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AN ELEMENTARY PROOF OF THE UNCOUNTABILITY OF REAL
NUMBERS

Let R denote the set of real numbers and let N = {1, 2, 3, ...} be the set of nat-
ural numbers. The following fundamental property of real numbers is key in many
analytic arguments involving the real line:

Given a non-decreasing sequence s1, s2, ... with si < M and si, M ∈ R there
exists a smallest s∞ ∈ R with si ≤ s∞.

Our proof of the uncountability of real numbers has the following characteristics:
i) It is rigorous and yet avoids more elaborate constructions such as compactness

and measure.
ii) It follows most directly from this fundamental property of real numbers which

can also be used to prove connectedness and compactness of the unit interval. In
this manner, the proof avoids decimal expansions which are commonly used in an
elementary proof.

THE PROOF
Consider any f : N → R. We construct a strictly increasing sequence s1, s2, ...

of real numbers such that:
a) s1 < f(1)
b) For k ∈ N, if sk < f(k) then si < sk+f(k)

2 for all i ∈ N.

Assuming such a construction is possible we conclude that the sequence is bounded
above by f(1). Let s∞ be as above. If s∞ = f(k) then we have sk < s∞ = f(k)
since the sequence is strictly increasing. By construction si < sk+f(k)

2 therefore
s∞ ≤ sk+f(k)

2 < f(k). This is a contradiction.

We show how to construct such a sequence. Let s1 = f(1) − 1. Assume the
first n terms of the sequence have been chosen such that:

for k ≤ n, if sk < f(k) then si < sk+f(k)
2 for i ≤ n

It follows that if ε > 0 is sufficiently small sn + ε < sk+f(k)
2 for each of the finitely

many k’s we must consider. Let sn+1 = sn + ε. For k ≤ n, if sk < f(k) then by
construction:

si < sk+f(k)
2 for i ≤ n + 1

If sn+1 < f(n + 1) we have:

si ≤ sn+1 < sn+1+f(n+1)
2 for i ≤ n + 1

The si form the desired sequence.
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THE CAYLEY HAMILTON-THEOREM

Let k denote any algebraically closed field, M(n, k) the set of n× n matrices with
coefficients in k and GL(n, k) the set of n× n invertible matrices with coefficients
in k. We have the following elementary lemma:

Lemma. Given A ∈ M(n, k) there exists T ∈ GL(n, k) such that T−1 · A · T
is upper triangular.

Proof. Assume the lemma holds for A′ ∈ M(n − 1, k). A has at least one
eigenvector eλ since det(A− λI) = 0 has at least one solution. Complete {eλ} to a
basis for kn. If B is the matrix with this basis as columns, B−1AB has the form(

λ ∗
0 A′

)
where A′ ∈ M(n−1, k). By induction, there exists T ′ such that T ′−1A′T ′

is upper-triangular. Let T be: B · ( 1 0
0 T ′

)
¥

Let pA(x) be the characteristic polynomial of A (pA(x) = det(A− xI)).

The Cayley-Hamilton Theorem. (Ver. 1) For A ∈ M(n, k), pA(A) = 0.

Proof. Since T−1pA(A)T = pT−1AT (T−1AT ) it suffices to prove the theorem
for an upper-triangular matrix.

Let {ei} be the standard basis for kn, V0 = 0 and Vi = Span{e1, · · · , ei}.
If A is upper-triangular (A − λi) · ei = 0 mod(Vi−1) where λi = Aii. Since
(A− λi)Vi−1 ⊂ Vi−1 it follows that:

(A− λi)Vi = 0 mod(Vi−1).
For an upper-triangular A, pA(A) =

∏
1≤k≤n(A− λk). Thus,

pA(A)Vn = (A− λ1) · · · (A− λn)Vn = 0.¥

Let R be any commutative ring with an identity.

The Cayley-Hamilton Theorem. (Ver. 2) For A ∈ M(n,R), pA(A) = 0.

Proof. Let us first consider the special case of a domain. There exists an injec-
tion i : M(n,R) → M(n, kR) where kR is the algebraic closure of the quotient field
of R. In this case the statement follows from the previous version.

In general, there exists a surjection j : M(n,R′) → M(n,R) where R′ is an inte-
gral domain. Assuming such a j always exists consider a A′ ∈ M(n,R′) such that
j(A′) = A. Since pA has as coefficients polynomials in the entries of A it follows
that j(pA′) = pA. Then, since pA′(A′) = 0, we have j(pA′(A′)) = pA(A) = 0.

It remains to construct j. Consider 1 · Z ⊂ R. There exists a surjection
j′′ : Z → 1 · Z. Consider the polynomial ring Z[{xr}] having one indeterminate
for each r ∈ R. Extend j′′ to j′ : Z[{xr}] → R by mapping xr to r. This allows us
to define j : M(n,Z[{xr}]) → M(n,R). ¥
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GEOMETRIZATION OF CLASSICAL MECHANICS FOR MOTION IN ONE
DIMENSION

1. Preliminaries from differential geometry

Let U be an open subset of Rn. The tangent space at a point x ∈ U (denoted
by Tx(U)) is a copy of Rn. We assume that Tx(U) ∩ Ty(U) = ∅ for distinct x and
y. Let ei denote the standard basis for Rn.

Definition. A pseudo-riemannian metric on U is a non-degenerate inner
product 〈, 〉x on Tx(U) for each x ∈ U such that gij(x) = 〈ei, ej〉x are smooth
functions of x. A pseudo-riemannian metric is riemannian when 〈v, v〉x > 0 for
v 6= 0 ∈ Tx(U).

Given a path γ : [t1, t2] → U one may define the length of gamma as:

L(γ) =
∫ t2

t1

√〈γ′(t), γ′(t)〉γ(t)dt.

In this section we will only consider riemannian metrics. In addition, we assume
that γ′(t) never vanishes. Given x, y ∈ U , in general it is not true that there exists
γ such that L(γ) is minimal. For example, consider the R2 − pt with the standard
inner product. However, we have the following (see [MT]):

Theorem. Given x ∈ U there exists a neighborhood V of x such that any two
points in V may be joined by a unique (up to parametrization) path γ such that
L(γ) is minimal.

Definition. A path γ : (a, b) → U is a geodesic if γ′ has unit lenght and for
any t ∈ (a, b) there exists a neighborhood V of t such for t1, t2 ∈ V , γ restricted to
[t1, t2] is the shortest path between γ(t1) and γ(t2).

There is an alternate characterization of geodesics as paths with no acceleration.
This involves the concept of a connection to which we turn to next.

Definition. Given a path γ : (a, b) → U a vector field along γ is a smooth
map v : (a, b) → Rn.

For example, given a smooth γ : (a, b) → U we may define v as v(t) = γ′(t). In
general, v(t) may be written as

∑
i vi(t) · ei where ei is the constant map to the

standard basis vector.

Definition. An affine connection is a choice of n3 smooth functions {Γk
ij}i,j,k=1,..,n.

The Γk
ij ’s are called the Christoffel symbols.

Given an affine connection one can define the derivative Dv
dt of a vector field v

along γ as follows:
Dv
dt =

∑
k(dvk

dt +
∑

i,j γ′i · Γk
ij · vj)ek
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A vector field v is parallel along γ if Dv
dt = 0. Using theorems on existence

and uniqueness of solutions to linear differential equations (see for example [H]) we
have the following theorem:

Theorem. Given v0 ∈ Tγ(0)(U) there exists a unique vector field v parallel
along γ with v(0) = v0.

v is said to be obtained from v0 by parallel translation. A connection is said
to be compatible with a metric if given v0, w0 ∈ Tγ(0)(U), 〈v0, w0〉 = 〈v(t), w(t)〉.
In particular, lenght of tangent vectors does not change under parallel translation.
One of the fundamental results of riemannian geometry is that there is a unique
connection which is compatible with a given metric (see for example [MT]):

Theorem. Given a metric on U there is a unique connection compatible with
this metric. If gij is the inverse of gij then:

Γk
ij = 1

2

∑
r(∂igjr + ∂jgir − ∂rgij) · grk

It is natural to ask when Dγ′

dt = 0 along γ. Using the definition of derivative along
γ we see that γk satisfies the differential equation:

(d2γk

dt2 +
∑

i,j
dγi

dt · Γk
ij · dγj

dt ) = 0

Given γ(0) and γ′(0) a unique solution γ(t) exists for sufficiently small t. We
also have the following theorem (see [MT]):

Theorem. A path γ is a geodesic iff Dγ′

dt = 0 along γ.

2. An application to newtonian mechanics

Newtonian mechanics in one dimension, as interpreted in this text, is as follows.
A physical configuration specifies a smooth function V (x) defined for all relevant x.
V (x) is known as the potential of a system. Newton’s equations of motion specify
that the motion of a particle with mass m is governed by:

d2x
dt2 = − 1

m · dV (x)
dx

We propose to investigate whether such a differential equation arises in a geomet-
ric context. More precisely, given an open subset of R2 with co-ordinates (x, t) and
a function V (x) can one define a metric gij such that geodesics (when parametrized
in terms of t) satisfy the equation of motion stated above? In other words, can one
encode the physical configuration in the geometry of space-time? Of course, there
are several immediate restriction of the possible geodesics. Recall that to specify
a geodesic one must specify both the position in space-time as well as a tangent
vector. The tangent vector may be interpreted as giving the initial velocity to the
particle. Therefore, we must exclude the tangent vector with just an x component
as this vector corresponds to motion with infinite velocity. We prove the following
result:

Theorem. Given an open set U ⊂ R2 with co-ordinates (x, t) and a smooth
nonvanishing function V (x) with V (x) > 0 there exists a metric gij on U with the
following property: Given (x0, t0) ∈ U and (a, b) ∈ T(x0,t0)(U) with b > 0 there
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exists a neighborhood U ′ of (x0, t0) such that if γ is a geodesic with γ(0) = (x0, t0)
and γ(0)′ = (a, b) it may be reparametrized as (x(t), t) where:

d2x
dt2 = − 1

m · dV (x)
dx

Furthermore, gij has the form:

(
m2

4V 2(x) 0
0 m

2V (x)

)

Proof. Let us first compute the Christoffel symbols associated to the metric. A
direct computation reveals that:

Γx
xx = −dV (x)

dx · 1
V (x) ; Γx

xt = Γx
tx = 0; Γx

tt = 1
m · dV (x)

dx ;

Γt
xx = 0; Γx

xt = Γx
tx = −dV (x)

2dx · 1
V (x) ; Γx

tt = 0;

The equations for geodesics are:

d2x
ds2 + (−dV (x)

dx · 1
V (x) )(

dx
ds )

2
+ ( 1

m · dV (x)
dx )( dt

ds )
2

= 0
d2t
ds2 + 2(−dV (x)

2dx · 1
V (x) )(

dx
ds )( dt

ds ) = 0

Choose a geodesic γ(s) satisfying the initial conditions (we use s instead of t as
the parametrizing variable since t is now one of the co-ordinates ). Since dt

ds 6= 0 at
(x0, t0) we can express s in terms of t in some neighborhood U ′ of (x0, t0). Using
the chain rule we can rewrite the geodesic equations:

(d2x
dt2 )( dt

ds )
2

+ (dx
dt )( d2t

ds2 ) + (−dV (x)
dx · 1

V (x) )(
dx
dt · dt

ds )
2

+ ( 1
m · dV (x)

dx )( dt
ds )

2
= 0

d2t
ds2 + 2(−dV (x)

2dx · 1
V (x) )(

dx
dt )( dt

ds )
2

= 0

Replacing d2t
ds2 in the first equation by the expression given in the second equation

we have the following differential equation for x in terms of t:

( dt
ds )

2 · (d2x
dt2 + 1

m · dV (x)
dx ) = 0

Since dt
ds 6= 0 in U ′ the conclusion follows. ¥

Now, assume γ(t) = (x(t), t) is a smooth path in U such that: d2x
dt2 = − 1

m · dV (x)
dx .

At any point (x0, t0) if we choose a tangent vector (x′(t), 1) the preceding theo-
rem allows us to conclude that up to parametrization γ coincides with a geodesic.
Therefore we have the following corollary:

Corollary. Given γ(t) = (x(t), t) where x(t) is a satisfies Newton’s equation γ
is up to a parametrization a geodesic. ¥

We now turn to the Lagrangian formulation of classical mechanics. For a particle
with mass m moving in one dimension with a potential V (x) define the Lagrangian
as:

L(a, b) = m
2 · b2 + V (a)

Given any smooth x(t) : [t1, t2] → R we look at the following integral (called the
action):

∫ t1
t0

L(x(t), dx
dt )dt =

∫ t1
t0

[m
2 (dx

dt )
2 − V (x)]dt
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The principle of least action asserts that the physical path minimizes this
action. More precisely, a physical path satisfies the Euler-Lagrange differential
equation (see, for example [CV]):

d
dt

∂L
∂b = ∂L

∂a

We will say that such a path satisfies the necessary condition for an extremum.
We propose an alternate action principle based on our geometric formulation of
one-dimensional motion. As stated above, a path γ(s) on a Riemannian manifold
is a geodesic (up to parametrization) if it locally minimizes length. By a direct
argument (or using the methods developed in [MT]) it follows that such a path
satisfies the necessary condition for an extremum of the integral:

∫ s1

s0

√
gxx · (dx

ds )2 + gtt · ( dt
ds )2ds =

∫ s1

s0

√
m2

4V 2(x) · (dx
ds )2 + m

2V (x) · ( dt
ds )2ds

Now, if we retrict to paths which can be reparametrized as functions of t we
obtain the following theorem:

Theorem. Given (x0, t0) and (x1, t1) the solution to Newton’s equation is a path
which satisfies the necessary condition for the extremum of:

∫ t1
t0

√
m2

4V 2(x) · (dx
dt )2 + m

2V (x)dt

Furthermore, if (x0, t0) and (x1, t1) are sufficiently close there exists a unique
γ(t) with γ(t0) = x0, γ(t1) = x1 which minimizes the value of the above integral.
¥

Remark: The author does not know whether the theorems of this section gener-
alize fully to two or three dimensional motion. Certainly, the form of the metric is
very special to the case of one-dimensional motion.
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A GEOMETRIC PERSPECTIVE ON SPACE-TIME

Consider R4 viewed with co-ordinates (x, y, z, t). A motion of a physical body
can be described by specifying for each moment in time the space co-ordinates of
this body. In general, consider some subset Sphys of curves γ : R → R4 for which
there is a reparametrization γ̃ such that γ̃(t) = (f(t), t) where f(t) is a smooth
function of t. We say that γ represents a physical path if γ ∈ Sphys

Definition. A choice of a reference frame is a pair (R4, Sphys). A change
of a reference frame is a diffeomorphism φ : (R4, Sphys) → (R4, S′phys) with the
property: φ(Sphys) = S′phys

Consider any φ : R4 → R4. Given a curve γ : R → R4, φ ◦ γ defines another
curve on R4 with (φ ◦ γ)′i =

∑4
k=1(

∂φi

∂xk
) · γ̇k(t). Therefore, for each r ∈ R4, we have

a mapping φ∗ : Tr(R4) → Tφ(r)(R4).

Definition. Let R4 have an inner product 〈, 〉. An isometry is a diffeomor-
phism φ : R4 → R4 such that if v, w ∈ Tr(R4) then 〈w, v〉 = 〈φ∗w, φ∗v〉.

In the previous section we provided a mathematical model for the description of
solutions to Newton’s equations as geodesics on R4. One can show (see for example
[KN]) that the image of a geodesic under an isometry is still a geodesic. Thus, if a
change of reference frame is assumed to be an isometry, a solution to Newton’s law
in one frame may be interpreted as a solution in another. In the present section we
specialize to the case where no forces are present. We would like to use the metric
structure of space-time to completely characterize a physical situation. We make
the following assumption:

Given a reference frame, the underlying R4 is equipped with an inner
product such that the paths of physical bodies are geodesics. If a map
φ : R4 → R4 is an isometry it is change of reference frame.

We impose several additional constraints on the metric which arise from intu-
ition. First we assume that physical laws do not change with time. Thus, the
following transformation is an isometry:

a) Displacements in time: (x, y, z, t) 7→ (x, y, z, t + t0)
In addition, we assume space is Euclidean in the sense that the following are

isometries:

b) Rotations and reflections and translations in the space co-ordinates:
(x, y, z, t) 7→ (A · x + x0, A · y + y0, A · z + z0, t) where A ·AT = I

Finally, we suppose that:
c) The path γ(t) = (0, 0, 0, t) is in Sphys
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For each pt ∈ R4 let g(pt) be a 4 by 4 matrix with gij(pt) = 〈ei, ej〉pt where ei

is the standard basis of R4. A diffeomorphism φ : R4 → R4 is an isometry exactly
when (φ∗)T · g(φ(pt)) · φ∗ = g(pt). Here, by abuse of notation, we let φ∗ represent
the matrix of the linear map in terms of the standard basis.

Theorem. Up to a constant, the only metric on R4 such that all isometries
are changes of reference frame that satisfy the additional conditions a), b) and c)
is the constant diagonal metric: g11 = g22 = g33 = 1, g44 = −c2 where c 6= 0.

Proof. First, we show that the metric must be constant. Let pt1, pt2 be any
two points in R4. If φ is a displacement in space-time with φ(pt1) = pt2 we have
(φ∗) = I. Since φ is a composition of translations in space and time it is an isome-
try so we must have g(pt1) = g(pt2).

Next, according to b), the linear map φ with φ(e1) = −e1, φ(e2) = e2, φ(e3) = e3

and φ(e4) = e4 is an isometry. We have φ∗ = φ, therefore:
〈e1 + e4, e1 + e4〉 = 〈φ∗(e1 + e4), φ∗(e1 + e4)〉 = 〈−e1 + e4,−e1 + e4〉

This implies 〈e1, e4〉 = −〈e1, e4〉. We conclude that g14 = 0 = g41. Similarly,
g24 = g42 = g34 = g43 = 0. The matrix g must have the form:




g11 g12 g13 0
g21 g22 g23 0
g31 g32 g33 0
0 0 0 g44




Let φ be a rotation taking e1 to e2. We have:
g11 = 〈e1, e1〉 = 〈φ∗e1, φ

∗e1〉 = 〈e2, e2〉 = g22

Similarly, g11 = g33. Now, let φ be a rotation taking e1 to e1+e2√
2

. Then:

g11 = 〈e1, e1〉 = 〈φ∗e1, φ
∗e1〉 = 〈 e1+e2√

2
, e1+e2√

2
〉 = g11 + 2g12

We conclude that g12 = g21 = 0. Also, g31 = g13 = g23 = g32 = 0. Thus, g is a
diagonal matrix. After multiplying g by a constant, we can assume that g11 = 1.

We claim that g44 < 0. Suppose g44 = c2 > 0. Let φ be the linear map such that
φ(e1) = e4

c , φ(e2) = e2, φ(e3) = e3 and φ(e4) = ce1. φ is an isometry which maps
the path γ(t) = (0, 0, 0, t) to the path (ct, 0, 0, 0). However, φ ◦ γ /∈ Sphys since it
cannot be reparametrized as a function of time . We conclude that g44 = −c2 for
some c 6= 0. ¥

With respect to this inner product we have three types of velocity vectors:
〈v, v〉 > 0, 〈v, v〉 < 0 and 〈v, v〉 = 0. A vector ae1 + be2 + de3 + he4 has norm
negative, zero, or positive respectively when:

√
a2+b2+d2

|h| < c,
√

a2+b2+d2

|h| = c or
√

a2+b2+d2

|h| > c.

Thus, it represents motion in space with speed c. The motion of the origin in one
reference frame may be represented by a path on the t-axis. Since the metric is
constant this path in a different reference frame (x′, y′, z′, t′) may be viewed as a
linear function of t′. Thus, with respect to each other, the two reference frames
are moving with constant velocities of magnitude < c. One can show that given
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an object moving with speed < c in one frame there always exists another frame
where the object is at rest. Motion with speed > c is unphysical since there always
exist frames where the path is no longer a function of time. We have the following:

Corollary 1. Objects moving with speed c move with the same speed in all
reference frames. Furthermore, they are the only objects which have this property.

The isometries which preserve this metric are known as Lorentz transformations.
Usually, these transformations are derived from the assumption that the speed of
light is constant in all frames. Our formulation derives these transformations from
a different set of assumptions. From this viewpoint if Maxwell’s equations have the
same form in all reference frames then the speed of electromagnetic waves must be
invariant. In such case we have:

Corollary 2. The constant c equals the speed of light in a vacuum.

Remark. Before the special theory relativity was accepted most physicists be-
lieved that transformation laws between two reference frames moving at constant
velocity v with respect to each other had the form: x 7→ x + vt, t 7→ t. However,
such transformations are not isometries with respect to any constant metric since
for v 6= 0:

(
1 v
0 1

)
·
(

a b
c d

)
·
(

1 0
v 1

)
=

(
a + vc + vb + v2d b + vd

c + vd d

)
6=

(
a b
c d

)
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