C. Löh, 2006). For any connected CW-complex X ,
the inclusion ι : C∗(X )→ C∗(X ) induces an isomorphism
Hk(X )→ Hk(X ) which is an isometry with respect to their
seminorms.

(Isomorphism was proven in 1998, independently by Hanson and

Zastrow.)

We may identify [M] with ι([M]) and define ||M|| = ||[M]||, where

now [M] ∈ Hn(M). This is Thurston’s definition of Gromov’s

norm, and the two definitions are equivalent by Löh’s Theorem.

In particular,

• If M and N are orientable n-manifolds and f : M → N has

degree n then ||M|| ≥ n||N||.



differential forms

To work with measure chains we need to know that the usual

pairing (i.e. integration) between k-chains and k-forms extends

to measure chains. Here is the definition. If µ is a measure

k-chain and ω is a k-form,

〈µ,ω〉 =

∫ (∫
σ

ω

)
µ.

That is, we integrate the function σ →
∫
σ ω using the measure µ.

• If µ and µ′ are measure k-cycles then [µ] = [µ′] if and only if

〈µ,ω〉 = 〈µ′, ω〉 for all closed k-forms ω.

• If M is a Riemannian n-manifold and µ is a measure n-cycle

then [µ] = (〈µ, dV 〉/ volM)[M].



Straightening

From now on M = Hn/Γ is a hyperbolic manifold, and

p : Hn → M the universal covering projection.

Suppose σ : ∆k → Hn is a singular simplex. The points

σ(v0), . . . , σ(vk) span a hyperbolic k-simplex ∆σ. There is a

canonical map S(σ) : ∆k → ∆σ which preserves barycentric

coordinates. There is a homotopy from σ to S(σ), constant on

the vertices. (S(σ) is the straightening of σ.)

Suppose σ : ∆k → M is a singular simplex. Lift it to

σ̃ : ∆k → Hn. Define:

S(σ) = p ◦ S(σ̃).

Let Sk(M) ⊂ Ck(M) denote the measures supported on the image

of S . Since S commutes with the boundary map, S∗(M) is a

chain sub-complex. The map µ→ S∗(µ) is a chain-homotopy

inverse to the inclusion.



Gromov’s Theorem – easy direction

Straightening gives the easy direction of Gromov’s Theorem.

We need the key geometrical fact that the regular ideal

tetrahedron is the unique hyperbolic tetrahedron of maximal

volume. (In H3 we have a volume formula. In Hn this is a

theorem of Haagerup and Munkholm, proved after Gromov’s

proof for n = 3. So now we can do this for n-manifolds)

Choose µ ∈ Sn(M) with [µ] = [M]. Since [µ] = [M] we know

〈µ, dV 〉 = volM, so

volM = 〈µ, dV 〉 =

∫ (∫
σ

dV

)
µ.

But µ is supported on straight simplices, for which∫
σ dV = volσ(∆n) < vn. Since volM < vn||µ|| for any

µ ∈ Sn(M) with [µ] = [M]; it follows that volM ≤ vn||[M]||.



Smearing

There is a natural action of Isom+Hn on C1(∆n,M):

If σ : ∆n → M and γ ∈ Isom+Hn, lift σ to σ̃ : ∆n → Hn and

define

γ · σ = p ◦ γ ◦ σ.

The stabilizer of a singular simplex is Γ = π1(M). So an orbit is

identified with Isom+Hn/Γ , which is an SO(n)-bundle over M.

If σ : ∆k → M is a singular simplex, define Smear(σ) to be the

measure chain supported on the orbit of σ, with the measure

which is locally the product of ±dV on an open set in M with the

unit mass Haar measure on the SO(n)-fibers. (Use + if σ is

positively oriented, − if it is negatively oriented.)

In particular, ||Smear(σ)|| = volM for any singular simplex σ.



Gromov’s Theorem – tricky direction

Let σ : ∆n → M be a straight positive singular simplex and let vσ
denote the volume of its image hyperbolic simplex. If

µ = Smear(σ) then

〈µ, dV 〉 =

∫ (∫
σ

dV

)
µ = vσ

∫
µ = vσ volM.

Of course Smear(σ) is not a cycle. However, let σ̄ be the simplex

obtained by composing σ with reflection in one of its faces.

(Orient σ̄ negatively). Notice that each oriented face of σ is

mapped to an oriented face of σ̄ by a hyperbolic rotation.

This implies Σ = Smear(σ)− Smear(σ̄) is a cycle!

Moreover, since Σ is supported on two disjoint orbits,

||Σ|| = 2 volM. Since 〈Σ, dV 〉 = (vσ − (−vσ)) volM, we have

[Σ] = 2vσ[M]. Therefore ||M|| ≤ ||Σ||2vσ = volM
vσ

.

But we may take vσ arbitrarily close to vn, so volM ≥ ||M||vn.



Mostow Rigidity

Gromov used his theorem to give a simple proof of Mostow’s

Rigidity Theorem.

Theorem (Mostow). Suppose M1 = Hn/Γ1 and M2 = Hn/Γ2
are closed orientable hyperbolic n-manifolds with n > 2. If M1 is

homotopy equivalent to M2 then Γ1 is conjugate to Γ2 in

Isom+Hn, and hence M1 is isometric to M2.

Start with a homotopy equivalence f : M1 → M2. Lift f to

f̃ : Hn → Hn. Say an n + 1-tuple of points on Sn∞ is regular if

they span a regular ideal n-simplex.

• Show f̃ is a quasi-isometry, and deduce that f̃ extends

continuously, giving f̃∞ : S2∞ → S2∞. (See Munkholm.)

• Show that f̃∞ sends regular 4-tuples to regular 4-tuples.

• Show that this condition on f̃∞ implies that f is an isometry.



Mostow Rigidity – step2

Suppose f̃∞ maps the vertices of a regular ideal simplex ∆ to the

vertices of an irregular ideal simplex ∆′, with vol ∆′ < vn − 2ε.

Take a sequence σk of straight (non-ideal) simplices with vertices

tending to the ideal vertices of ∆.

Let µk = 1
2Smear(σk) and µ̄k = 1

2Smear(σ̄k). We know that

[µk + µ̄k ] = (
∫
σk
dV )/vn)[M1], and hence that

[S∗f∗(µk + µ̄k)]→ [M2] as k →∞.

There is an open set U ⊂ Isom+Hn so that, for all g ∈ U, and all

sufficiently large n, volS ◦ f (g · σk) < vn − ε.Thus

〈S∗f∗µk , dV 〉 < µ(U)(vn − ε) +

(
1

2
volM1 − µ(U)

)
vn,

Since volM1 = volM2 by Gromov’s theorem, this gives

〈S∗f∗(µk + µ̄k), dV 〉 < vn volM2 − µ(U)ε, contradicting that

[S∗f∗(µk + µ̄k)]→ [M2].



Mostow Rigidity – step 3

We know that f̃∞ sends regular (n + 1)-tuples to regular

(n + 1)-tuples. We will show that f̃∞ is a Möbius transformation.

Since the action of Γi is determined by its action on S2∞, this

implies that Γ1 is conjugate to Γ2 in Isom+Hn.

Take a regular ideal simplex ∆ in Hn. Consider the group

generated by reflections in the sides of ∆. The orbit of ∆ is a

tesselation of Hn by regular ideal tetrahedra. The vertices are

dense in S2∞.

Let g be the Möbius transformation that agrees with f̃∞ on the

vertices of ∆. Since f̃∞ takes regular (n + 1)-tuples to regular

(n + 1)-tuples, f agrees with g on the vertices of each simplex in

the the tesselation.

Thus f̃∞ agrees with g on a dense set of S∞. Since f̃∞ is

continuous, it is equal to g.

Quiz: Where did we use n > 2?



Answer

In dimension n > 2 there are exactly 2 regular ideal n-simplexes

having a given regular ideal (n − 1)-simplex Φ as a face. The

reflection through Φ takes one of these n-simplexes to the other.

So there is a unique way to extend the regular ideal simplex ∆ to

a tesselation of Hn by regular ideal simplexes.

In dimension 2, every ideal 2-simplex is regular. There are

uncountably many ways to extend the regular ideal simplex ∆ to a

tesellation of H2 by regular ideal 2-simplexes.

So, if n = 2, we could not conclude that f̃∞ agrees with g on the

vertices of each simplex in the tesselation.


