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Abstract. We describe a rigorous, computer-assisted approach to the solu-
tion of the following question: Given a finite set of elements of PSL(2,C), is
the group G generated by these elements discrete? In addition, what can one
say about the geometry of the quotient H3/G? After a review of Poincare’s
Theorem for compact polyhedra, we derive some relevant formulae for the the
intersections of planes in the projective disk model. We discuss some of the
practical advantages for working in the projective disk model and compare it
to other standard models. Given F , a finite algebraic extension of Q contain-
ing the trace field of a given group G, we sketch a method for conjugating the
group to obtain a group with entries in a degree two extension of F . This
provides a convenient way of solving the word problem in G. We describe our
program which constructs a Dirichlet domain for G and then applies Poincare’s
Fundamental Polyhedron Theorem to determine if G is discrete. The program
also computes hyperbolic volume using the Lobachevsky function. Finally,
using our program, we construct manifolds associated to the “exceptional re-
gions” defined in the paper of D. Gabai, R. Meyerhoff and N. Thurston [5] and
further analyzed in [2], [7]. In particular, we address parts of the conjectures
posed in [5] that are inaccessible by the arithmetic methods discussed in [7].

1. Introduction

First we review Poincare’s Polyhedron Theorem. For a proof of Poincare’s The-
orem and a discussion of fundamental domains see [10] and [13]. Suppose G is a
discrete subgroup of PSL(2,C) such that H3/G is a compact manifold. Let x be
an arbitrary point in H3. Then the Dirichlet domain D at x is defined as:

D = {y ∈ H3|d(x, y) < d(g(x), y),∀g 6= 1 ∈ G}
Here d(x, y) denotes the distance between x and y in the hyperbolic metric. D,
the closure of D, is a convex finite-sided fundamental polyhedron. Here sides are
maximal convex subsets of ∂D. Each side S is a convex subset of the plane PgS

which is equidistant from x and gS(x). More precisely, if {Si} is the set of sides
and Hg = {y ∈ H3|d(x, y) ≤ d(g(x), y)} then:

D =
⋂

Sj∈{Si}HgSj
and Si = (∩Sj∈{Si}HgSj

) ∩ PgSi

In addition, the following five conditions are satisfied:

(i) For each side S there is a paired side S′ such that gS(S′) = S

(ii) gS′ = g−1
S (side-pairing relation)
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Let R be an edge contained in S. Define a sequence of sides {Si}∞i=1:
Let S1 = S. Let S2 be the side of P adjacent to S′1 such that gS1(S

′
1 ∩ S2) = R.

For i > 1, let Si+1 be the side adjacent to S′i such that gSi(S
′
i ∩ Si+1) = S′i−1 ∩ Si.

(iii) There is a least positive integer k such that gS1gS2 ...gSk
= 1 (cycle relation)

Let θ(S′i, Si+1) denote the dihedral angle between S′i, Si+1. We have:
(iv)

∑k
i=1 θ(S′i, Si+1) = 2π

(v) No point of D is fixed by a non-trivial element of G

Suppose one is given a finite collection {gi} of elements of PSL(2,C). Let
D =

⋂
gj∈{gi}Hgj

. Assume D is a compact nonempty 3-polyhedron such to each gi

corresponds a non-empty side and that conditions (i)-(iv) are met. Then Poincare’s
Fundamental Polyhedron Theorem asserts that the group G generated by {gi} is
a discrete subgroup of PSL(2,C) and the images of D under this group form an
exact tessellation of H3. Furthermore, if (v) is satisfied then G is torsion-free and
therefore, H3/G is a compact hyperbolic 3-manifold. Also, if G̃ is a group generated
by the set of symbols {gi} with the side-pairing relations as defined in (ii) and the
cycle relations as defined in (iii) then G̃ ∼= G.

Given a set of generators as matrices in SL(2,C) with the matrix entries ex-
pressed both to high precision as well as algebraic numbers we propose a rigorous
computer application of the above theorem 1. First, we construct an approximate
Dirichlet domain by computing the bisecting planes defined by the words in the
given generators. We obtain a polyhedron defined by floating-point entries for the
co-ordinates. One can then check that the conditions (i)-(v) are approximately
satisfied. In this manner, one obtains a finite collection of sides and the generating
elements which one hopes indeed satisfy (i)-(v). In Section 3 we show that know-
ing the generators to high precision often allows one to obtain explicit algebraic
expressions for the entries. Note that knowing explicit algebraic expressions for the
entries solves the word problem for the group. The formulae derived in Section 2
imply that given a field containing the entries of the orbits of a point one need not
extend the field any further to express the vertices of the polyhedron defined by
these orbits as algebraic numbers. This, with the solution to the word problem in
the group, allows one to rigorously verify conditions (i)-(v). As we shall see later, in
many cases it is even unnecessary to express vertices as explicit algebraic numbers
to verify the conditions.

2. Constructing Dirichlet Domains in the Projective Disk Model

We now consider the construction of the Dirichlet domain in the projective disk
model. First we review relevant hyperbolic geometry. The main reference (except
issues related to the coefficient field) is [13]. Let us denote the set of quaternions

1First work on computer application’s of Poincare’s Theorem was initiated by R. Riley. How-
ever, due to his unfortunate death we were not able to find any information about the existing
program. The publicly available paper which describes his work in this direction does not re-
solve/address many of the issues described here.
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{x + yi + zj|z > 0} by U3. Let the arc lenght element at a point x + yi + zj be√
dx2+dy2+dz2

z . U3 with this metric is known as the upper-half space model of hyper-
bolic 3-space. Let D3 be the open unit ball in R3. Denote the Euclidean norm of a

vector r by |r| and let the arc length element at a point r equal [(1−|r|2)|dr|2+(r·dr)2]
1
2

1−|r|2 .
This is known as the projective disk model. Also, the arc length element defines a
metric dD3(r, r′) on D3 such that:

(1) cosh(dD3(r, r′)) =
1− r · r′√

1− |r|2
√

1− |r′|2

Let g =
(

a b
c d

)
be an element of SL(2,C). Then g acts on U3 as an orientation

preserving isometry:

(2) g(w) = (a ∗ w + b) ∗ (c ∗ w + d)−1

Here w=x + yi + zj and ∗ represents quaternion multiplication. Let K be the field
generated by the entries of g. By writing out the action on the three co-ordinates
it follows that the field generated by the three co-ordinates of g(j) is contained in
K ′, the field generated by {Re(y), Im(y)|y ∈ K}. For example, K ′ is contained in
the splitting field of a polynomial which defines K.

For the construction of Dirichlet domains we need to analyze the intersection
of planes bisecting the distance from j to g(j). Since hyperbolic planes are defined
by spheres centered at z = 0, to obtain algebraic expressions for the vertices ones
needs to obtain repeated degree two extensions of K ′. This appears to be a very
inefficient procedure for determining whether the conditions stated in the Introduc-
tion are satisfied.

Consider φ : D3 → U3 given by:

(3) (x, y, z) 7−→ x + yi + (
√

1− x2 − y2 − z2)j
1− z

It is easy to check that φ is an isometry with inverse:

(4) x + yi + zj 7−→ (2x, 2y, x2 + y2 + z2 − 1)
1 + x2 + y2 + z2

Let us now attempt to construct a Dirichlet domain for a group G based at
~0 = (0, 0, 0) in the projective disk model. The bisecting plane between ~0 and g(~0)
is:

Pg = {r ∈ D3|dD3(~0, r) = dD3(r, g(~0))}

From equation (1) we see that Pg is also defined as:

Pg = {r ∈ D3|
√

1− |g(~0)|2 = 1− r · g(~0)}

Clearly, this is an equation of a plane of the type n · r = t where n = g(~0) and

t = 1 −
√

1− |g(~0)|2. Observe, once K ′ (the field containing the co-ordinates of
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images of j under G) has been obtained, the images of these co-ordinates under φ−1

are still in K ′. Thus, if g(j) = x + yi + zj with x, y, z ∈ K ′ and g(~0) = (x′, y′, z′)
then x′, y′, z′ ∈ K ′. By construction, g(~0) is the image φ−1(x + yi + zj). Using
equation (3) we see that:

√
1− |g(~0)|2 = z(1− z′)

Therefore, if the bisecting plane defined by g(~0) is n · r = t, then t ∈ K ′. If
g1(~0), g2(~0), g3(~0) are three orbits then the vertex defined by the three corresponding
planes is the simultaneous solution of n1 · r = t1, n2 · r = t2 and n3 · r = t3.

Let R = (r1, r2, r3)T and N =




n11 n12 n13

n21 n22 n23

n31 n32 n33


 (nij = (~ni)j).

If T = (t1, t2, t3)T we have:
N ·R = T ⇒ R = N−1 · T

Note, that our argument holds even for orientation-reversing isometries. In addi-
tion, if G has torsion and the origin is not a fixed point of G we can still construct
a Dirichlet domain based at the origin. Thus, in the projective disk model we have
obtained expressions for vertices in terms of the coordinates of the orbits as well as
the following theorem:

Theorem 2.1: Let G be a discrete group of isometries of the projective disk
model D3 such that the origin is not fixed by any element of G. Let K ′ be a
field containing the co-ordinates of the images of the origin under the group action.
Then the co-ordinates of all the vertices of the Dirichlet domain based at the origin
are contained in K ′. ¤

Remark: By inspecting the transformations relating U3, the conformal ball
model and the hyperboloid model one can show that the other two models have the
same complication as U3 since the transformations involve only rational expressions
in the coordinates.

3. Constructing The Coefficient Field

We outline a general technique for obtaining explicit algebraic entries for a co-
compact discrete subgroup of SL(2,C). Most of the results are based on the methods
explained in [8]. Let A, B ∈ SL(2,C). We say that the pair (A,B) is generic if the
matrices I, A,B, AB are linearly independent. By putting A in canonical form it is
easy to show that a pair (A,B) is generic iff AB − BA is non-singular. Following
[8] we say that G ⊂ SL(2,C) is elementary if it is either finite or contains no generic
pair. For discrete groups this agrees with the usual definition. Furthermore, if G is
discrete and co-compact then G is never elementary. Let Q(tr(G)) denote the field
generated by the traces of elements of G. It follows, [8, Theorem 4.1] that Q(tr(G))
is a finite algebraic extension of Q. Also, we have the following:

Theorem 3.1: Let G ∈ SL(2,C) and let (A,B) be a generic pair. Then the
coefficient field K of G is generated by Q(tr(G)) and the coefficients of A,B.
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Proof. Let A =
(

a1 a3

a2 a4

)
, B =

(
b1 b3

b2 b4

)
and AB =

(
a1b1 + a3b2 a1b3 + a3b4

a2b1 + a4b2 a2b3 + a4b4

)
.

If C ∈ G, C =
(

c1 c3

c2 c4

)
. We have the equations: tr(C) = t1, tr(CA) = t2, tr(CB) =

t3 and tr(CAB) = t4. Here ti ∈ K. In matrix form:

(5)




1 0 0 1
a1 a2 a3 a4

b1 b2 b3 b4

a1b1 + a3b2 a2b1 + a4b2 a1b3 + a3b4 a2b3 + a4b4







c1

c3

c2

c4


 =




t1
t2
t3
t4




Since the pair is generic the square matrix is invertible. ¤

In general, there is no reason that (K : Q(tr(G))) is small or even finite. How-
ever, one is interested in the properties of G which are preserved under conjugation
in SL(2,C). Assume again that (A,B) is a generic pair. The following elementary
lemma can be proved by putting A in canonical form:

Lemma 3.1: Let (A,B) be a generic pair. Put tr(A) = t1, tr(B) = t2, tr(A−1B) =
t3. If (A′, B′) is another pair such that tr(A′) = t1, tr(B′) = t2, tr(A′

−1
B′) = t3

then there exist T ∈ SL(2,C) such that A = TA′T−1 and B = TB′T−1. ¤

We omit the proof of the lemma since the explicit form of T is never used in the
program. Given Q(tr(G)) the proof of the following provides an explicit construc-
tion of a coefficient field of a group conjugate to G:

Theorem 3.2: Let G be a non-elementary subgroup of SL(2,C) with generic
pair (A,B).
G is conjugate to a group G̃ such that if K ′ is the coefficient field of G̃ then
(K ′ : Q(tr(G))) ≤ 2.

Proof. Keeping the notation of Lemma 3.1 consider:

A′ =
(

0 1
−1 t1

)
, B′ =

(
z 0

t1z − t3 t2 − z

)
with (t2 − z)z = 1.

The pair (A′, B′) fulfills the hypothesis of Lemma 3.1 and z satisfies a quadratic
polynomial with coefficients in Q(tr(G)). Now use Theorem 3.1. ¤

As remarked, Q(tr(G)) is a finite extension of Q. The following theorem proved in
[7] provides a convenient way of obtaining the trace field:

Theorem 3.3: Let G ⊂ SL(2,C) be generated by {g1, ..., gn}. The trace field is
generated by: tr(gi), tr(gigj), i < j, and (if n > 2) the trace of one triple product
of generators.

Often knowing the traces to high numeric precision is sufficient to obtain the
trace field and hence the coefficient field of a group conjugate to G. One uses the
LLL-algorithm as applied in the algdep() and lindep() routines of the PARI-GP
package [12]. See [2] for applications and examples.
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4. Volume of Hyperbolic Polyhedra

In this section we summarize relevant formulae for volumes of non-ideal hyper-
bolic tetrahedra and discuss how our program computes volume. Recall, that the
Lobachevsky function may be defined as [13]:

Λ(θ) = − ∫ θ

0
log|2sint|dt

As discussed in [13], can be shown that:
2iΛ(θ) = ψ(e2iθ)− ψ(1) + πθ − θ2 where ψ(θ) =

∑∞
n=1

θn

n2

Let IT (A,B, C,A′, B′, C ′) represent a tetrahedron in hyperbolic 3-space with one
ideal vertex and dihedral angles A,B, C, A′, B′, and C ′. Let edges corresponding to
A, B, and C share exactly one vertex. Also, let the edges corresponding to A and
A′ have no vertex in common (similarly for the others). It is irrelevant which vertex
is ideal. In terms of the Lobachevsky function, the volume has the following form [3]:

V olIT (A, B,C, A′, B′, C ′) =

1
2 [Λ(A−B−C+π

2 ) + Λ(−A+B−C+π
2 ) + Λ(−A−B+C+π

2 )
− Λ(A+B+C+π

2 ) + Λ(A−B′−C′+π
2 ) + Λ(−A+B′−C′+π

2 ) + Λ(−A−B′+C′+π
2 )

− Λ(A+B′+C′+π
2 ) + Λ(A′−B−C′+π

2 ) + Λ(−A′+B−C′+π
2 ) + Λ(−A′−B+C′+π

2 )
− Λ(A′+B+C′+π

2 ) + Λ(A′−B′−C+π
2 ) + Λ(−A′+B′−C+π

2 ) + Λ(−A′−B′+C+π
2 )

− Λ(A′+B′+C+π
2 )] + Λ(A+A′+B+B′

2 ) + Λ(A+A′+C+C′
2 ) + Λ(B+B′+C+C′

2 )

The paper of Yunhi Cho and Hyuk Kim [3] also derives a volume formula for an
arbitrary non-ideal tetrahedron. However, from a computational viewpoint, it is
easier to represent the volume of an arbitrary tetrahedron as the difference of the
volumes of two tetrahedra each with one ideal point. Suppose we have chosen to
work in the upper-half space model. Represent a tetrahedron as the convex hull of
its four vertices: T (v1, v2, v3, v4). Then, by applying a Mobius transformation, we
can assume that say v1 and v2 are on the z-axis with z co-ordinate of v1 larger than
that of v2. Then V olT (v1, v2, v3, v4) = V olT (∞, v2, v3, v4) − V olT (v1,∞, v3, v4).
Notice, since this model is conformal, positioning an edge on the z-axis makes the
computation of the dihedral angle easy - the two planes which meet at the edge
are Euclidean planes. Thus, given an arbitrary compact polyhedron in hyperbolic
3-space our program first represents it as a union of tetrahedra and then computes
hyperbolic volume by applying the formula above.

5. Program Routines

The purpose of this section is to discuss the basic structure of the functions we
have written for constructing Dirichlet domains and checking that the conditions
of Poincare’s theorem are met. All routines have been written using the PARI-GP
package [12] with an option for output to Geomview [6]. The actual routines as well
as a user’s guide are also available [15]. After discussing how our routines construct
the domain we sketch a method to verify the conditions of the theorem.

For the moment, one might ignore that the projective disk model is restricted to
the unit ball and simply consider the intersection of planes in R3. We start out with
the initial standard unit box centered at the origin. Then we modify the domain by
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cutting with planes which bisect the hyperbolic distance from the origin to the or-
bits. This list of orbits is constructed by computing all words up to a given length.
Since for purposes of efficiency we use only the decimal approximation of the words,
elements very close to the identity are ignored. Thus, the routine “guesses” that
an element close to the identity must be the identity. This is an example of the
general philosophy of our approach: the main task of the program is to find man-
ifolds defined by a subgroup of PSL(2,C), rather then prove that this subgroup is
not discrete. In practice, this means that the routines will make choices which may
fail to construct a domain, even if one exists, given that the specific case is highly
pathological. However, for many interesting and useful examples the procedure will
prove to be effective.

The domain is represented as a set of sides where each side is a collection of
edges and each edge is a pair of vertices - points in R3. The intersection of the
domain with a plane is computed by considering each edge (pair of vertices) sepa-
rately. For the pair we compute whether vertices lie below or above the plane. If
both lie above - the edge is discarded. If one lies below and the other above the
necessary adjustment to the edge is made (one of the vertices is replaced). When a
vertex appears sufficiently close to the plane the program “guesses” that the vertex
is actually exactly on the plane and adjusts accordingly.

In principle, the length of words can be increased until one obtains the desired
domain. However, even with the examples at hand, the length of desired words can
be so large that finding the right words by searching all the words up to a given
length can take weeks. Instead, we first construct a preliminary domain by trying
a few hundred words. Each side of the resulting domain corresponds to a word.
Then, we consider words that are two-word combinations of those forming the sides
of the existing domain to modify the domain. This procedure is iterated until the
domain no longer changes in the process. The resulting domain is then tested as a
possible Dirichlet domain for the group. This procedure has proven to be fast and
effective in practice.

Before finding exact expressions for the words generating the sides of the possible
Dirichlet domain one might check if the domain meets a few preliminary criteria:
along with each word corresponding to a side the inverse word corresponds to some
side as well, number of vertices of sides corresponding to inverse words is the same,
etc. Once the approximate domain is obtained we employ exact arithmetic to
rigorously verify the conditions of Poincare’s theorem. There are several ways to
proceed. At least in principle, one can verify the conditions of Poincare’s theo-
rem by simply finding the field containing the entries of orbits and using formulae
of Section 2 to obtain expressions for the vertices (as well as their images under
isometries) as algebraic numbers. Then the verification comes down to the ability
to perform exact arithmetic on the vertices. Since this involves finding the orbit
field, the procedure is quite lengthy except for very small extensions of Q. Also,
even in this case, one cannot avoid using decimal approximations, since to compare
entries in different field extensions one must have the decimal approximations of the
roots as well as their expressions as algebraic numbers. We propose an alternate
approach that avoids the construction of the orbit field at the cost of additional
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assumptions on the geometry of the domain.

The procedure outlined above allows one to find a finite collection {gi} of ele-
ments of the group in question which experimentally seems to generate a convex
domain that meets all the hypothesis of the Introduction. We show that under
some additional assumptions our program is capable of verifying the hypothesis
of Poincare’s Theorem for the group (or at least the subgroup generated by {gi})
without using algebraic expressions for the vertices. For clarity, issues related to
precision are deferred till the next section. Just by using decimal approximations
of the orbits we can assume they are all distinct and do not equal the origin. Thus,
we have a nonempty convex domain. Assume:

1. All edge-cycles have length three.

2. Each vertex of the Dirichlet domain is common to exactly three sides.

Below we discuss program routines which test sufficient conditions to prove that
the group is discrete, co-compact and torsion-free. If the two assumptions on the
actual Dirichlet domain are satisfied and we have mananged to find the collection
of sides that really generate the domain the conditions of the tests are also neces-
sary. Let us define D =

⋂
gi∈{gi}Hgi where Hgi = {x ∈ R3|d(0, x) ≤ d(x, gi(0))}.

Thus, each side is:

(6) Sgi = (∩gj∈{gi}Hgj ) ∩ Pgi

where Pgi = {x ∈ D3|d(0, x) = d(x, gi(0))}. In the expression for Sgi some Hgj

can be ignored. In fact, Hgj can be ignored iff Sgi and Sgj do not share an edge.
Given a side S and a plane P contaning this side we wish to find the subcollection
Φ (Φ = ΦS) of {gi} generating exactly the sides having a edge in common with S
using only high precision estimates of the orbits.

Note that the construction of the approximate Dirichlet domain outlined above
allows us to guess which elements generate sides belonging to Φ. This collection
consists of group elements that generate sides which share an edge with S in the
approximate domain. To verify that this Φ is indeed the minimal collection we
proceed in several steps. First we verify that S̃ = (∩gi∈ΦHgi) ∩ P is a nonempty
subset of the open unit ball. This will force it to be compact. We must also verify
that none of the elements of Φ are redundant. Each gi ∈ Φ should correspond to
an actual edge so we associate a pair gj1 , gj2 such that:

1) gi, gj1 and gj2 are distinct.
2) If r1 = P ∩Pgi ∩Pgj1

and r2 = P ∩Pgi ∩Pgj2
then |r1| < 1, |r2| < 1 and r1 6= r2.

(all the planes are assumed to be in general position)
3) For any other element g ∈ Φ, ng · ri < tg (i = 1, 2) where ng and tg, are the
parameters that define the bisecting plane corresponding to g (as in Section 2).

Finally, to check that S̃ = S it is sufficient to check that for g ∈ {gi} whenever
g /∈ Φ and r is a vertex of S̃ then ng · r < tg. In other words, the other bisecting
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planes do not modify S. Observe that since the additional assumptions on the do-
main are met all these verifications involve strict inequalities that may be verified
using high precision without explicitly computing the vertices as algebraic numbers.

To verify the side-pairing relations we must show that given gS ∈ {gi} there
exists gS′ ∈ {gi} such that:

(a) gS′ = g−1
S and (b) gS(S′) = S

(a) can be verified from having the solution to the word problem. From (a) we have
gS(PgS′ ) = PgS

. We need only to check that gS(S′) and S have the same edges.
Thus, given h ∈ ΦS we verify that there exists h′ ∈ ΦS′ such that:

PgS
∩ Ph = PgS

∩ gS(Ph′)
The left side of the equality is the line of points equidistant from 0, gS(0) and h(0).
The right side is the line of points equidistant from 0, gS(0) and gS ·h′(0). However,
since by assumption edge-cycles have length three we have h = gS ·h′. This equality
is verified by once more using the solution of the word problem in the group. Since
cycles have length three, condition (iv) is immediately satisfied because the sum
of the three dihedral angles is at most 3π. But the sum of the angles along any
edge-cycle is a whole multiple of 2π. Finally, to show that condition (v) of the
Introduction is satisfied it suffices to compare the vertices of the finite number of
images of D that still share a vertex with D.

6. Precision Issues

Since the method outlined in the preceding section attempts to use precision
arguments to provide a rigorous approach to proving that a group is discrete it is
necessary to address the reliability of these arguments. One must use a computer
package capable of working with specified precision that allows one to estimate the
precision loss under arithmetic operations. The main issue is that as the program
computes using the approximations, the real precision drops below the initially
specified precision. Note that the elements of the group are specified as solutions
to polynomials and hence can easily be computed to any precision.

Using the formulae of Section 2 we see that once a guess for a minimal collection
has been obtained to compute the orbits under the action of desired elements we
must compute the group elements starting from the generators and convert from
the upper half space model to the projective disk model. Furthermore, to compute
intersections of planes we must use these orbits in the matrices as described in
Section 2. Note that for any given group it is possible to calculate the precision
loss since for a given orbit the operations must be applied one at a time and never
consecutively. Once the maximum word length in the collection has been obtained,
it is easy to ensure that both the orbits and the intersection of planes are correct
to specified precision.

Recall from the last section that precision is used in two types of computa-
tion: (a) to show two vectors in are distinct, (b) to show that one scalar is bigger
than another. For (a) let x′ and y′ be approximations of x and y known to a given
precision. We wish to prove that x 6= y. Let xi, yi, etc. be the co-ordinates of the
vectors (i = 1, 2, 3). Assume |xi−x′i| < δ and |yi−y′i| < δ. Then

∑ |x′i − y′i| > 6δ
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implies x 6= y. For (b) suppose we want to prove n · z > t where we have approx-
imations n′, z′ and t′ within δ. If n′ · z′ − t′ > 4δ, then n · z > t. It should be
stressed that the program always uses sufficient conditions for the inequality. When
the compared values are far enough apart to distinguish with approximations these
conditions are also necessary.

7. Applications

One of the main results of the paper by D. Gabai, R. Meyerhoff and N. Thurston
[5] is that if N is a closed irreducible 3-manifold homotopy-equivalent to a closed
hyperbolic 3-manifold M then N and M are homeomorphic (for further details and
sharper formulation see [5]). The proof, which makes use of computers to analyze
a parameter space, isolates seven exceptional families that must be considered sep-
arately to complete the argument. From the initial analysis it is not clear that
the exceptional families contain manifolds. However, the analysis does single out
two-generator subgroups with supposed relators (quasi-relators) that appear to con-
verge to actual relators somewhere inside each region. It is conjectured in [5] that
each family Xi contains a unique manifold Mi with π1(Mi) = 〈f, w|r1(Xi), r2(Xi)〉
where ri are the quasi-relators for the family. In fact, the existence of a unique
manifold associated to one the of the regions is crucial to the completion of the
proof. Using arithmetic techniques K. Jones and A. Reid [7] show that there is a
unique hyperbolic manifold associated to this region. Their methods extend to con-
struct a hyperbolic manifold associated to all but one of the remaining regions. The
main obstruction is that the region (known as X3) does not appear to contain an
arithmetic group. In [2], using the LLL-algorithm, explicit expressions as algebraic
numbers are found for the generators of subgroups which satisfy the relations for
each parameter family. Therefore, the investigation of the existence of a manifold
associated to the region X3 is possible with the methods of the present work.

We provide examples of how the program was applied to the seven families
discussed in [5]. As noted, in [7] a unique manifold associated to region X0 is found
using arithmetic methods. Its volume is computed using arithmetic techniques
as well. As an independent verification we used the methods described above to
find the Dirichlet domain and calculate the volume. Our calculation of its volume,
1.014941... is in perfect agreement with [7] and the Week’s census [14]. In all cal-
culations we use the PARI-GP precision capabilities. Although this package allows
one to specify arbitrary high initial precision at the present we cannot rigorously
estimate the precision loss that occurs during the computation. Thus, although we
are confident of the results, the theorems of this section can strictly be regarded
only as experimental.

We used the methods described in this paper to successfully construct a Dirich-
let domain for all the seven families. In particular, we have provided independent
verifications of trace field and volume calculations for the regions already worked
out in [7] as well as obtained a closed hyperbolic manifold associated to X3 which
is inaccessible by arithmetic techniques. We summarize our results as follows:
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Theorem 7.1: There is a closed hyperbolic manifold associated to each of the
seven families such that π1(Mi) = 〈f, w|r1(Xi), r2(Xi)〉. In particular, H1(M3) =
Z7 ⊕ Z7 and Volume(M3)= 7.73809...

This theorem is proved by first constructing the approximate domain as above
and then using the sufficient tests of Section 5. In all cases the additional geometric
assumptions on the domain are met. The presentation of the group available from
the cycle and side-pairing relations is used to construct an isomorphism of π1(Mi)
with 〈f, w|r1(Xi), r2(Xi)〉. This amounts to verifying that the words specified by
cycle and side-pairing relations are trivial in 〈f, w|r1(Xi), r2(Xi)〉. For this we use
the MAGNUS package [9] which for the groups we considered is able to show that
the words are trivial in a matter of seconds. The presentation for the group derived
from the application of Poincare’s theorem to the Dirichlet domain as well as input
to Geomview for all the regions is available at [15]. Further information about the
representation of the fundamental groups in PSL(2,C) can be found in [2]. Al-
though Theorem 7.1 does not address the uniqueness of the manifolds associated
to the regions it provides a partial answer to the conjectures stated in [5].

The construction of a Dirichlet domain depends on the choice of a base point in
H3 and on the particular representation of the group in PSL(2,C). The methods
described above allow one to investigate how the geometry of the domain depends
on these choices. For example, the domain for X0 manifold with base point at the
origin and the subgroup with entries in the parameter family specified by [5] has
22 sides. The domain with base point at the origin and the group conjugated to
the form described in Section 3 has 28 sides. Figure 2 and 3 illustrate the output
to Geomview. Similar phenomena occur for other examples. The geometry of the
domain may be of consequence for the application of the program. For example,
the method described in Section 5 assumes all edge-cycles are of length three. Can
this be achieved for any discrete, torsion-free subgroup of PSL(2,C) provided the
basepoint is chosen appropriately? For instance, in the theory of Fuchsian groups
one can prove that, except for a set of measure zero, all base points for the construc-
tion of a Dirichlet domain result in a domain with edge-cycles with length at most
three [1]. One apparent obstruction to such a result for 3-orbifolds is the presence
of parabolic elements (for example z → z + 1, z → z + i). In general, with a proper
choice of basepoint, is possible for the Dirichlet domain of any co-compact discrete
subgroup of PSL(2,C) to satisfy the geometric conditions stated in Section 5?
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Figure 1. M3 - manifold associated to X3. Base point at the
origin, group conjugated as in Section 3

Figure 2. Vol3 - manifold associated to X0. Base point at the
origin, group same as in [GMT]

Figure 3. Vol3 - manifold associated to X0. Base point at the
origin, group conjugated as in Section 3
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