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Abstract. We introduce and study finite slope nearly overconvergent (elliptic) mod-
ular forms. We give an application of this notion to the construction of the Rankin-
Selberg p-adic L-function on the product of two eigencurves.

1. Introduction

The purpose of this paper is to define and give the basic properties of nearly overconver-
gent (elliptic) modular forms. Nearly holomorphic forms were introduced by G. Shimura
in the 70’s for proving algebraicity results for special values of L-functions [Sh76]. He
defined the notion of algebraicity of those by evaluating them at CM-points. After in-
troducing a sheaf-theoretic definition, it is also possible to give an algebraic and even
integral structure on the space of nearly holomorphic forms, allowing to study congru-
ences between them. This naturally leads to the notion of nearly overconvergent forms.
For that matter, we can think that nearly overconvergent forms are to overconvergent
forms what nearly holomorphic forms are to classical holomorphic modular forms. The
notion of nearly overconvergent forms came to the author when working on his joint
project with C. Skinner (see [Ur13] for an account of this work in preparation [SU]) and
appears as a natural way to study certain p-adic families of nearly holomorphic forms
and its application to Bloch-Kato type conjectures. In the aforementioned work where
the case of unitary groups1 is considered, the notion is not absolutely necessary but it is
clearly in the background of our construction and keeping it in mind makes the strategy
more transparent.

An important feature of nearly overconvergent forms is that its space is equipped
with an action of the Atkin operator Up and that this action is completely continuous.
This allows to have a spectral decomposition and to study p-adic families of nearly
overconvergent forms. Another remarkable fact which is not really surprising but useful
is that this space embeds naturally in the space of p-adic forms. In particular, this
allows us to define the p-adic q-expansion of these forms. All the tools and differential
operators that are used in the classical theory are also available here thanks to the sheaf
theoretic definition and the Gauss-Manin connection. In particular, we can define the
Maass-Shimura differential operator for families and the overconvergent projection which
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1It will be clear to the reader that it could be generalized to any Shimura variety of PEL type.
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is a generalization in this context of the holomorphic projection of Shimura. Our theory
is easily generalisable to general Shimura varieties of PEL type. To make this notion
more appealing, I decided to include an illustration (which is not considered in [SU]) of
its potential application to the construction of p-adic L-functions in the non-ordinary
case. In the works of Hida [Hi85, Hi88] on the construction of 3-variable Rankin-Selberg
p-adic L-functions attached to ordinary families, the fact that the ordinary idempotent
is the p-adic equivalent notion of the holomorphic projector makes it play a crucial role
in the construction of Hida’s p-adic measure. Here the spectral theory of the Up-operator
on the space of nearly overconvergent forms and the overconvergent projection play that
important role.

We now review quickly the content of the different sections. In the section 2, we recall
the notion of nearly holomorphic forms and give its sheaf-theoretic definition. This
allows to give an algebraic and integral version for nearly holomorphic forms and define
their polynomial q-expansions as well as an arithmetic version of the classical differential
operators of this theory. We also check that Shimura’s rationality of nearly holomorphic
forms is equivalent to ours. In section 3, we introduce the space of nearly overconvergent
forms and we prove it embeds in the space of p-adic forms. We also study the spectral
theory of Up on them and give a q-expansion principle. Then we define the differential
operators in families and the overconvergent projection. In the last section we apply
the tools introduced before to make the construction of the Rankin-Selberg p-adic L-
functions on the product of two eigencurve of tame level 1. When restricted to the
ordinary locus, this p-adic L-function is nothing else but the 3-variable p-adic L-function
of Hida.

After the basic material of this work was obtained, I learned from M. Harris that he
had also given a sheaf theoretic definition2 using the theory of jets which is valid for
general Shimura varieties of Shimura’s nearly holomorphic forms in [Ha85, Ha86] and
the fact his definition is equivalent to Shimura’s has been verified by his former student
Mark Nappari in his Thesis [Na92]. It should be easy to see that our description is
equivalent to his in the PEL case. However, Harris did not study nor introduce the
nearly overconvergent version. I would like also to mention that some authors have
introduced an ad hoc definition of nearly overconvergent forms as polynomials in E2

with overconvergent forms as coefficients. However this definition cannot be generalized
to other groups and is not convenient for the spectral theory of the Up-operator (or the
slope decomposition). Finally we recently learned from V. Rotger that H. Darmon and
V. Rotger have independently introduced a definition similar to ours in [DR] using the
work [CGJ].The reader will see that our work is independent of loc. cit. and recover
the result of [CGJ] has a by-product and can therefore be generalized to any Shimura
variety of PEL type.

This text grew out from the handwritten lecture notes of a graduate course the author
gave at Columbia University during the Spring 2012. After, the work [SU] was presented

2His definition follows a suggestion of P. Deligne.
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at various conferences3 including the Iwasawa 2012 conference held in Heidelberg, several
colleagues suggested him to write up an account in the GL(2)-case of this notion of nearly
overconvergent forms. This text and in particular the application to the p-adic Rankin-
Selberg L-function would not have existed without their suggestions.

The author would like to thank Giovanni Rosso and Chris Skinner for interesting con-
versations during the preparation of this work. He would like also to thank Pierre Colmez
who encouraged him to write this note. He is also grateful to the organizers of the confer-
ence Iwasawa 2012 held in Heidelberg for their invitation and for giving the opportunity
to publish this paper in the proceedings of this conference. This work was also lectured
during the Postech winter school in january 2013. The author would like to thank the
organizers of this workshop for their invitation. Finally the author would like to thank
the Florence Gould Foundation for its support when he was a Member at the Institute
for Advanced Studies and when some part of this work was conceived.

3The first half of this note was also presented in my lecture given at H. Hida’s 60th birthday conference.
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Notations. Throughout this paper p is a fixed prime. Let Q and Qp be, respectively,
algebraic closures of Q and Qp and let C be the field of complex numbers. We fix

embeddings ι∞ : Q ↪→ C and ιp : Q ↪→ Qp. Throughout we implicitly view Q as a

subfield of C and Qp via the embeddings ι∞ and ιp. We fix an identification Qp
∼= C

compatible with the embeddings ιp and ι∞. For any irreducible rigid analytic space X

over a p-adic number field L, we denote respectively by A(X), Ab(X), A0(X) and F (X)
the rings of analytic function, bounded analytic function, the ring of analytic bounded
by 1 and the analytic function field on X.
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2. Nearly holomorphic modular forms

2.1. Classical definition. In this paragraph, for the purpose to set notations we recall4

some classical definitions and operations on modular forms.

2.1.1. We recall that the subgroup of 2× 2 matrices of positive determinant GL2(R)+

acts on on the Poincaré upper half plane

h := {τ = x+ iy ∈ C | y > 0}

by the usual formula

γ.τ =
aτ + b

cτ + d
for γ =

(
a b
c d

)
∈ GL2(R)+ and τ ∈ h

Let f be a complex valued function defined on h. For any integer k ≥ 0 and γ ∈
GL2(R)+, we set

f |kγ(τ) := det(γ)k/2(cτ + d)−kf(γ.τ)

Let r ≥ 0 be another integer. We say that f is a nearly holomorphic modular form of
weight k and order ≤ r for an arithmetic group Γ ⊂ SL2(R) if f satisfies the following
properties:

(a) f is C∞ on h,
(b) f |kγ = f for all γ ∈ Γ,
(c) There are holomorphic functions f0, . . . , fr on h such that

f(τ) = f0(τ) +
1

y
f1(τ) + · · ·+ 1

yr
fr(τ)

(d) f has a finite limit at the cusps.

If f is a C∞ function on h, we set following Shimura’s ε.f the function of h defined by

(2.1.1.a) (ε.f)(τ) := 8πiy2∂f

∂τ̄
(τ)

It is easy to check that the condition (c) can be replaced by the condition

(c’) εr+1.f = 0

Moreover if f is nearly holomorphic of weight k and order ≤ r, then ε.f is nearly
holomorphic of weight k − 2 and order ≤ r − 1. We denote by N r

k (Γ,C) the space of
nearly holomorphic form of weight k, order ≤ r and level Γ. For r = 0, this is the space
of holomorphic modular form of weight k and level Γ and we will sometimes use the
standard notation Mk(Γ,C) instead of N 0

k (Γ,C).

4Those facts are mainly due to Shimura
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2.1.2. Recall also the Maass-Shimura differential operator δk on the space of nearly
holomorphic forms of weight k defined by

δk.f :=
1

2iπ
y−k

∂

∂τ
(ykf) =

1

2iπ
(
∂f

∂τ
+

k

2iy
f)

An easy computation shows that δk.f is of weight k+2 and its degree of near holomorphy
is increased by one. For a positive integer s, let δsk be the differential operator defined
by

δsk := δk+2s−2 ◦ · · · ◦ δk
The following easy lemma is due to Shimura and is proved by induction on r. We will
generalize it to nearly overconvergent forms in the next section.

Lemma 2.1.3. Let f ∈ N r
k (Γ,C). Assume that k > 2r. Then there exist g0, . . . , gr with

gi ∈Mk−2i(Γ,C) such that

f = g0 + δk−2g1 + · · ·+ δrk−2rgr

It is easy to check, the forms gi’s are unique. When the hypothesis of this lemma are
satisfied, Shimura defines the holomorphic projection H(f) of f as the holomorphic form
defined by

H(f) := g0

Remark 2.1.4. The conclusion of this lemma is wrong if the assumption k > 2r is not
satisfied. The most important example is given by the Eisenstein series E2 of weight 2
and level 1.

2.2. Sheaf theoretic definition.

2.2.1. Let Y = YΓ := Γ\H and X = XΓ := Γ\(h t P1(Q)) be respectively the open
modular curve and complete modular curve of level Γ. Let E = Ē×XΓ

YΓ be the universal
elliptic curve over YΓ and let p : Ē → XΓ be the Kuga-Sato compactification of the
universal elliptic curve over XΓ. We consider the sheaf of invariant relative differential
forms with logarithmic poles along ∂Ē = Ē\E which is a normal crossing divisor of Ē.

ω := p∗Ω
1
Ē/X(log(∂Ē))

It is a locally free sheaf of rank one in the holomorphic topos of X. We also consider

H1
dR := R1p∗Ω

•
Ē/X(log(∂Ē))

the sheaf of relative degree one de Rham cohomology of Ē over X with logarithmic poles
along ∂Ē. The Hodge filtration induces the exact sequence

(2.2.1.a) 0→ ω → H1
dR → ω∨ → 0

and in the C∞-topos, this exact sequence splits to give the Hodge decomposition:

H1
dR = ω ⊕ ω
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2.2.2. More concretely, let π be the projection h → YΓ and π∗E be the pull back of E
by π. We have

π∗E = (C× h)/Z2

where the action of Z2 on C×h is defines by (z, τ).(a, b) = (z+a+bτ, τ) for (z, τ) ∈ C×h
and (a, b) ∈ Z2. The fiber Eτ of π∗E at τ ∈ h can be identified with C/Lτ with
Lτ = Z + τZ ⊂ C. We have

π∗ω = Ohdz

with Oh the sheaf of holomorphic function on h. Note also that

E = Γ\C× h/Z2

with the action of Γ on C × h/Z2 given by γ.(z, τ) = ((cτ + d)−1z, γ.τ). We therefore
have

γ∗dz = (cτ + d)−1dz

From this relation and the condition at the cusps, it is easy and well known to see that

H0(XΓ, ω
⊗k) ∼=Mk(Γ,C)

Let C∞h the sheaf of C∞ functions on h. Then the Hodge decomposition of π∗H1
dR reads

π∗H1
dR ⊗ C∞h = C∞h dz ⊕ C∞h dz

On the other hand, by the Riemann-Hilbert correspondence, we have

π∗H1
dR = π∗R1p∗Z⊗Oh = Hom(R1p∗Z,Oh) = Ohα⊕Ohβ

where α, β is the basis of horizontal sections inducing on H1(Eτ ,Z) = Lτ the linear
forms α(a+ bτ) = a and β(a+ bτ) = b so that we have

dz = α+ τβ and dz = α+ τβ

From the action of Γ on the differential form dz, it is then easy to see that

γ∗ ·
(
dz

β

)
=

(
(cτ + d)−1

−c
0

(cτ + d)

)(
dz

β

)
We define the holomorphic sheaf of XΓ:

Hrk := ω⊗
k−r ⊗ Symr(H1

dR)

Then we have the following proposition.

Proposition 2.2.3. The Hodge decomposition induces a canonical isomorphism

H0(XΓ,Hrk) ∼= N r
k (Γ,C)

Proof. Let η ∈ H0(XΓ,Hrk). Then π∗η(τ) =
∑r

l=0 fl(τ)dz⊗
k−l
β⊗

l
where the fl’s are

holomorphic functions on h. Since we have β = 1
2iy (dz − dz), we deduce:

π∗η(τ) =
r∑
l=0

fl(τ)

(2iy)l

l∑
i=0

(−1)i
(
l

i

)
dz⊗

k−i
dz⊗

i
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The projection of π∗η on the (k, 0)-component of H0(h, π∗Hrk) is therefore given by

f(τ)dz⊗
k

with

f(τ) =

r∑
l=0

fl(τ)

(2iy)l

It is clearly a nearly holomorphic form. It is useful to remark that the projection on

the (k, 0)-component is injective5. Conversely, if f(τ) =
∑r

l=0
fl(τ)
yl

is a nearly holomor-

phic form of weight k and order ≤ r, using the injectivity of the projection onto the

(k, 0)-component, it is straightforward to see that
∑r

l=0(2i)lfl(τ)dz⊗
k−l
β⊗

l
is invariant

by Γ and defines an element of H0(XΓ,Hrk) projecting onto f(τ)dz⊗
k

via the Hodge
decomposition.

The quotient by the first step of the de Rham filtration of Hrk induces by Poincaré
duality the following canonical exact sequence

(2.2.3.a) 0→ ω⊗
k → Hrk → Hr−1

k−2 → 0

The map Hrk → H
r−1
k−2 induces the morphism ε of (2.1.1.a).

2.3. Rational and integral structures.

2.3.1. Let N be a positive integer and let us assume Γ = Γ1(N) with N ≥ 3. Then
XΓ = X1(N) is defined over Z[ 1

N ] as well as ω, H1
dR and Hrk. Recall that YΓ = Y1(N)

classifies the isomorphism classes of pairs (E,αN )/S where E/S is an elliptic scheme over

an Z[ 1
N ]-schemes S and αN is a Γ1(N)-level structure for E (i. e. an injection of group

scheme: µN/S ↪→ E[N ]/S). Moreover the generalized universal elliptic curve is defined

over X1(N) and we can define the sheaves ω, H1
dR and Hrk over X1(N)/Z[ 1

N
] as in the

previous paragraph. The exact seqeunce (2.2.3.a) is also defined over Q. For any Z[ 1
N ]-

algebra A, we define Mk(N,A) and N r
k (N,A) respectively as the global section of ω⊗k/A

and Hrk/A. This gives integral and rational definitions of the space of nearly modular
forms.

2.3.2. Nearly holomorphic forms as functors. For any ring R, we denote by R[X]r the
R-module of polynomial in X of degree ≤ r. Let B the Borel subgroup of SL2 of upper
triangular matrices. Then we consider the representation ρrk of B(R) on R[X]r defined
by

ρrk(
(
a b
0 a−1

)
).P (X) = akP (a−2X + ba−1)

We write R[X]r(k) to stress that it is given this action of B(R).

It follows from the exact sequence (2.2.1.a) that H1
dR is locally free over Y1(N)Z[1/N ].

A similar result would hold for general Shimura varieties of PEL type. In that case
the torsion-freeness result from the basic properties of relative de Rham cohomology
(for example see [Ka70]). We may therefore consider T the B-torsor over (Y1(N))Zar of

5We will see a similar fact in the p-adic case. See Proposition 3.2.4.
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isomorphisms ψU : H1
dR/U

∼= OU ⊕ OU inducing an isomorphism ψ1
U : ω/U ∼= OU ⊕ {0}

such that the isomorphism (H1
dR/ω)/U ∼= OU induced by ψU is dual to ψ1

U for all Zariski
open subset U ⊂ YΓ. Then over Y1(N), we have

T ×B A[X]r(k) ∼= Hrk/A
This implies the isomorphism above since the formation of both left and right hand sides
commute to base change.

For an elliptic scheme E/R we consider a basis (ω, ω′) of H1
dR(E/R) such that ω is

a basis of ωE/R = H0(E,Ω1
E/R) and 〈ω, ω′〉dR = 1. Then f ∈ N r

k (N,A) can be seen

as a functorial rule assigning to any A-algebra R and a quadruplet (E,αN , ω, ω
′)/R a

polynomial

f(E,αN , ω, ω
′)(X) =

r∑
l=0

blX
l ∈ R[X]r

defined such that the pull-back of f to H1
dR(E/R) is

∑r
l=0 blω

⊗k−l ⊗ ω′⊗
l
. For any

a ∈ R×, b ∈ R, we have

f(E,αN , aω, a
−1ω′ + bω)(X) = a−kf(E,αN , ω, ω

′)(a2X − ab)

The condition that f is finite at the cusps is expressed in terms of q-expansion as usual.
It will be defined in the next paragraph.

Proposition 2.3.3. Let f ∈ N r
k (N,A) and ε.f ∈ N r−1

k−2 (N,A) the image of f by the

projection (2.2.3.a). Then for any quadruplet (E,αN , ω, ω
′)/R, we have

(ε.f)(E,αN , ω, ω
′)(X) =

d

dX
f(E,αN , ω, ω

′)(X)

Proof. For any ring R, we have the exact sequence:

0→ R[X]0(k)→ R[X]r(k)→ R[X]r−1(k − 2)

where the right hand side map is given by P (X) 7→ P ′(X). It is clearly B(R)-equivariant.
By taking the contracted product of this exact sequence with T , we obtain the exact
sequence of sheaves (2.2.3.a) which implies our claim. Notice that the map of sheaves
inducing ε is surjective only if r! is invertible in A.

2.3.4. Polynomial q-expansions. We consider Tate(q) the Tate curve over Z[ 1
N ]((q)) with

its canonical invariant differential form ωcan and canonical Γ1(N) level structure αN,can.
We have the Gauss-Manin connection:

∇ : H1
dR(Tate(q)/Z[

1

N
]((q)))→ H1

dR(Tate(q)/Z[
1

N
]((q)))⊗ Ω1

Z[ 1
N

]((q)))/Z[ 1
N

]

and let

ucan := ∇(q
d

dq
)(ωcan)
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Then (ωcan, ucan) form a basis of H1
dR(Tate(q)/Z[ 1

N ]((q))) and ucan is horizontal, more-

over < ωcan, ucan >dR= 1 (see for instance the appendix 2 of [Ka72]). For any Z[ 1
N ]-

algebra A and f ∈ N r
k (N,A), we consider

f(q,X) := f(Tate(q)/A((q)), αcan, ωcan, ucan)(X) ∈ A[[q]][X]r.

We call it the polynomial q-expansion of the nearly holomorphic form f .

Remark 2.3.5. We can think of the variable X as −1
4πy .

2.3.6. The nearly holomorphic form E2. It is well-known that the Eisenstein series of
weight 2 and level 1 is a nearly holomorphic form of order 1. Its given by

E2(τ) = − 1

24
+

1

8πy
+
∞∑
n=1

σ1
nq
n

where σ1
n is the sum of the positive divisor of n and q = e2iπτ .

We can define E2 as a functorial rule. Let R be a ring with 1
6 ∈ R and E be an elliptic

curve over R. Recall (see for instance [Ka72, Appendix 1]) that any basis ω ∈ ωE/R
defines a Weierstrass equation for E:

Y 2 = 4X3 − g2X − g3

such that ω = dX
Y and η = X dX

Y form a R-basis of H1
dR(E/R). Moreover if we replace

ω by λω, η is replaced by λ−1η. Therefore ω⊗ η ∈ ωE/R ⊗H1
dR(E/R) is independant of

the choice of ω. It therefore defines a section of H1
2 over Y/Z[ 1

6
]. If (ω, ω′) is a basis of

H1
dR(E/R) such that < ω,ω′ >dR= 1 then we can put

Ẽ2(E,ω, ω′) = < η, ω′ >dR +X< ω, η >dR

where < ·, · >dR stands for the Poincaré pairing on H1
dR(E/R).

Its polynomial q-expansion is given by

Ẽ2(q,X) = Ẽ2(Tate(q), ωcan, ucan)(X) =
P (q)

12
+X

because ucan = −P (q)
12 ωcan + ηcan and < ωcan, ηcan >dR= 1 and where P (q) is defined in

[Ka72] by

P (q) = 1− 24
∞∑
n=1

σ1
nq
n

Since the q-expansion of Ẽ2 is finite at q = 0, Ẽ2 defines a section of H1
2 over X. From

the q-expansion, it is easy to see that Ẽ2 = −2E2. We clearly have ε.Ẽ2 = 1 (i.e. is the
constant modular form of weight 0 taking the value 1).

Remark 2.3.7. We can see easily that multiplying by Ẽ2 is useful to get a splitting of
H1
k:

0→ ω⊗
k → H1

k → ω⊗
k−2 → 0
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In particular, that shows that nearly holomorphic forms are polynomial in E2 with
holomorphic forms as coefficients. As mentioned in the introduction, this provides a way
to give an ad hoc definition of nearly overconvergent forms.

2.4. Differential operators. Recall that the Gauss-Manin connection

∇ : H1
dR → H1

dR ⊗ ΩX1(N)/Z[ 1
N

](log(Cusp))

induces the Kodaira-Spence isomorphism ω⊗
2 ∼= ΩX1(N)/Z[ 1

N
](log(Cusp)) and a connec-

tion

∇ : Symk(H1
dR)→ Symk(H1

dR)⊗ ΩX1(N)/Z[ 1
N

](log(Cusp)) ∼= Symk(H1
dR)⊗ ω⊗2

The Hodge filtration of Symk(H1
dR) is given by Fil0 ⊃ · · · ⊃ Filk ⊃ Filk+1 = {0} with

Filk−r = Hrk = ω⊗
k−r ⊗ Symr(H1

dR) for 0 ≤ r ≤ k
Since ∇ satisfies Griffith transversality, when k ≥ r ≥ 0, it sends Filk−r into Filk−r−1⊗
ΩX1(N)/Z[ 1

N
](log(Cusp)). We therefore get the sheaf theoretic version of the Maass-

Shimura operator6:
δk : Hrk → Hr+1

k+2 for 0 ≤ r ≤ k
We still denote δk the corresponding operator

δk : N r
k (N,A)→ N r+1

k+2 (N,A)

The following proposition gives the effect of δk on the polynomial q-expansion.

Proposition 2.4.1. Let f ∈ N r
k (N,A). Then the polynomial q-expansion of δkf is given

by:
(δkf)(q,X) = XkD(X−kf(q,X))

where D is the differential operator on A[[q]][X] given by D = q ∂∂q − X
2 ∂
∂X . In other

words, if f(q,X) =
∑r

i=0 fi(q)X
i, we have

(δkf)(q,X) =
r∑
i=0

q
d

dq
fi(q)X

i + (k − i)fi(q)Xi+1

Proof. The pull-back of f to φ∗Hrk with φ : Spec (A((q))) → X1(N)/A corresponds to
(Tate(q), αN,can)/A((q)) is given by

φ∗f =

r∑
i=0

fi(q)ω
⊗k−i
can ⊗ u⊗

i

can

Since ∇ induces dq
q
∼= ω2

can, ∇(q ddq )(ωcan) = ucan and ∇(q ddq )(ucan) = 0,, we have:

∇(q
d

dq
)(φ∗f) =

r∑
i=0

d

dq
fi(q)ω

⊗k−i+2

can ⊗ u⊗ican + (k − i)fi(q)ω⊗
k−i−1

can ⊗ u⊗i+1

can

6We leave it as an exercise to check that this operator corresponds to the classical Maass-Shimura
operator via the isomorphism of Proposition 2.2.3.
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This implies our claim by the definition of the polynomial q-expansion.

Remark 2.4.2. We can rewrite the formula for δk in the following way:

δk = D + kX

Using the relation [D,X] = −X2, we easily show by induction that

(2.4.2.a) δrk =
r∑
j=0

(
r

j

)
Γ(k + r)

Γ(k + r − j)
.XjDr−j

Notice in particular that for s ≤ r and h holomorphic, we have

(2.4.2.b) (εsk+2r ◦ δrk)h =

r∑
j=s

(
r

j

)
Γ(k + r)Γ(j + 1)

Γ(k + r − j)Γ(j + 1− s)
.Xj−s(q

d

dq
)r−jh

2.5. Hecke operators.

2.5.1. Let R1(N) be the abstract Hecke algebra attached the pair (Γ1(N),∆1(N)) by
Shimura [Sh73, chapt. 3]. This algebra is generated over Z by the operators Tn for n run-
ning in the set of natural integers. If ` is a prime dividng N , the operator T` is sometimes
called U`. These operators act on the space of nearly holomorphic forms by the usual
standard formulas and preserve the weight and degree of nearly holomorphy. Moreover
the Hecke operators respect the rationality and integrality of nearly holomorphic forms.

2.5.2. For any ring A ⊂ C, we then denote by hrk(N,A) ⊂ EndC(N r
k (N,C)) the sub-

algebra generated over A by the image of the Tn’s. If Z[ 1
N ] ⊂ A ⊂ B, then the above

remark shows that we have

(2.5.2.a) hrk(N,A)⊗A B ∼= hrk(N,B)

2.5.3. An easy computation shows that, for each integer n and f ∈ N r
k (N,C) we have:

(δk.f)|k+2Tn = n.δk(f |kTn)(2.5.3.a)

ε.(f |kTn) = n.(ε.f)|k−2Tn(2.5.3.b)

Remark 2.5.4. From these formulae, we see that if f is a holomorphic eigenform of weight
k. Then δrkf is a nearly holomorphic eigenform of weight k+ 2r. Moreover the system of
Hecke eigenvalues of δrkf is different than the one of any holomorphic Hecke eigenform
of weight k + 2r if r > 0.

2.6. Rationality and CM-points.
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2.6.1. We review quickly the rationality notion introduced by Shimura. For K ⊂ Q an
imaginary quadratic field and τ ∈ h∩K, the elliptic curve Eτ has complex multiplication
by K and is therefore defined over Kab ⊂ Q the maximal abelian extension of K by the
theory of Complex Multiplication. We then denote by ωτ an invariant Kähler differential
of Eτ defined over Kab and we denote by Ωτ the corresponding CM period defined by

ωτ = Ωτdz

Then (ωτ , ωτ ) forms a basis of H1
dR(Eτ/Kab). Let E be a number field and f ∈ N r

k (N,E).

Let αN,τ the Γ1(N)-level structure of Eτ induced by 1
NZ/Z ⊂ C/Lτ . Then the polyno-

mial f(Eτ , αN,τ , ωτ , ωτ )(X) belongs to EKab[X]. Since we have ωτ = Ωτdz, we deduce
that f(Eτ , αN,τ , ωτ , ωτ )(0) is the left hand side of (2.6.1.a) and that we therefore have

(2.6.1.a)
f(τ)

Ωk
τ

∈ EKab

According to Shimura, a nearly holomorphic form is defined as rational if and only if it
satisfies (2.6.1.a) for any imaginary quadratic field K and almost all τ ∈ H ∩K. It can
be easily seen his definition is equivalent to our sheaf theoretic definition.

Proposition 2.6.2. Let f ∈ N r
k (N,C) and E be a number field such that for any

imaginary quadratic field K ⊂ Q and almost all τ ∈ K ∩ h, we have

f(τ)

Ωk
τ

∈ E.Kab,

then, f ∈ N r
k (N,EQab).

Proof. We just give a sketch under the assumption k > 2r since the general case can
be deduced after multiplying f by E2. Thanks to a Galois descent argument, we may
assume E contains the eigenvalues of all Hecke operators acting onN r

k (N,C). By Lemma
2.1.3, we can decompose f as

f = f0 + δk−2f1 + · · ·+ δrk−2rfr

with fi holomorphic of weight k − 2i. Now we remark that if T is a Hecke operator
defined over E, then f |kT satisfies (2.6.1.a). This follows easily from the definition of
the action of Hecke operators using isogenies. Moreover from Remark 2.5.4, the system
of Hecke eigenvalues of nearly holomorphic forms δih and δi

′
h′ are distinct for any two

holomorphic forms h and h′ when i 6= i′; we deduce that δifi satisfy (2.6.1.a). We may
assume therefore f = δrk−2rg for an holomorphic form g of weight k− 2r. In fact using a
similar argument, we may even assume g is an eigenform. Then g = λ.g0 with g0 defined
over E. Since δrk−2rg0 is defined over E, we deduce from §2.6.1 that δrk−2rg0 satisfies

(2.6.1.a) and therefore λ ∈ EKab and f ∈ N r
k (N,EKab). Since this can be done for any

K the result follows.
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3. Nearly overconvergent forms

In this section, we introduce our definition of nearly overconvergent modular forms and
show they are p-adic modular forms of a special type. We use the spectral theory of the
Atkin Up-operator on them and we define p-adic families of such forms. We study also
the effect of differential operators on them and define an analogue of the holomorphic
projection. These tools are useful to study certain p-adic families of modular forms and
also to study p-adic L-functions.

3.1. Katz p-adic modular forms.

3.1.1. We fix p a prime. Let Xrig be the generic fiber in the sense of rigid geometry of

the formal completion of X/Zp along its special fiber. Let A ∈ H0(X/Fp , ω
⊗p−1

) be the

Hasse invariant and let Ãq be a lifting of Aq to characteristic 0 for q sufficiently large.
For ρ ∈ pQ ∩ [p−1/p+1, 1], we write X≥ρ for the rigid affinoid subspace of Xrig defined as

the set of x ∈ Xrig satisfying |Ãq(x)|p ≥ ρq. For ρ = 1 we get the ordinary locus of Xrig

and we denote it Xord. The space of p-adic modular forms of weight k is defined as

Mp−adic
k (N) := H0(Xord, ω

⊗k)

The space of overconvergent forms of weight k is the subspace of p-adic forms which are
defined on some strict neighborhood of Xord so:

M †k(N) := lim
→
ρ<1

H0(X≥ρ, ω⊗
k
)

3.1.2. Let ϕ : Xord → Xord the lifting of Frobenius induced on Yord by (E,αN ) 7→
(E(ϕ), α

(ϕ)
N ) where E(ϕ) := E/E[p]◦ and α

(ϕ)
N is the composition of αN and the Frobenius

isogeny E → E(ϕ). We get a ϕ∗-linear morphism obtained as the composite

Φ : H1
dR → ϕ∗H1

dR = H1
dR(Eϕ/Xord)→ H1

dR

This morphism stabilizes the Hodge filtration of H1
dR and we know by Dwork that there

is a unique Φ-stable splitting, called the unit root splitting:

H1
dR/Xord

= ω/Xord
⊕ U/Xord

such that Φ is invertible on U and U is a free sheaf of rank 1 generated by its sub-sheaf
of horizontal sections for the Gauss-Manin connection. This unit root splitting induces
a splitting of Hrk/Xord

and therefore of a canonical projection

(3.1.2.a) Hrk/Xord
→ ω⊗

k

/Xord

We now recall the definition of the Theta operator on the space of p-adic modular forms
of weight k. At the level of sheaves, Θ is defined as the composite of the following maps
of sheaves over the ordinary locus:

ω⊗
k

/Xord

δk→ H1
k+2/Xord

→ ω⊗
k+2

/Xord
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where he second arrow is the one given by (3.1.2.a) for r = 1. This defines

Θ : Mp−adic
k (N)→Mp−adic

k+2 (N)

It follows from the Proposition 2.4.1 and Proposition 3.2.4 below that on the level of
q-expansion, we have:

Θ(f)(q) = q
d

dq
f(q)

for all f ∈Mp−adic
k (N). The following proposition will be useful in the next paragraph.

Proposition 3.1.3. For any ρ < 1 and any Zariski open V ⊂ X≥ρ, the unit root
splitting on Vord := U ∩Xord does not extend to a splitting of the Hodge filtration of H1

dR
over any finite cover of V .

Proof. We show it by contradiction. Let us assume that this splitting extends to some
finite cover S of V for some ρ < 1.

H1
dR(E/S) = ωE/S ⊕ U(E/S).

Let Sord = S ×Vord
V . Since U(E/S) ⊗ OSord

is stable by Φ so is U(E/S). Since V
is a strict neighborhood of Vord, we can find an unramified extension L of Qp and
x ∈ S(L)\Sord(L). Then, we will obtain a splitting H1

dR(Ex/L) = ωEx/L⊕U(Ex/L) with
Φx inducing a semi-linear invertible endomorphism of U(Ex/L). Let kL be the residue
field of L. By the results of [BO, §7.4 and §7.5], the pair (H1

dR(Ex/L),Φx) is isomorphic to
(H1

crys(Ex,0/OL), F ∗) where H1
crys(Ex,0/OL) stands for the crystalline cohomology of the

special fiber Ex,0/kL of Ex and where Φx⊗1kL = F ∗ is induced by the Frobenius isogeny

F : Ex,0 → E
(p)
x,0. Since it has a splitting of the form H1

crys(Ex,0/OL) = Fil1 ⊕ U with

F ∗ inversible on U , Ex,0 has to be ordinary which is a contradiction since x /∈ Sord(L).

3.2. Nearly overconvergent forms as p-adic modular forms.

3.2.1. Definition of nearly overconvergent forms. For each ρ, H0(X≥ρ,Hrk) is natu-
rally a Qp-Banach space for the Supremum norm | · |ρ and if ρ′ < ρ < 1, the map

H0(X≥ρ
′
,Hrk) ↪→ H0(X≥ρ,Hrk) is completely continuous. We define the space of nearly

overconvergent forms of weight k and order ≤ r by

N r,†
k (N) := lim

→
ρ<1

N r,ρ
k (N)

with N r,ρ
k (N) := H0(X≥ρ,Hrk). We can define the operators δk and ε on nearly overcon-

vergent forms since they are defined at the level of sheaves. Moreover we can define the
polynomial q-expansion of a nearly overconvergent form and it is straightforward to check
that the action of δk and ε on this q-expansion is the same as for nearly holomorphic
forms.
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Remark 3.2.2. For any nearly overconvergent form f of weight k and order at most r,
we can easily show that there exist overconvergent forms g0, . . . , gr such that

f = g0 + g1.E2 + · · ·+ gr.E
r
2

where for i = 0, . . . , r, gi is of weight k − 2i. This could be used as an ad hoc definition
of nearly overconvergent forms but it would be uneasy to show this space is stable by
the action of Hecke operators and that it has a slope decomposition as we will see in the
next sections. Moreover, this definition would not be suited for generalization to higher
rank reductive groups.

3.2.3. We now want to consider nearly overconvergent modular forms as p-adic modular
forms. Using (3.1.2.a), we get a map

(3.2.3.a) H0(X≥ρ,Hrk)→ H0(Xord,Hrk)→ H0(Xord, ω
⊗k)

We have the following

Proposition 3.2.4. The maps (3.2.3.a) induces a canonical injection

(3.2.4.a) N r,†
k (N) ↪→Mp−adic

k (N)

fitting in the commutative diagram:

N r,†
k (N)
� _

��

� � // Mp−adic
k (N)

� _

��
Qp[[q]][X]r // Qp[[q]]

where the bottom map is induced by evaluating X = 0.

Proof. The fact that the diagram commutes follows from the fact that ucan belongs to
the fiber of the unit root sheaf U at the Zp((q))-point defining Tate(q). Indeed, it is
explained in the appendix 2 of [Ka72] that ucan is fixed by Frobenius. We are left with
proving the injectivity. We consider f in the kernel of this map. Let U ⊂ X≥r ∩ Yrig be
an irreducible affinoid. It is the generic fiber in the sense of Raynaud of an affine formal
scheme Spf(R) with R a p-adically complete domain. Let E/R the universal elliptic curve

over R. Let us choose a basis (ω, ω′) of H1
dR(E/R) as in the previous section and such

that 〈ω, ω′〉dR = 1. Let h ∈ R be a lifting of the Hasse invariant of E ×R Spec(R/pR)

and let S := R̂[1/h] where the hat here stands for p-adic completion. Then E/S has
ordinary reduction and the unit root splitting over S defines a basis (ω, u) of H1

dR(E/S).
We must have

u = ω′ + λ.ω

with λ ∈ S. But U is a strict neighborhood of Uord = U ∩ Xord which is the generic
fiber of Spf(S), we know by the previous proposition that λ is not algebraic over R.
Let Q(X) := f(E/R, αN , ω, ω′)(X) ∈ R[X]r. We want to show that Q(X) = 0. By
assumption, we know that Q(λ) = f(E/S , αN , ω, ω′ + λω)(0) = f(E/S , αN , ω, u)(0) = 0.
Since λ is not algebraic over R, this is possible only if Q(X) = 0. Since this can be done
for any pair (ω, ω′) we conclude that f ≡ 0.
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If f is a nearly overconvergent form, the p-adic q-expansion of f is by definition the
q-expansion of the image of f in the space of p-adic forms. The following corollary can be
thought of as a polynomial q-expansion principle for the degree of near overconvergence.

Corollary 3.2.5. Let f ∈ N r,†
k (N). If f(q,X) is of degree r then there is no g ∈

N r−1,†
k (N) having the same p-adic q-expansions.

Proof. We prove this by contradiction. Let us assume that such a g exists. Let h = f−g.

Since f(q,X) is of degree r and g ∈ N r−1,†
k (N), h(q,X) is still of degree r and therefore

h is non-zero. However, by assumption h(q, 0) = 0. This implies that h = 0 by the
diagram of the previous proposition, which is a contradiction.

3.3. E2, Θ and overconvergence. In the following two corollaries, we recover the main
results of [CGJ] using the polynomial q-expansion principle. It can be easily generalized
to modular forms for other Shimura varieties.

Corollary 3.3.1. The p-adic modular form E2 is not overconvergent.

Proof. By the Corollary 3.2.5, this is immediate since the polynomial q expansion of E2

is of degree 1.

Corollary 3.3.2. If f is overconvergent of weight k and k 6= 0, then Θ.f is not over-
convergent.

Proof. It follows from Proposition 2.4.1 and Proposition 3.2.4, that Θ.f is the image of
the nearly overconvergent form δk.f in the space of p-adic modular forms by the map
(3.2.4.a). Moreover

(δk.f)(q,X) = q
d

dq
f + kXf(q)

It is therefore of degree 1 since k 6= 0 and the result follows from Corollary 3.2.5.

3.3.3. Overconvergent projection. We give a p-adic version of the holomorphic projector.

Lemma 3.3.4. Let f be a nearly overconvergent form of weight k and order ≤ r such
that k > 2r. Then for each i = 0, · · · , r, there exists a unique overconvergent form gi of
weight k − 2i such that

f =
r∑
i=1

δik−2i.gi

Proof. This is special case of the proof of Proposition 3.5.4 below.
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We define the overconvergent projection H†(f) of f by:

H†(f) := g0

It is an overconvergent version of the holomorphic projection since if f is holomorphic,
then we clearly have:

H†(f) = H(f)

which means that H†(f) is holomorphic.

Remark 3.3.5. Let f ∈ N r,†
k (N,Qp) and g ∈ N s,†

l (N,Qp) such that k + l > 2s + 2r.

Then the following holds H†(fδml g) = (−1)mH†(gδmk f). One can also show that when a
Hecke equivariant p-adic Petersson inner product is defined then δ and ε are very close
to be adjoint operators. This implies a formula of the type 〈f, g〉p−adic = 〈f,H†(g)〉p−adic
when f is overconvergent. We hope to come back to this in a future paper.

3.3.6. Action of the Atkin-Hecke operator Up. If ρ > p−1/p+1, it follows from the theory
of the canonical subgroup (Katz-Lubin) that we can extend canonically ϕ on Xord into

ϕ : X≥ρ → X≥ρ
p
.

Let E/X≥ρ
p

be the generalized universal elliptic curve over X≥ρ
p

and let E(ϕ)/X≥ρ be
its pullback by ϕ. We have degree p isogeny

E
Fϕ→ E(ϕ)

over X≥ρ and we denote Vϕ : E(ϕ) → E the dual isogeny. On the level of sheaves, the
operator Up is defined as the composition of the following maps.

Hrk/X≥ρ
V ∗ϕ−→ Hr,(ϕ)

k /X≥ρ = Hrk/X≥ρp ⊗ϕ∗ O/X≥ρ
Id⊗ 1

p
·Tr
→ Hrk/X≥ρp

j→ Hrk/X≥ρ
where j is induced by the completely continuous inclusion OX≥ρp → OX≥ρ defined by
the restriction of analytic function on X≥ρ

p
to X≥ρ and Tr is induced by the trace of

the degree p map ϕ∗ : OX≥ρp → OX≥ρ . Since j is completely continuous, Up induces a
completely continuous endomorphism of N r,ρ

k (N,Qp). The following proposition is easy
to prove.

Proposition 3.3.7. Let f ∈ N r,†
k (N,Qp). Let us write its polynomial q-expansion as:

f(q,X) =

∞∑
n=0

a(n, f)(X)qn

Then we have:

(i) (f |Up)(q,X) =
∑∞

n=0 a(np, f)(pX)qn

(ii) ε(f |Up) = p.(εf)|Up
(iii) (δkf)|Up = pδk(f |Up)

Proof. (i) follows from a standard computation and (ii) and (iii) follow from (i) and the
effect of δk and ε on the polynomial q-expansion explained in Section 2.
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3.3.8. Let N̂∞,ρk (N,Qp) be the p-adic completion of

N∞,ρk (N,Qp) :=
⋃
r≥0

N r,ρ
k (N,Qp).

Then we have:

Corollary 3.3.9. The action of Up on N̂∞,ρk (N,Qp) is completely continuous.

Proof. It follows easily from the lemma below for the sequence Mi = N i,ρ
k (N) and the

relation (ii) of the previous proposition.

Lemma 3.3.10. Let Mi be an increasing sequence of Banach modules over a p-adic
Banach algebra A. Let u be an endomorphism on M :=

⋃
iMi such that

(i) u induces a completely continuous endomorphism on each of the Mi’s.
(ii) Let αi be the norm of the operator on the Hausdorff quotient of Mi/Mi−1 induced

by u. Then the sequence αi converges to 0.

Then u induces a completely continuous operator on the p-adic completion of M .

Proof. This is an easy exercise which is left to the reader.

Remark 3.3.11. We can give a sheaf theoretic definition of N̂∞,ρk . Let A be the ring of
analytic functions defined over Qp on the closed unit disc. It is isomorphic to the power
series in X with Qp-coefficient converging to 0. We denote it Ak if one equips it with
the representation of the standard Iwahori subgroup of SL2(Zp) defined by:

(
(
a b
c d

)
.f)(X) = (a+ cX)kf(

b+ dX

a+ cX
)

If we restrict this representation to the Borel subgroup we get a representation that con-
tains Zp[X]r(k) for all r. In fact, it is the p-adic completion of Zp[X](k) =

⋃
r Zp[X]r(k).

It is not difficult to see, one can define a sheaf of Banach spaces on X≥ρ (in the sense of
[AIP]) by considering the contracted product

H∞k := T ×B Ak
Then, we easily see that

N̂∞,ρk = H0(X≥ρ,H∞k )

3.3.12. Slopes of nearly overconvergent forms. Let f ∈ N r,†
k (N,Qp) which is an eigen-

form for Up for the eigenvalue α. If λ 6= 0, we say f is of finite slope α = vp(λ). The
following proposition compares the slope and the degree of near overconvergence and
extends the classicity result of Coleman to nearly overconvergent forms.

Proposition 3.3.13. Let f ∈ N∞,†k (N,Qp), then the following properties hold

(i) If f is of slope α, then its degree of overconvergence r satisfies r ≤ α,
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(ii) If f is of degree r and slope α < k−1−r, then f is a classical nearly holomorphic
form.

Proof. The part (i) is easy. If r is the degree of near overconvergence of f , then g = εr.f
is a non trivial overconvergent form and by Proposition 3.3.7 its slope is α− r. Since a
slope has to be non-negative, (i) follows. The part (ii) is a straightforward generalization
of the result for r = 0 which is a theorem of Coleman [Co96]. We may assume that r
is the exact degree of near overconvergence. By the point (i), we therefore have α ≥ r.
From the assumption, we deduce k − 1 − r ≥ r. Therefore k > 2r and we may apply
Lemma 3.3.4:

f =

r∑
i=o

δik−2igi

with gi overconvergent of weight k−2i for each i. By uniqueness of the gi’s, we see easily
that that the δk−2igi are eigenforms for Up with the same eigenvalue as f . So for each i,
gi is of slope α− i < k− 1− r− i ≤ (k− 2i)− 1. Therefore it is classical by the theorem
of Coleman. This implies f is classical nearly holomorphic.

3.4. Families of nearly overconvergent forms.

3.4.1. Weight space. Let X be the rigid analytic space over Qp such that for any p-adic

field L ⊂ Qp X(L) = Homcont(Z
×
p , L

×). Any integer k ∈ Z can be seen as the point

[k] ∈ X(Qp) defined as [k](x) = xk for all x ∈ Z×p . Recall we have the decomposition

Zp = ∆× 1 + qZp where ∆ ⊂ Z×p is the subgroup of roots of unity contained in Z×p and
q = p if p odd and q = 4 if p = 2. We can decompose X as a disjoint union

X =
⊔
ψ∈∆̂

Bψ

where ∆̂ is the set of characters of ∆ and Bψ is identified to the open unit disc of center

1 in Qp. If κ ∈ X(L) then it correspond to uκ ∈ Bψ(L) if κ|∆ = ψ and κ(1 + q) = uκ.

3.4.2. Families. Let U ⊂ X be an affinoid subdomain. It is known from the works of
Coleman-Mazur [CM98] and Pilloni [Pi10], that there exist ρU ∈ [0, 1)∩pQ such that for
all ρ ≥ ρU, there exists an orthonomalizable Banach space Mρ

U over A(U) such that for

all κ ∈ U(Qp), we have

Mρ
U ⊗κ Qp

∼= H0(X≥ρ, ωκ)

We consider the sheaf7 ΩU over U×X≥ρ associated to the A(U×X≥ρ)-moduleMρ
U and

we put
HrU := ΩU ⊗Hr0

For any weight k ∈ Z such that [k] ∈ U(Qp), we recover Hrk by the pull-back

(3.4.2.a) ([k]× idX≥ρ)∗HrU ∼= Hrk
7In [Pi10], this sheaf is constructed in a purely geometric way and the existence of Mρ

U is deduced

from it.
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For general weight κ ∈ U(L), we define the sheaf Hrκ = ωκ⊗Hr0 where ωκ is the invertible
sheaf defined in [Pi10, §3]. We define the space of nearly overconvergent forms of weight
κ by

N r,ρ
κ (N,L) := H0(X≥ρ,Hrκ/L)

and the space of U-families of nearly overconvergent forms:

N r,ρ
U (N) := H0(X≥ρ,HrU)

We also define N r,†
κ (N) and N r,†

U (N) the spaces we obtain by taking the inductive limit
over ρ. The space N r,ρ

U (N) is a Banach module over A(U) and for any weight κ ∈ U(L),
we have

N r,ρ
U (N)⊗κ L = N r,ρ

κ (N,L)

This follows easily from (3.4.2.a) and the fact that X≥ρ is an affinoid.

As in the previous section, one can define an action of Up on these spaces and show
it is completely continuous. For any integer r, any affinoid U ⊂ X and ρ ≥ ρU, we may
consider the Fredholm determinant

P rU(X) = P rU(κ,X) := det(1−X.Up|N r,ρ
U ) ∈ A(U)[[X]]

because one can show as in [Pi10] that N r,ρ
U (N) is A(U)-projective. A standard argument

shows this Fredholm determinant is independent of ρ. For U = {κ}, we just write P rκ(X).
If r = 0, we omit r from the notation.

For any integer m, we consider the map [m] : X → X defined by κ 7→ κ.[m] and we
denote U[m], the image of U by this map. We easily see from its algebraic definition,
that the operator ε can be defined in families and induces a short exact sequence:

0→Mρ
U → N

r,ρ
U → N r−1,ρ

U[−2] → 0

From Proposition 3.3.7 and the above exact sequence one easily sees by induction on r
that

P rU(κ,X) =

r∏
i=0

PU[−2i](κ.[−2i], pi.X)

Let us define N̂∞,ρU (N) as the p-adic completion of N∞,ρU (N) :=
⋃
r≥0

N r,ρ
U (N). Then it

follows from Lemma 3.3.10 again that Up acts completely continuously on it with the
Fredholm determinant given by the converging product

P∞U (κ,X) =
∞∏
i=0

PU[−2i](κ.[2i], p
iX)

Definition 3.4.3. Let U ⊂ X be an affinoid subdomain and Q(X) ∈ A(U)[X] be a
polynomial of degree d such that Q(0) = 1. The pair (Q,U) is said admissible for nearly
overconvergent forms (reps. for overconvergent forms) if there is a factorization

P∞U (X) = Q(X)R(X) (resp. PU(X) = Q(X)R(X) )

with P and Q relatively prime and Q∗(0) ∈ A(U)× with Q∗(X) := XdQ(1/X).
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If (Q,U) is admissible for nearly overconvergent forms, it results from Coleman-Riesz-
Serre theory [Co] that there is a unique Up-stable decomposition

N∞,ρU = NQ,U ⊕ SQ,U
such that NQ,U is projective of finite rank over A(U) with

(i) det(1− UpX|NQ,U) = P (X)
(ii) Q∗(Up) is invertible on SQ,U

It is worth noticing also that the projector eQ,U of N∞,ρU onto NQ,U can be expressed as
S(Up) for some entire power series S(X) ∈ XA(U)X. If we have two admissible pairs
(Q,U) and (Q′,U′), we write (Q,U) < (Q′,U′) if U ⊂ U′ and if Q divides the image
Q′|U(X) of Q′(X) by the canonical map A(U′)[X] → A(U)[X]. When this happens, we
easily see from the properties of the Riesz decomposition that

eQ,U ◦ (eQ′,U′ ⊗A(U′) 1A(U)) = eQ,U(3.4.3.a)

We have dropped ρ from the notation in NQ,U since this space is clearly independant

of ρ by a standard argument. We define N fs
U as the inductive limit of the NQ,U over the

Q’s. Since NQ,U is of finite rank and Up-stable it is easy to see that there exists r such
that

NQ,U ⊂ N r,†
U

Remark 3.4.4. If αQ,U is the maximal8 valuation taken by the values of the analytic
function Q∗(0) ∈ A(U) on U, then one can easily see that r ≤ αQ,U by the point (i) of
Proposition 3.3.13.

3.4.5. Families of q-expansions and polynomial q-expansions. By evaluating at the Tate
object we have defined in section 2, w e can define the polynomial q-expansion of an
element F ∈ N r,ρ

U (N) that we write F (q,X) ∈ A(U)[X]r[[q]]. The evaluation Fκ(q,X) at
κ of F (q,X) is the polynomial q-expansion of the nearly overconvergent form of weight κ
obtained by specializing F at κ. We also denote Fκ(q) = Fκ(q, 0) the p-adic q-expansion
of the specialization of F at κ. In what follow, we show that when the slope is bounded
a family of q-expansion of nearly overconvergent forms is equivalent to a family of nearly
overconvergent forms.

Let F (q) ∈ A(U)[[q]] and Σ ⊂ U(Qp) a Zariski dense subset of points. We say that
F (q) is a Σ-family of q-expansions of nearly overconvergent form of type (Q,U) if for all
but finitely many κ ∈ Σ the evaluation Fκ(q) of F (q) at κ is the p-adic q-expansion of a
nearly overconvergent form of weight κ and type Qκ (i.e. is annihilated by Q∗κ(Up)). Let
NΣ
Q,U be the A(U)-module of families of q-expansion of nearly overconvergent forms of

type (Q,U). Similarly, we can define NΣ,pol
Q,U ⊂ A(U)[X][[q]] the subspace of polynomial

q-expansion satisfying a smiler property for specialization at points in Σ with an obvious
map:

NΣ,pol
Q,U → NΣ

Q,U

8This maximum is <∞ since Q∗(0) ∈ A(U)×
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given by the evaluation X at 0.

Then we have:

Lemma 3.4.6. The q-expansion map and polynomial expansion maps induce the iso-
morphisms

NQ,U ∼= NΣ,pol
Q,U

∼= NΣ
Q,U.

Proof. From Proposition 3.2.4, it suffices to show that the q-expansion map induces:

NQ,U ∼= NΣ
Q,U.

The argument to prove this is well-known but we don’t know a reference for it. We
therefore sketch it below. Notice first that for any κ0 ∈ U(Qp) the evaluation map at κ0

induces an injective map:

NΣ
Q,U ⊗κ0 Qp ↪→ Qp[[q]](3.4.6.a)

Indeed if F ∈ NΣ
Q,U is such that Fκ0(q) = 0 then if $κ0 ∈ A(U) is a generator of the ideal

of the elements of A(U) vanishing at κ0, we have F (q) = $κ0 .G(g) for some G ∈ A(U)[[q]].
Clearly for any κ ∈ Σ\{κ0}, we have Gκ(q) = 1

$κ0 (κ)Fκ(q) is the q-expansion of a nearly

over convergent for of weight κ and type Qκ. Therefore G ∈ NΣ
Q,U and our first claim is

proved. Now let κ ∈ Σ. We have the following commutative diagram:

NQ,U ⊗κ Qp

(3) //

(1)

��

NΣ
Q,U ⊗κ Qp

(2)

��
NΣ
Qκ,κ

(4) // Qp[[q]]

Since (2) and (4) are injectives and (1) is an isomorphism, we deduce (3) is injective.
Now since the image of (2) is included in the image of (4) and (1) is surjective, we deduce
that (3) is an isomorphism of finite vector spaces. Since NΣ

Q,U is torsion free over A(U)

such that NΣ
Q,U ⊗κ Qp has bounded dimension when κ runs in Σ, a standard argument

shows that NΣ
Q,U is of finite type over A(U) (see for instance [Wi, §1.2]). Notice that the

injectivity of (3) below is true for all κ and therefore we deduce that the map

(3.4.6.b) NQ,U → NΣ
Q,U

is injective with a torsion cokernel of finite type. We want now to prove the surjectivity.
Let F (q) ∈ NΣ

Q,U and let IF ⊂ A(U) be the ideal of element a such that a.F (q) is in

the image of (3.4.6.b) and let aF be a generator of IF . Let G ∈ NQ,U whose image is
aF .F (q). For any κ0 such that aF (κ0) = 0, we get that Gκ0 = 0. By the isomorphism
(1), G is therefore divisible by $κ0 and thus aF

$κ0
∈ IF which contradicts the fact that

aF is a generator of IF . Therefore aF does not vanish on U and F is in the image of
(3.4.6.b). This proves the surjectivity we have claimed.
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More generally, for any Qp-Banach space M , we can define NΣ
Q,U(M) the subspace of

elements F ∈ A(U)⊗̂M [[q]] such that for almost all κ ∈ Σ, the evaluation Fκ at κ of
F (q) is the q-expansion of an element of NQκ,κ(M) = NQκ,κ⊗M . Similarly, one defines

NΣ,pol
Q,U (M). Then it is easy to deduce the following:

Corollary 3.4.7. We have the isomorphisms:

NQ,U⊗̂M ∼= NΣ,pol
Q,U (M) ∼= NΣ

Q,U(M).

Proof. Left to the reader.

3.5. Maass-Shimura operator and overconvergent projection in p-adic fam-
ilies. The formula for the action of the Maass-Shimura operators on the q-expansion
suggests it behaves well in families. We explain this here using the lemma 3.4.6.b. This
could be avoided but it would take more time than we want to devote to this here. We
explain this in a remark below.

3.5.1. We defined the analytic function Log(κ) on X by the formula:

Log(κ) =
logp(κ(1 + q)t)

logp((1 + q)t)

where logp is the p-adic logarithm defined by the usual Taylor expansion logp(x) =

−
∑∞

n=1
(1−x)n

n for all x ∈ Cp such thar |x − 1|p ≤ p−1 and t is an integer greater than
1/vp(κ(1 + q)). Of course, from the definition we have Log([k]) = k. Moreover Log is
clearly an analytic function on X.

3.5.2. If F (q,X) =
∑∞

n=0 an(X,F )qn ∈ A(U)[X]r[[q]], we define

δF (q,X) := D.F (q,X) + Log(κ)XF (q,X)

where

D = q
∂

∂q
−X2 ∂

∂X
.

If F (q,X) ∈ NΣ,pol
Q,U for a Zariski-dense set of classical weight Σ, it is clear that δ.F (q,X) ∈

N Σ̃,pol

Q̃,U
with Σ̃ = Σ[2] and Q̃(κ,X) = Q(κ.[−2], pX). We therefore thanks to Lemma

3.4.6 deduce we have a map

δ : N †,r,fsU → N †,r+1,fs
U[2]

Remark also, it is straightforward to see that the effect of the operator ε on the polyno-
mial q-expansion of families is the partial differentiation with respect to X:

(ε.F )(q,X) =
∂

∂X
F (q,X) ∀F ∈ N †,r,fsU
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Remark 3.5.3. Like in Remark 3.3.11, we can give a sheaf theoretic definition of N̂∞,ρU .
For simplicity, let us assume that all the p-adic characters in U are analytic on Zp. Let
AU := A(U)⊗̂A. Elements in AU, can be seen as rigid analytic functions on U×Zp. It is
equipped with the representation of the standard Iwahori subgroup of SL2(Zp) defined
by:

(
(
a b
c d

)
.f)(κ,X) = κ(a+ cX)f(

b+ dX

a+ cX
)

Again as in remark 3.3.11, one can define but now using the technics of [Pi10] a sheaf of
Banach spaces on X≥ρ × U

H∞U := T ×B AU
∼= ωU ⊗H∞0

and show that we have:

N̂∞,ρU = H0(X≥ρ × U,H∞U )

Since AU is a representation of the Lie algebra of sl2, it would be possible to define a
connection using the BGG formalism like in the algebraic case (see for instance [Ti11,
§3.2])

H∞U → H∞U[2]

One would then obtain the Maass-Shimura operator in family without the finite slope
condition:

δ : N̂ ρ,∞
U → N̂ ρ,∞

U[2]

It is then easy to verify that δ(N ρ,r
U ) ⊂ N ρ,r+1

U[2] . We leave the details of this construction

for another occasion or to the interested reader.

Finally, we want to mention that Robert Harron and Liang Xiao [Xi] have also given a
geometric construction of this operator in family using a splitting of the Hodge filtration
and showing the definition is independent of the chosen splitting. The above sketched
construction can be done without such a choice but it probably boils down to a similar
argument.

Now we have the following proposition.

Proposition 3.5.4. Let U ⊂ X be an open affinoid subdomain and F ∈ N †,r,fsU , then for
each i ∈ {0, . . . , r} there exists

Gi ∈
1∏2r

j=2(Log(κ)− j)
N †,0,fsU[−2i]

such that

F = G0 + δ.G1 + · · ·+ δr.Gr

Moreover, this decomposition is unique.

If U = {κ} such that Log(κ) 6∈ {2, 3, . . . 2r}, the result holds as well.
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Proof. It is sufficient to prove this when U is open since we can obtain the general result

after specialization. We prove this by induction on r. Notice that for G ∈ N †,0,fsU[−2r], we

have by (2.4.2.a)

εr.δr.G = r!.

r∏
i=1

(Log(κ)− r − i).G

since the left hand and right hand sides coincide after evaluation at classical weights
bigger than 2r. We put

Gr :=
1

r!.
∏r
i=1(Log(κ)− r − i)

εrF

then Gr ∈ 1∏r
i=1(Log(κ)−r−i)N

†,0,fs
U[−2r] and F − δr.Gr is by construction of degree of nearly

overconvergent less or equal to r − 1. We conclude by induction.

Then we define

H†(F ) := G0

This is the overconvergent (or holomorphic) projection in family since it clearly coincides
with the holomorphic projection for nearly holomorphic forms of weight k > 2r.

Lemma 3.5.5. For any nearly overconvergent family of finite slope F ∈ N †,r,fsU , and
Heke operator T , we have

H†(T.F ) = T.H†(F ).

In particular, for any admissible pair (Q,U) and we have

eQ,U(H†(F )) = H†(eQ,U(F )).

Proof. It follows easily from the relation δj(T (n).F ) = njT (n).δj(F ) and the uniqueness
of the Gi’s in the decomposition of Proposition 2.4.2.a.

4. Application to Rankin-Selberg p-adic L-functions

Let E be the eigencurve of level 1 constructed by Coleman and Mazur. in [CM98].
In this section, we give the main lines of a construction of a p-adic L-function on E ×
E × X. The general case of arbitrary tame level can be done exactly the same way.
The restriction of our p-adic L-function to the ordinary part of the eigencurve, gives
Hida’s p-adic L-function constructed in [Hi88] and [Hi93]. Our method follows closely
Hida’s construction for ordinary families of eigenforms. We are able to treat the general
case using the framework of nearly overconvergent forms. We will omit the details of
computation that are similar to Hida’s construction and will focus on how we get rid of
the ordinary assumptions. We don’t pretend to any originality here. We just want to
give an illustration of the theory of nearly overconvergent forms to the construction of
p-adic L-functions in the non-ordinary case.
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4.1. Review on Rankin-Selberg L-function for elliptic modular forms. We recall
the definition and integral representations of the Rankin-Selberg L-function of two elliptic
modular forms and its critical values. Let f and g be two elliptic normalized newforms
of weights k and l with k > l and nebentypus ψ and ξ respectively of level M . We denote
their Fourier expansion by:

f(z) =

∞∑
n=1

anq
n and g(z) =

∞∑
n=1

bnq
n

Shimura is probably the first one to study in [Sh76] the algebraicities of the critical values
of

DM (s, f, g) := L(ψξ, k + l − 2s− 2)(

∞∑
n=1

anbnn
−s)

More precisely he proved that for every integer m ∈ {0, . . . , k − l − 1}, then

D(l +m, f, g)

πl+2m+1〈f, f〉M
∈ Q

Here 〈f, f〉M is the Petersson inner product of f with itself. Recall it is defined by the
formula

〈f, g〉M =

∫
Γ1(M)\h

f(τ)g(τ)yk−2dxdy

When 0 ≤ 2m < k− l, the essential ingredient in the proof of Shimura was to establish
a formula of the type

DM (l +m, f, g) = 〈f, gδmk−l−2mE〉M = 〈f,H(gδmk−l−2mE)〉M

where E is a suitable holomorphic Eisenstein series of weight k − l − 2m.

When f and g vary in Hida families and m is also allowed to vary p-adically, Hida
has constructed a 3-variable p-adic L-function interpolating a suitable p-normalization
these numbers. We now recall the precise formula that is used to interpolate these
special values in [Hi88]. We first need some standard notations. For any integer M ,

we put τM =
(

0
M
−1
0

)
and for any modular form h, we dente by hρ the form defined

by hρ(τ) = h(−τ̄) for τ ∈ h. For any Dirichlet character χ of level M and any integer
j ≥ 2 such that χ(−1) = (−1)j , we denote by Ej(χ) the Eisenstein series of level M ,
nebentypus χ and weight j whose q-expansion is given by

Ej(χ)(τ) =
L(1−m,χ)

2
+

∞∑
n=1

(
∑
d|n

(d,M)=1

χ(d)dj−1)qn

Proposition 4.1.1. [Hi88, Thm 6.6 ] Let L be an integer such that f and g are of level
Lpβ, then we have

DLp(l +m, f, g) = t.πl+2m+1〈fρ|kτLpβ ,H(g|lτLpβδmk−l−2m(Ek−l−2m,Lp(ψξ)〉Lpβ
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with

t =
2k+l+2m(Lpβ)

k−l
2
−m−1il−k

m!(l +m− 1)!
.

and m ∈ Z with 0 ≤ m < (k − l)/2.

4.2. The p-adic Petersson inner product.

4.2.1. For simplicity, we assume the tame level is 1. Fix and admissible pair (R,V)
for overconvergent forms and letMR,V the corresponding associated space of V-families
of overconvergent forms. Let TR,V the Hecke algebra acting on MR,V. A standard
argument using the q-expansion principle shows that the pairing

MR,V ⊗A(U) TR,V → A(V)

given by

(T, f) := a(1, f |T )

is a perfect duality. Since the level9 is 1, we also know that TR,V is reduced. Therefore,
the trace map induces a non-degenerate pairing on TQ,U with ideal discriminant dR,V ⊂
A(V) whose set of zeros is the set of weight where the map EQ,U → U is ramified. In
particular, we have a canonical isomorphism:

(4.2.1.a) MR,V ⊗ F (V) ∼= TR,V ⊗ F (V)

4.2.2. From this, we deduce a Hecke-equivariant pairing

(−,−)R,V : MR,V ⊗A(V) ⊗MR,V −→ F (V)

Let now F be a Galois extension of F (V) the field of fraction of A(V). We assume that
for each irreducible component C of ER,V, F contains the function field F (C) of C. For
each irreducible component C, we define the corresponding idempotent 1C ∈ TR,V ⊗ F
and we write FC for the element defined by

FC :=

∞∑
n=1

λC(Tn)qn ∈ F [[q]]

where λC is the character of the Hecke algebra defined by T.1C ⊗ idF = 1C ⊗ λC(T ). If
we denote by (−,−)F the scalar extension of (−,−)R,V to F then the Hecke invariance
of the inner product implies that

a(1, 1C .G) = (FC , G)F

is the coefficient of FC when one writes G as a linear decomposition of the eigen families
FC ’s.

Remark 4.2.3. This construction can be easily extended to the space NR,V for any ad-
missible psi (R,V) for nearly overconvergent forms.

9When the level is not 1, one uses the theory of primitive forms which described the maximal semi-
simple direct factor of TR,V ⊗ F (V)
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4.3. The nearly overconvergent Eisenstein family. We consider the Eisenstein fam-
ily E(q) ∈ A0(X)[[q]] such that for each weight κ ∈ X(Qp), its evaluation at κ is given
by

E(κ, q) =
∞∑
n=1

a(n,E, κ)qn :=
∞∑
n=1

(n,p)=1

∑
d|n

〈d〉κ.d−1qn.

where for any m ∈ Z×p , 〈m〉κ ∈ A(X) stands for the analytic function of X defined by

κ 7→ κ(m)

In particular, when κ = [k].ψ with ψ a ramified finite order character of Z×p , then E(κ, q)
is the q-expansion of

E
(p)
k (ψ)(τ) := Ek(ψ)(τ)− Ek(ψ)(pτ).

We define the nearly overconvergent Eisenstein family Θ.E ∈ A0(X× X)[[q]] by

Θ.E(κ, κ′) :=
∞∑
n=1

(n,p)=1

〈n〉κa(n,E, κ′)qn

Lemma 4.3.1. If κ = [r] and κ′ = [k]ψ, the evaluation at (κ, κ′) of Θ.E is

Θ.E(κ, κ′) = Θr.E
(p)
k (ψ)(q).

It is the p-adic q-expansion of the nearly holomorphic Eisenstein series δrkE
(p)
k (ψ).

Proof. The first part is obvious and the second part follows from the formula (2.4.2) and
the canonical diagram of Proposition 3.2.4.

4.4. Construction of the Rankin-Selberg L-function on E × E × X.

4.4.1. Some preparation. Let (Q,U) be an admissible pair for overconvergent forms of
tame level 1 and let TQ,U be the corresponding Hecke algebra over A(U). By definition
it is the ring of analytic function on the affinoid subdomain EQ,U sitting over the affinoid
subdomain ZQ,U associated to (Q,U) of the spectral curve of the Up-operator. Recall
that

ZQ,U = Max(A(U)[X]/Q∗(X)) ⊂ ZUp ⊂ A1
rig × U

where ZUp is the spectral curve attache to Up (i.e. the set of points (α, κ) ∈ A1
rig × U

such that P 0
κ (α) = 0) and

TQ,U = A(EQ,U) with EQ,U = E ⊗ZUp ZQ,U
The universal family of overconvergent modular eigenforms of type (Q,U) is given by

GQ,U :=

∞∑
n=1

T (n)qn ∈ TQ,U[[q]]

Tautologically, for any point x ∈ EQ,U of weight κx ∈ U, the evaluation GQ,U(x) at x of
GQ,U is the overconvergent normalized eigenform fx of weight κx associated to x.
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Let

GEQ,U := GQ,U.Θ.E ∈ TQ,U ⊗Ab(X× X)[[q]] = Ab(EQ,U × X× X)[[q]]

The Fourier coefficients of this Fourier expansions are analytic functions on EQ,U×X×X.
Let now (R,V) be an admissible pair for nearly overconvergent forms of tame level 1.
Then we consider

GEQ,U,R,V(q) ∈ Ab(V× EQ,U × X)[[q]]

defined by

GEQ,U,R,V(κ, y, ν)(q) := eR,V.G
E
Q,U(y, ν, κκ−1

y ν−2)(q)

and where eR,V = S(Up) for some S ∈ X.A(V)[[X]] is the projector of N∞,fsV onto NR,V.

Proposition 4.4.2. With the notation above GEQ,U,R,V(q) is the q-expansion of an ele-

ment of GEQ,U,R,V ∈ NR,V ⊗Qp A
b(EQ,U × X). Moreover if we have (Q,U) < (Q′,U′) and

(R,V) < (R′V′), then GEQ,U,R,V is the image of GEQ′,U′,R′,V′ by the natural map

NR′,V′ ⊗Qp A
b(EQ′,U′ × X)→ NR,V ⊗Qp A

b(EQ,U × X)

Proof. By Corollary 3.4.7, with with (Q,U) replaced by (R,V) and with M = Ab(EQ,U×
X), it is sufficient to show that the specialization at a Zariski dense set of arithmetic
points of ([k], x, [r]) ∈ V× EQ,U × X is the q-expansion of a nearly holomorphic form of
weight k annihilated by R∗[k](Up). It is sufficient to choose the triplet ([k], x, [r]) such

that κx = [l] with l ∈ Z≥2, r ≥ 0 such that k − l − 2r ≥ 0 since such triplets form a
Zariski dense set of V×EQ,U×X. The evaluation at such a triplet is easily seen to be the
p-adic q-expansion of eR,k(gx.Θ

r.Ek−l−2r). By definition of eR,k it follows that this form
belongs to NR,k. The second part of the proposition is a trivial consequence of (3.4.3.a).

4.4.3. A 3-variable p-adic meromorphic function. Let ZR,V ⊂ A1
rig × V the affinoid of

the spectral curve Z∞Up attached to P∞V . This affinoid is a priori not contained in the

spectral curve attached to Up but the eigencurve is still sitting over it since ZUp ⊂ Z∞Up .
We can therefore consider

ER,V = EN ×Z∞U−p ZR,V
and the ER,V’s form an admissible covering of EN when the (R,V) vary.

Let C ⊂ ER,V be an irreducible component. Then we set

DC,Q,U := a(1, 1C .H†(GEQ,U,R,V)) ∈ F (C)⊗ F (EQ,U × X)

Remark 4.4.4. If HC ⊂ A(C) is a denominator of 1C , then the poles of DC,Q,U come from
the zeros of HC and the poles of the overconvergent projector. Therefore we have:

(4.4.4.a) HC .

2rR,V∏
i=2

(Log(κ)− i).DC,Q,U ∈ A(C × EQ,U × X)
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We denote by DR,V,Q,U the unique element of

F (ER,V × EQ,U × X) =
∏
C⊂ER,V
irreducible

F (C)⊗ F (EQ,U × X)

restricting to DC,Q,U on C × EQ,U × X for each irreducible component C of ER,V. It

can be constructed as the image of H†(GEQ,U,R,V) in TR,V ⊗ F (V) ⊗ F (EQ,U × X) =

F (ER,V × EQ,U × X) by the map (4.2.1.a) tensored by F (EQ,U × X)

We have the following result:

Lemma 4.4.5. There exist a meromorphic function D on E × E × X whose restriction
to F (ER,V × EQ,U × X) gives DR,V,Q,U for any quadruplet (R,V, Q,U).

Proof. If we have pairs (R,V), (Q,U), (R′,V′), (Q′,U) with (R,V) < (R′,V′) and (Q,U) <
(Q′,U′) then we have by (3.4.3.a) eR′,V′ |V ◦ eR,V = eR,V and eQ′,U′ |U ◦ eQ,U = eQ,U. Since
the overconvergent projection is Hecke equivariant, we deduce that

eR,V ⊗ eQ,V.(DR′,V′,Q′,U′ |V×U) = DR,V,Q,U

and that the DR,V,Q,U’s glue to define a memormorphic function D ∈ F (E × E × X).

4.4.6. The interpolation property. For x ∈ E(Qp), we denote θx the corresponding char-
acter of the Hecke algebra. If x is attached to a classical form, we denote by fx the
eigenform attached to x. By definition,

ιp ◦ ι−1
∞ (fx(q)) =

∞∑
n=1

θx(Tn)qn

We denote by kx its weight, ψx its nebentypus and pmx its minimal level with mx a
positive integer. We will always assume kx ≥ 2 and that pmx is the conductor of ψx. We
consider the complex number W (fx) defined by

hx := fρx |τpmx = W (fx)fx

It is a complex number of norm 1 called the root number of fx.

If E is smooth at x, then there is only one irreducible component containing it and if
C is the irreducible component of an affinoid ER,V containing x, then

(4.4.6.a) HC(κx) 6= 0

In that case, we can define the specialization 1x ∈ TRκx ,κx of 1C at κx and it satisfies:

Tn.1x = θx(Tn).1x ∀n
In general, TRκx ,κx is not semi-simple so 1x is not necessarily the (generalized) θx-
eigenspace projector. But if the projection map E → X is étale at x then it is. We
know it is the case when x is non-critical; recall that x is said non-critical if

vp(θx(Up)) < kx − 1.

If all the slopes of Rκx are strictly less that kx − 1 (something that we can assume after
shrinking ER,V), the image of 1C into the Hecke algebra acting on the space of forms
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MRκx ,κx is the projector 1fx attached to the new form fx. Moreover we can show by
the same computations as [Hi85, sect. 4] that

(4.4.6.b) a(1, 1fx .g) = a(p, fx)mx−n.p(n−mx)(kx/2−1) 〈f
ρ
x |τpn , g〉pn
〈hx, fx〉pmx

for any g ∈MRκx ,κx of level pn with n ≥ mx.

For any ν ∈ X(Qp), we write kν := log(ν). We say ν is arithmetic if kν ∈ Z and we
denote ψν the finite order character such that ν = [kν ].ψν .

We have the following theorem.

Theorem 4.4.7. Let L be a finite extension of Qp and (x, y) ∈ E × E(L) and any
arithmetic ν = [r].ψν such that κx, κy are arithmetic and satisfy the following

(i) kx − ky > r ≥ 0,
(ii) x is classical and non-critical,

(iii) y is classical,
(iv) The level of fρy equals the level of fρy |ψν
(v) ψx and ψy are ramified.

Then we have

D(x, y, ν) = (−1)kyW (fx)W (fρy )a(p, fx)mx−mypmx(1− kx
2

)+my(r+
ky
2

)(4.4.7.a)

×Γ(ky + r)Γ(kx + 1)
Dpn(fx, f

ρ
y |ψν , ky + r)

(2iπ)kx+ky+2r+1π1−kx〈fx, fx〉pmx

Proof. This computation follows closely those of Hida in [Hi93]. We treat the case
kx − ky > 2r ≥ 0. The case kx − ky > r ≥ (kx − ky)/2 can be treated similarly (see for
instance [Hi93]) and is obtained using the functional equation for the nearly holomorphic
Eisenstein series. We also assume ψν is trivial to lighten the notations.

By our hypothesis, we can choose a quadruplet (R,V, Q,U) such that

(a) (x, y) ∈ ER,V × EQ,U(L)
(b) The eigenvalues of R∗κx(X) ∈ L[X] are of valuation smaller than kx − 1

Then, D(x, y, [r]) = DR,V,Q,U(x, y, [r]). By the condition (b), we know that TRκx ,κx =
TR,V ⊗κx L is semi-simple and therefore the map ER,V → V is étale at x. In particular,
ER,V is smooth at x and x belongs to only one irreducible component C of ER,V. By
construction, we have:

DR,V,Q,U(x, y, [r]) = a(1, 1x ◦ H†(eRκx ,κx(GQ,U(y)ΘE([r], κxκ
−1
y [2r]−1))))

= a(1, 1fx(H†(eRκx ,κx(fyδ
r
kx−ky−2rE

(p)
kx−ky−2r))))

= a(1, 1fx ◦ eRκx ,κx(H†(g)))
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with g = fyδ
r
kx−ky−2rE

(p)
kx−ky−2r(ψxψ

−1
y ). Since g is nearly holomorphic of order ≤ r and

weight kx > 2r , we have H†(g) = H(g) is holomorphic. Since H(g) is an holomorphic
form of level pn with n = Max(mx,my), we have

DR,V,Q,U(x, y, [r]) = a(1, 1fx ◦ eRκx ,κxH(g))(4.4.7.b)

= a(p, fx)mx−n.p(n−mx)( kx
2
−1).
〈fρx |τpn ,H(g)〉pn
〈hx, fx〉pmx

= a(p, fx)mx−n.p(n−mx)( kx
2
−1).
〈fρx |τpn , g〉pn
〈hx, fx〉pmx

As in [Hi93], we now transform fy a little:

fy = (−1)kyfy|τpn |τpn = (−1)ky .p
ky
2

(n−my).fy|τpmy [pn−my ]|τpn

= (−1)kyW (fρy ).p
ky
2

(n−my).f cy |[pn−my ]|τpn

By replacing this in the expression above we get for (4.4.7.b):

a(p, fx)mx−n.(−1)kyW (fρy ).p(n−mx)( kx
2
−1).p

ky
2

(n−my).×(4.4.7.c)

〈fρx |τpn , f cy |[pn−my ]|τpnE
(p)
kx−ky−2r(ψxψ

−1
y )〉pn

〈hx, fx〉pmx
=

a(p, fx)mx−n.(−1)kyW (fρy ).pn(ky+r)+mx(1− kx
2

)−my
ky
2 ×

(kx + ky + r + 1)!r!.
Dpn(fx, f

ρ
y |[pn−my ], ky + r)

πky+2r+12kx+ky+2riky−kx〈hx, fx〉pmx
Now using the fact that for p dividing M , we have:

DM (f, g[pm], s) = a(p, f)mp−msDM (f, g, s))

we deduce that (4.4.7.b) is equal to

a(p, fx)mx−my .(−1)kyW (fρy ).pmx(1− kx
2

)+my(r+
ky
2

) ×

(ky + r − 1)!r!.
Dpn(fx, f

ρ
y |[pn−my ], ky + r)

πky+2r+12kx+ky+2riky−kx〈hx, fx〉pmx
and the specialization formula stated in the theorem follows.

Remark 4.4.8. a) This result is still true if x is classical and critical if it is not θ-critical.
The condition (iv) and (v) are not necessary and could be removed at the expanse to
modify the formula by adding some Euler factors at p.

b) From the construction, we see that this meromorphic function has possible poles
along certain hypersurfaces of E ×E ×X corresponding to intersections of the irreducible
components of the first variable and also along certain hypersurfaces created by the
overconvergent projection. This happens when the overconvergent form fx is at the
same time the specialization of a family of overconvergent forms and a family of positive
order nearly overconvergent forms. It is easy to see that implies x is θ-critical. In the
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next section, we review the definition of a θ-critical point and compute the residue of D
when the weight map at this point is étale.

4.4.9. Residue at an étale θ-critical point. Let x1 ∈ E(L) of classical weight k1 ≥ 2 and
slope k1 − 1. We say that x is θ-critical if there exist x0 of weight k0 = 2− k1 such that
fx1 = Θk1−1fx0 . Here we denote fx0 the ordinary form of weight k0 = 2 − k1 attached
to x0. We then write x1 = θ(x0). We have the following result.

Theorem 4.4.10. Let x0 and x1 as above. Assume that κ : E → X is étale at x1 = θ(x0)
or equivalently that E is smooth at x0. Then the order of the pole of D(x, y, ν) at x1 is
at most one and

(4.4.10.a) Res|x=x1(D(x, y, ν)) =

∏k1−2
j=0 (Log(νκy)− j)(Log(ν)− j)

(k1 − 1)!
D(x0, y, ν[1− k1])

for all (y, ν) ∈ E × X

Proof. The fact that E κ→ X is étale at x1 is equivalent to E smooth at x0 is well-known
and follows from R. Coleman’s work.

We choose (R0,V0) such that x0 ∈ ER0,V0(L). Consider the pair (R1,V1) with

R1(κ,X) = R0(κ[2− 2k1], pk1−1X) and V1 = V0[2k1 − 2].

For i = 0, 1, let Ci be the (unique) irreducible component of ERi,Vi containing xi and

let consider Fi = FCi the corresponding Coleman family. Let G = GER1,V1,Q,U
for some

admissible pair (Q,U).

Let F be an extension of F (V) as in §4.2.2. Then by definition of D = DC1,Q,U and of
the overconvergent projection, we have

G = D.F1 +D′δk1−1F0 +H(4.4.10.b)

with some D′ ∈ F⊗Ab(EQ,U×X) and H ∈ NR1,V1⊗Ab(EQ,U×X) such that (H,Fi)F = 0
for i = 0, 1 where (−,−)F is the p-adic Petersson inner product defined in §4.2.2. Notice
that by our hypothesis, F1(x1) = fx1 = δk1−1F0(x0). Since G is regular at [k1] and F1 and
δk1−1F0 are the only families of nearly overconvergent forms of finite slope specializing
to fx1 , this implies that D+D′ is regular at x1. Therefore in particular the order of the
pole of D at x1 is the same as the order of the pole of D′ at x1 and

(4.4.10.c) Res|x=x1(D(x, y, ν)) = −Res|x=x1(D′(x, y, ν))

From (4.4.10.b), we have

(4.4.10.d) εk1−1G(κx, y, ν) =

k1−2∏
j=0

(2− Log(κx) + j)D′(x, y, ν).F0 + εk1−1H

Since the eigencurve is smooth at x0, this implies that
∏k1−2
j=0 (2 − Log(κx) + j)D′ is

regular at x = x1 and therefore the pole of D′ at x1 is at most simple. Moreover, we get

(4.4.10.e) Res|x=x1(D′(x, y, ν)) =
(−1)k1

(k1 − 1)!
.a(1, 1C0 .ε

k1−1G([k1], y, ν))
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Now we want to evaluate εk1−1G(κ, y, ν). For any classical triplet (κ, y, ν) = ([k], y, [r])
with k − ky > 2r ≥ 0 and ψ = ψyψx1 , we deduce from the evaluation of (2.4.2.b) at
X = 0 that

εk1−1G(x, y, ν)(q) = εk1−1eR1,V1fyΘ
r.Ek−ky−2r(ψ)(q)

= eR0,V0ε
k1−1fyΘ

r.Ek−ky−2r(ψ)(q)

= eR0,V0fyε
k1−1Θr.Ek−ky−2r(ψ)(q)

=
Γ(k−ky−r)r!

Γ(k−ky−r−k1+1)(r−k1+1)!eR0,V0fyΘ
r−k1+1Ek−ky−2r(ψ)(q)

We deduce that

εk1−1G(κ, y, ν) =

k1−1∏
j=1

(Log(κκ−1
y ν−1)− j)(Log(ν)− j + 1)GER0,V0,Q,U(κ[2− 2k1], y, ν[1− k1])

since the left and right hand sides of the above have the same evaluations on a Zariski
dense set of point of X× EQ,U × X. Evaluating at κ = [k1] gives:

(4.4.10.f)

εk1−1G([k1], y, ν) =

k1−2∏
j=0

(j − Log(νκy))(Log(ν)− j)GER0,V0,Q,U([2− k1], y, ν[1− k1])

Since

a(1, 1C0G
E
R0,V0,Q,U([2− k1], y, ν)) = D(x0, y, ν)

for (y, ν) ∈ EQ,U × X, the formula (4.4.10.a) follows from (4.4.10.c), (4.4.10.e) and
(4.4.10.f).

Remark 4.4.11. This residue formula has a flavor similar to the work of Bellaiche [Be12]
in which it is proved that the standard p-adic L-function attached to a θ-critical point
is divisible by a similar product of p-adic Log’s.

Remark 4.4.12. It is also possible to define a two variable Rankin-Selberg p-adic L-
function interpolating the critical values Dp(fx, fy, kx − 1) by replacing Θ.E(κ, κ′) by

Eord(κ) in our construction where for κ = [k].ψκ and k ∈ Z≥2 we have

Eord(κ) =
L(1− k, ψ)

2
+

∞∑
n=1

(
∑
d|n

(n,p)=1

κ(d)d−1)qn.

Since E(κ) has a pole at κ = [0], this two-variable p-adic L-function would have a
pole along the hypersuface defined by κx = κy. It should be easy to compute the
corresponding residue and obtain a formula similar to the one of Hida’s Theorem 3
[Hi93, p. 228].
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