
Algebraic Curves - Homework 1

Ch 1: 1.4, 1.5, 1.10, 1.17, 1.22

1. Find all solutions to x2 +2y2 = 3 with x, y ∈ Q, and prove that x2 +3y2 = 2 has no solutions in Q. State
and prove a generalization for ax2 + by2 = c with a, b, c ∈ k× and k an arbitrary field not of characteristic 2
(why is characteristic 2 more difficult?). Draw pictures.

2. Let k be an algebraically closed field. Give an example of affine algebraic sets Z1, Z2 in k2 with
I(Z1 ∩ Z2) 6= I(Z1) + I(Z2). What is the geometric significance? Draw a picture.

3. This exercise develops basic facts for manipulating polynomials in several variables.
(i) Let R be a ring. Define R[X1, . . . , Xn] in terms of ‘sequences of coefficients’, define on it a structure of

commutative R-algebra, and prove that it has the following universal mapping property: for any R-algebra
A and any a1, . . . , an ∈ A, there is a unique map of R-algebras R[X1, . . . , Xn] → A which sends Xi to ai.
The image of f under this map is called the value of f at (a1, . . . , an). Note that when R = 0, the only
R-algebra is R itself (e.g., R[X] = R for R = 0).

(ii) If I is the ideal in R[X1, . . . , Xn] generated by elements fα, then state and prove a universal mapping
property for the R-algebra R[X1, . . . , Xn]/I. Interpret this in the special case I = (X1 − r1, . . . , Xn − rn)
for rj ∈ R. Conclude that R[X] is not isomorphic to R as an R-algebra if R 6= 0, but give an example of a
non-zero ring R for which there is an isomorphism R[X] ' R as abstract rings.

(iii) For f ∈ R[X], g ∈ R[Y ], prove that there are unique isomorphisms of R-algebras

(R[Y ]/g)[X]/(f) ' R[X, Y ]/(f, g) ' (R[X]/f)[Y ]/(g)

determined by “X 7→ X” and “Y 7→ Y ”. Generalize for any finite number of variables, with (f) and (g)
replaced by any ideals in the corresponding polynomial rings.

4. (i) If A is a UFD, prove that A[X1, . . . , Xn] is a UFD (e.g., A = Z or A a field). Prove rigorously that
k[X, Y, Z,W ]/(XY − ZW ) is a domain but is not a UFD, where k is an algebraically closed field.

(ii) Prove that if k is a field and f ∈ k[X] with positive degree is a product of distinct irreducible
polynomials, then Y 2−f ∈ k[X, Y ] is irreducible. For n > 1, prove that Xn +Y n−1 ∈ k[X, Y ] is irreducible
if the characteristic of k does not divide n, but is reducible otherwise.

5. It is a basic fact that the ‘symmetric function’ polynomials S1, . . . , Sn ∈ Z[T1, . . . , Tn] with

Si :=
∑

{a1,...,ai}
⊂{1,...,n}

i∏
k=1

Tak

(ex: if n = 3, S1 = T1+T2+T3, S2 = T1T2+T1T3+T2T3 and S3 = T1T2T3) are algebraically independent over
Q (i.e., the canonical map Q[X1, . . . , Xn] → Q[T1, . . . , Tn] sending Xi to Si is injective) and Q[S1, . . . , Sn] is
the subring of Sn-invariants in Q[T1, . . . , Tn] (consult Lang’s Algebra, 3rd ed., Ch IV, §6 for a self-contained
proof).

(i) Let d ≥ 1. Prove the existence of a ‘universal discriminant’ polynomial ∆d ∈ Z[A0, . . . , Ad−1], unique
up to sign, with the property that if k is any algebraically closed field and f =

∑
aiT

i is a monic polynomial
of degree d, then f is a product of d distinct linear factors if and only if ∆d(a0, . . . , ad−1) 6= 0.

(ii) Let f ∈ k[X, Y ] be a non-constant polynomial and k an algebraically closed field. If f has distinct
irreducible factors f1, . . . , fn, prove that Z(f) is the union of the Z(fi)’s, with each Z(fi) infinite and all
Z(fi) ∩ Z(fj) finite for i 6= j. Prove that for any irreducible f of degree d > 1, all lines in k2 meet f in
≤ d points (what if d = 1?), and the only lines y = ax + b in k2 which fail to meet f in exactly d distinct
points are those for which (a, b) ∈ k2 satisfy a certain non-trivial polynomial relation (depending on f). In
particular, there are infinitely many such exceptional lines. For f = Y −X2, what is the geometric meaning
of this exceptional set of lines? How about f = Y 2 −X3? Draw pictures.

1


