ALGEBRAIC CURVES - HOMEWORK 1
Ch1: 1.4, 1.5,1.10, 1.17, 1.22

1. Find all solutions to 22 +2y% = 3 with z,y € Q, and prove that 22 + 3y? = 2 has no solutions in Q. State
and prove a generalization for az? + by? = ¢ with a,b,c € kX and k an arbitrary field not of characteristic 2
(why is characteristic 2 more difficult?). Draw pictures.

2. Let k be an algebraically closed field. Give an example of affine algebraic sets Z;, Z» in k? with
I(Z1NZy) # I(Z1) + I(Z3). What is the geometric significance? Draw a picture.

3. This exercise develops basic facts for manipulating polynomials in several variables.

(i) Let R be a ring. Define R[X1,..., X,] in terms of ‘sequences of coefficients’, define on it a structure of
commutative R-algebra, and prove that it has the following universal mapping property: for any R-algebra
A and any ay,...,a, € A, there is a unique map of R-algebras R[X1,..., X,] — A which sends X; to a;.
The image of f under this map is called the value of f at (a1,...,a,). Note that when R = 0, the only
R-algebra is R itself (e.g., R[X] = R for R =0).

(id) If I is the ideal in R[X1, ..., X,] generated by elements f,, then state and prove a universal mapping
property for the R-algebra R[X1,...,X,]/I. Interpret this in the special case I = (X1 —7r1,..., X, — 70)
for r; € R. Conclude that R[X] is not isomorphic to R as an R-algebra if R # 0, but give an example of a
non-zero ring R for which there is an isomorphism R[X] ~ R as abstract rings.

(#i) For f € R[X], g € R[Y], prove that there are unique isomorphisms of R-algebras

(R[Y]/9)[X]/(f) ~ RIX,Y]/(f,9) ~ (RIX]/)[Y]/(9)
determined by “X — X7 and “Y — Y”. Generalize for any finite number of variables, with (f) and (g)
replaced by any ideals in the corresponding polynomial rings.

4. (i) If A is a UFD, prove that A[X;,...,X,] is a UFD (e.g., A =Z or A a field). Prove rigorously that
kE[X,Y,Z,W]/(XY — ZW) is a domain but is not a UFD, where k is an algebraically closed field.

(#) Prove that if k is a field and f € k[X] with positive degree is a product of distinct irreducible
polynomials, then Y2 — f € k[X, Y] is irreducible. For n > 1, prove that X" +Y" —1 € k[X, Y] is irreducible
if the characteristic of k£ does not divide n, but is reducible otherwise.

5. It is a basic fact that the ‘symmetric function’ polynomials Sy, ...,S, € Z[T1,...,T,] with

Si = Z li[ Tak

{a1,..,a;} k=1
c{1,..., n}

(ex: ifn=3,5) = Th1+To+T3, So = T'To+T1T3+T5T5 and Sz = T1T»T3) are algebraically independent over
Q (i.e., the canonical map Q[X1,...,X,] — Q[T1,...,T;] sending X; to S; is injective) and Q[S1,. .., Sy] is
the subring of &,,-invariants in Q[T1, ..., T,] (consult Lang’s Algebra, 3rd ed., Ch IV, §6 for a self-contained
proof).

(i) Let d > 1. Prove the existence of a ‘universal discriminant’ polynomial A, € Z[Ay, ..., A4—1], unique
up to sign, with the property that if k is any algebraically closed field and f = > a; T is a monic polynomial
of degree d, then f is a product of d distinct linear factors if and only if Ag(ag,...,aq—1) # 0.

(i) Let f € k[X,Y] be a non-constant polynomial and k an algebraically closed field. If f has distinct
irreducible factors fi,..., fn, prove that Z(f) is the union of the Z(f;)’s, with each Z(f;) infinite and all
Z(f:) N Z(f;) finite for i # j. Prove that for any irreducible f of degree d > 1, all lines in k? meet f in
< d points (what if d = 17), and the only lines y = ax + b in k? which fail to meet f in exactly d distinct
points are those for which (a,b) € k? satisfy a certain non-trivial polynomial relation (depending on f). In
particular, there are infinitely many such exceptional lines. For f =Y — X2, what is the geometric meaning
of this exceptional set of lines? How about f = Y2 — X3? Draw pictures.



