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1 Classical Lagrangian mechanics

You may remember from high-school physics the importance of the total energy of a system,
and that the total energy can be expressed as the sum of kinetic energy, which is inherent in
motion, and potential energy, which in general depends on the configuration of the physical
system (forces, etc.). This sum is called the Hamiltonian, and in the absence of external forces,
is conserved in the evolution of the system. From the law of conservation of energy, one can
thus determine how the system will evolve.

The fundamental quantity in Lagrangian mechanics is not the sum but the difference between
the kinetic and potential energies, called the Lagrangian:

L=K-V.

The physical meaning of the Lagrangian is less clear; it is in general not conserved. In many

cases, though, the Lagrangian formalism is more useful than the Hamiltonian: for one thing, the

Lagrangian is Lorentz-invariant (and therefore appropriate for applications in relativistic field

theory), and for another, it gives rise to a quantity known as the action, which generalizes nicely

to field theory and quantum mechanics. In the following, I will focus on this latter application.
The action is defined as the integral over time of the Lagrangian:

S:/Ldt

Once again, the physical meaning of the action is not intuitively obvious. In fact, in the classical
theory, its use is limited to the formulation of the principle of least action, which states that the
space-time path a particle (or field, or system) will follow is that for which the action is extrem-
ized. (In this regard, the principle is slightly misnamed; many texts will speak of minimizing
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the action, when all one is really doing is setting the derivative equal to zero. However, in most
applications one does indeed find a minimizing path. Cases in which a local maximum can be
found are rare, and solutions are called instantons or solitons, depending on their stability. In
any case, the extremizing path will often be called the path of least action.) To extremize the
action, one follows the usual procedure from calculus: take the derivative, and solve for the path
that makes the derivative zero.

What exactly does it mean to take a derivative in this context, though? We appeal to
some basic methods in variational calculus. Specifically, we want to find a path for which the
infinitesimal variation of the action, .5, is zero, and we assume that the path begins and ends
at some fixed points. For clarity, from now on we’ll consider the case of a particle moving in one
dimension along a path parametrized by z(¢). The Lagrangian may depend on z and its time
derivative, . We have

S= / L(z, ) dt, (1)

and
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The second term has a factor of §& = ¢ (%x). We can integrate by parts to write this in terms

of dx:
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endpoints

The boundary term vanishes, since we assumed dz = 0 at the endpoints. Dividing through by
dz (note the wonderful abuse of notation!), we are left with
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which means that in general, the integrand must be zero. This requirement produces the Euler-
Lagrange equations of motion,

=27y (5)

2 The quantum story

As far as classical mechanics is concerned, the Euler-Lagrange equations are the end of the
story. For quantum mechanics, though, it is only the beginning. For systems whose action is



much larger than & (Planck’s constant), the classical solution can be taken as an approximate
or zero-order solution, to which quantum mechanics provides small corrections. However, when
dealing with energies large enough (or lengths small enough) to make the action comparable with
h, the quantum “corrections” generally yield results substantially different from the classical
predictions.

The fundamental difference between classical and quantum mechanics is the role of proba-
bility in the evolution of a physical system. In classical mechanics, we don’t speak of probability
amplitudes; the path a particle follows is assumed to be the least action path, with one hundred
percent probability. ! Quantum mechanics, on the other hand, assigns a probability amplitude
to every possible path the system may take, and in general these amplitudes are nonzero. In
fact, Feynman’s formulation gives equal weight to each path, distinguishing their contributions
only by a phase factor.

Now suppose we ask what the amplitude is for a particle to propagate from a space-time
point a to another point b. Classically, this is not a very interesting question; if the particle
starts at a, then either it will go to b (by the path of least action) or it will not — there is no
probabilistic ambiguity. Feynman gives us a different approach: amplitude for propagation from
Zq t0 xp in time T, we sum over all paths beginning at z, and ending at z;. If we denote this
amplitude as U (x4, zp; T), we can write

U(za,anT) = 3 eiSleOI/n, (6)
paths

Note that in the classical limit # — 0 (or S > h), the exponent blows up, producing rapid
oscillation. In this case, a small change §.5 in the action gives a large change in phase, so those
paths for which §5 # 0 will tend to cancel in the sum. Thus we recover the least action principle
for classical mechanics.

When S and 7 are of comparable size, though, we have to worry about evaluating this sum.
Since the set of all paths is in general a continuous infinity, and we assume that a path can go
anywhere in the universe, this sum becomes an infinite product of integrals, each one taken over
all space. As an example of the methods used to define this integral, let us once again consider
the one particle, one dimension case. A general path is given by z(t), and the object we want
to define is the path integral (or functional integral),

/ Da(t).

In analogy with the definition of the Riemann integral, we break up the time parameter into n
discrete slices of duration e. We then fix (0) = z(ty) = z, and z(T') = z(t,) = x, and let z(t;)

LAn amplitude is just a complex number assigned to a given state; the probability of measuring that state is
given by the squared magnitude of this number, i.e. the number times its complex conjugate.



vary for each ¢; in the partition 0 =, <1 < ... <t, =T. Our integral thus becomes

/ Da(t) = / don 1 den )2... g”(”;), (7)

where I have abbreviated z(¢;) = ;. The numbers C(e) are convergence factors and, as sug-
gested, dependent on ¢; for some simple cases they can be found explicitly, but the general
problem of defining the integration measure is unsolved. Fortunately for physicists (and to
the continuing horror of mathematicians), these simple cases suffice for most known physical

situations, so nobody worries too much about the fact that the path integral is not generally
well-defined.

3 A path integral calculation

To see the use of the path integral formalism, let us consider the Lagrangian

1
L= Em:i:Q - V().

Then the propagation amplitude is

Ulza,zp:T) = / Da(t)er ] lsmi*=V()] (8)
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We can derive the equation of motion for this amplitude by examining the integral over the last
time slice. For convenience, we’ll call the variable of integration z’ instead of z, 1. We have

U(za, z4; T /dx eXp{ [ ($b_x)2 - (xb;x,)]}

xU(ma,m,T—e). 9)

Assuming 7’ is close to zj, we expand about . The integrand is now

exp {%Qﬁ(% _ )2 } x [1 - %GV(xb) + 0(62)]
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a_xb + O((.’El — $b)3):| U(-'Eaa xp; T — 6)’ (10)



where the derivatives may be understood as taken with respect to z’ and evaluated at x;. In
doing the dz’ integral, we can take out the second factor and use the Gaussian integration

formulae for the rest. Recall that
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Integrating (10), we get
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Rewriting the above and returning to (8),
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so for the limit € — 0 to make sense, we must have

Cle) = \/T

Using this value of C, we can factor out € in (12) and form a difference quotient, obtaining

¢ 0,2 ) = Uo7 = 0] = (e = LV(0) ) Ulo T — ),
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This is the Schrddinger equation, the equation of motion governing non-relativistic wave func-
tions in quantum mechanics.
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