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Over the summer we embarked on a brief introduction to various concepts
in algebraic geometry. We used the text Ideals, Varieties, and Algorithms, by
Cox, Little and O’Shea, as our main source, supplementing as needed. For this
paper, we will assume the reader has some knowledge of algebraic geometry.

We began by assuming an algebraically closed field k, over which we defined
a polynomial ring, k[x1, . . . , xn]. We defined an affine variety, and soon related
this geometric structure to that of an ideal. Ideals and varieties provide a
correspondence between algebra and geometry, one which we will come back to
later. After learning the definitions of these two structures, we aimed to answer
some general questions about them, posed by the text [1].

(1) Can every ideal be written as 〈f1, . . . , fs〉 for some f1, . . . , fs in
k[x1, . . . , xn]?

(2) Given an ideal I, and f ∈ k[x1, . . . , xn], is there an algorithm to
determine whether f ∈ I?

(3) Given a parametrization of a variety V ⊂ kn

x1 = g1(t1, . . . , tm),
...

xn = gn(t1, . . . , tm),

can we find a system of polynomial equations (in the xi) which define
the variety?

(4) Can we find all the common solutions in kn of a system of poly-
nomial equations?

f1(x1, . . . , xn) = · · · = fs(x1, . . . , xn) = 0

(5) Given f1, . . . , fs, what is the relationship between 〈f1, . . . , fs〉
and I(V(f1, . . . , fs)) (which is the ideal of the variety defined by
f1 = . . . = fs = 0)?

The first two questions are answered using Hilbert’s Basis Theorem and with
the construction of Groebner bases. The third and fourth questions are solved
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by the study of elimination theory, and the last problem is the motivation for
the Nullstellensatz, or the Algebra-Geometry dictionary, which maps out the
exact relationship between ideals and varieties.

As Groebner bases (defined below) play a significant role in all the questions,
our focus lied in understanding their existence and construction. Hilbert’s Basis
Theorem proves the existence of a Groebner basis for all ideals, thus answering
the first question in the affirmative, by stating that every ideal I ⊂ k[x1, . . . , xn]
has a finite generating set.

Another important consequence of the Hilbert Basis Theorem is the Ascend-
ing Chain Condition for ideals, which states that every increasing sequence of
ideals

I1 ⊂ I2 ⊂ I3 ⊂ · · ·
eventually terminates, meaning there is some N ≥ 1 such that

IN = IN+1 = · · · .

This idea will become important when we come to the Nullstellensatz.
The answer to the second question is straightforward if we work in a poly-

nomial ring with only one variable. In this case, the division algorithm can be
used to determine ideal membership, as the remainder of division by an ideal
is unique. If we use a multivariable polynomial ring, the situation gets more
complex. In k[x1, . . . , xn], the division algorithm is defined using a monomial
ordering. However, it lacks the nice property of giving a unique remainder,
which enabled it to determine ideal membership in the single variable case. The
solution to this problem is to make the generators of the ideal into a Groebner
basis. If we do so, it turns out that the division algorithm does indeed allow us
to determine ideal membership.

Strictly defined, a Groebner basis is a finite subset G = {g1, . . . , gs} of an
ideal I such that

〈LT(g1), . . . ,LT(gs)〉 = 〈LT(I)〉.
LT is shorthand for the leading term of a polynomial, which is defined once a
monomial ordering is fixed.

If we take {f1, . . . , fs} as an arbitrary set of generators for I we can cre-
ate elements of I that are the result of syzygies on the leading terms of the
generators. These are known as S-polynomials, denoted S(fi, fj); they are the
polynomial result of applying a syzygy that causes the leading terms of fi and
fj cancel. Because of this cancellation, S-polynomials can be indivisible by the
{f1, . . . , fs}, leading to non-zero remainders, even though they are elements of
I.

Groebner bases avoid this problem as they are a set of generators whose
leading terms generate the leading terms of every element in I. This means there
can be no polynomials whose leading terms are not divisible by the generators in
I. In other words, when we use a Groebner basis, there can be no S-polynomials
whose remainder on division by I is nonzero.

In fact, this is exactly the nature of the algorithm used to generate a Groeb-
ner basis for I. Buchberger’s algorithm calculates all the S-polynomials for the
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given set of generators of I, and then computes their remainders from division
by I. Those non-zero remainders get appended to the list of generators, (and
correspondingly, more S-polynomials calculated.) This process continues until
no non-zero remainders occur, which indicates that all the S-polynomials are
divisible by the set of generators. This indicates that the set of generators is a
Groebner basis. An important point is that this algorithm always terminates.

Improvements of Buchberger’s algorithm involve decreasing the number of
S-polynomials to check, by removing any redundant ones. S-polynomials, and
more generally, syzygies, will come up again when we discuss modules and
resolutions. We also briefly looked at a paper by Pottier [3] which outlined
another algorithm for generating a Groebner basis.

Another important process is reduction of a Groebner basis. A Groebner
basis G is reduced if ∀p ∈ G,

(i) the leading coefficient of p is 1, and

(ii) no monomial of p lies in 〈LT(G− {p})〉.

In general, given any ideal I 6= {0}, once we choose a monomial ordering,
I has a unique reduced Groebner basis. Thus, we have the answer to the
second question: the division algorithm in combination with a Groebner basis
determines ideal membership.

Groebner bases are also involved in the solutions to the remaining questions.
The next two questions are the motivation for the study of elimination theory,
which holds over any algebraically closed field, although some of the theorems
we studied were proved only over C.

The lth elimination ideal, Il, is defined for I = 〈f1, . . . , fs〉 ⊂ k[x1, . . . , xn],
where

Il = I ∩ k[xl+1, . . . , xn].

The Elimination Theorem states that the Groebner basis of Il, for 1 ≤ l ≤ n, is

Gl = G ∩ k[xl+1, . . . , xn],

where G is the Groebner basis of I with respect to the lexicographical monomial
ordering, and where x1 > x2 > · · · > xn. Elimination is used to implicitize
equations, and this is the process used to get rid of parameters, as described in
the third question.

If we work with the varieties of the ideals instead of the ideals themselves, we
find that not all the solutions in the variety of the lth elimination ideal, V(Il),
can be completed to ones in V(I). The Extension Theorem gives the condi-
tions necessary for a partial solution to extend to one in V(I). This theorem
states that if we rewrite each polynomial in I such that the polynomial in the
last l variables is the leading “coefficient” of each polynomial, then extension
fails when all of these leading coefficients vanish simultaneously. The Closure
Theorem focuses on the varieties themselves, describes the relationship between
V(Il) and the projection map πl(V ) which consists of exactly those partial solu-
tions of V(Il) which can be extended to V(I). An important aside is that if we
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choose to work in projective space, an analogous, but slightly different theorem
called the Projective Elimination Theorem states that all partial solutions will
always extend to complete solutions. We will come back to projective spaces
later.

Elimination theory also aids in answering the fourth question, as we can
use the implicitized polynomial to solve for partial solutions. The Extension
theorem then tells us which of these solutions can be extended to complete
ones. Briefly, we also studied singular points and envelopes of a variety, which
are an application of elimination theory. Finally, we learned about resultants,
which provide an alternative method of proving the theorems of elimination
theory.

The proof of the Closure Theorem is dependent on the Nullstellensatz. In
fact, V(Il) is the Zariski closure of πl(V ). This final topic rounds out our study
of ideals and varieties by showing the relationship between these two structures.
Until now, our focus has been algebraic, on computing and manipulating ideals.
Studying the Nullstellensatz revealed the geometric picture, and introduced the
radical ideal,

√
I, which is equal to I(V(I)) for any ideal I. This allows for

the creation of a bijection between radical ideals and varieties. Further corre-
spondences can be made, notably the Descending Chain Condition for varieties,
which is the inclusion-reversing result of the Ascending Chain Condition of ide-
als mentioned above. A relationship exists between irreducible varieties and
prime ideals, and ideal sums, products, intersections, and quotients also have
analogous geometric structures.

We will be doing some of our computations in n-dimensional projective space
over a field k, Pn(k). We define this as the set of equivalence classes of ’∼’ on
kn+1 − {0}, where (x′0, . . . , x

′
n) ∼ (x0, . . . , xn) if there exists a λ such that

(x′0, . . . , x
′
n) = λ(x0, . . . , xn). So Pn(k) = (kn+1)− {0}/ ∼.

Since Pn(k) is the union of n + 1 copies of the affine space kn (Pn(k) =⋃n
i=0 Ui, where Ui = {(x0, . . . , xn) ∈ Pn(k) : xi 6= 0}) it makes sense to want to

define varieties in this new context. If we look at a polynomial f ∈ k[x0, . . . , xn],
the variety V(f) only makes sense if f is homogeneous. So we can define a
projective variety, V(f0, . . . , fs), in the same way as a variety of the affine space
k[x0, . . . , xn], but with the extra stipulation that the polynomials f0, . . . , fs are
all homogeneous. We can also convert a projective variety into its corresponding
affine variety by taking the intersection of the variety with one of the affine
spaces whose union makes up Pn(k). This will give us an affine variety, V , in
kn.

A relation similar to that in the affine case exists between ideals and va-
rieties. Obviously an ideal in k[x0, . . . , xn] cannot contain only homogeneous
polynomials even if the generating polynomials are homogeneous since adding
two homogeneous polynomials does not always result in a homogeneous poly-
nomial (i.e. if the two polynomials have different degree). However the affine
definition of an ideal I ∈ k[x0, . . . , xn] can be extended to the projective case
by adding the requirement that for each f ∈ I, the homogeneous components
of f are in I also.

From this definition of a projective ideal we can establish the obvious speci-
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fications for such an ideal. For example, an ideal, I, is homogenous if and only if
I has a basis of homogeneous polynomials. This assertion follows directly from
our definition of a homogeneous ideal and the use of the Hilbert Basis Theorem.
We can also show that the reduced Groebner bases of a homogenous ideal con-
sists of homogeneous polynomials. These two properties of homogeneous ideals
lead us to the relations between projective varieties and homogeneous ideals.
Given the maps I and V, the homogeneous ideal I ⊂ k[x0, . . . , xn], and the
projective variety V ⊂ Pn(k)–where:

V(I) = V(f1, . . . , fs)

if I = 〈f1, . . . , fs〉.

I(V ) = {f ∈ k[x0, . . . , xn] : f(a0, . . . , an) = 0, with (a0, . . . , an) ∈ V }.

Then V(I) is a projective variety and I(V ) is a homogeneous ideal. In addition,
if k is an algebraically closed field, then these two maps bijections and inverses
of each other by the projective version of the Nullstellensatz (provided V(I) is
nonempty, and I 6= 〈x0, . . . , xn〉).

To get a better grasp on the properties of degree and dimension we delved
into the topic of modules. The notion of modules and of varieties and ideals are
in fact related. Given a variety V ⊂ k[x1, ..., xn], V corresponds algebraically to
the ideal I(V ) = 〈g1, . . . , gs〉, where the gi’s form a Groebner basis of V . In this
case I = I(V ) is a simple module of the polynomial ring k[x1, . . . , xn]. Given a
basis of the ideal, f1, . . . , ft,

I = a1f1 + · · ·+ atft,∀ai ∈ k[x0, . . . , xn].

So we see that the ideal I satisfies all of the requirements of a module over
k[x0, . . . , xn]. This seems somewhat arbitrary, after all whether we call it a
module or an ideal it still has the same structure. However, by treating I as a
module we can work with module homomorphism on modules over the same ring
as I. Given a ring, R, and two R-modules N and M , if N = Rl and M = Rk

for some l, k ∈ N, then any homomorphism ϕ : N → M is just multiplication
by an l×k matrix. This follow from the one dimensional case, where if we have
a homomorphism θ : R→ R, then ∀a ∈ R

θ(a) = θ(a · 1) = aθ(1).

This can be done because R = 〈1〉. So given θ(1) = f , θ is defined simply as
multiplication by f . We can generalize to the case of Rl and Rk by treating
the generators as the unit vectors e1, . . . , el and e1, . . . , ek, where ei is defined
as a column vector with a 1 in the ith row and zeros in all of the other rows.
With our original homomorphism ϕ we see that the homomorphism can be
completely defined by the values of ϕ(ei) since these column vectors generate
Rl. Since ϕ is a map to Rk, ϕ is just matrix multiplication. Thus it is pretty
straightforward to deal with homomorphisms between the free modules of the
form Ri, i ∈ (N), free here meaning having a linearly indpendent basis. Things
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are not so simple when we deal with the case R = k[x1, . . . , xn] and a module
that is generated by more than two elements of degree greater than zero in R.
For example looking at the module M = 〈x2, y3〉 ⊂ k[x, y], a homomorphism
cannot be just an arbitrary assignment on the generators of M. If we define a
homomorphism, ϕ : M → R by ϕ(x2) = y and ϕ(y3) = x we get the undesirable
result:

ϕ(y3x2 − x2y3) = ϕ(0) = 0.

ϕ(y3x2 − x2y3) = ϕ(y3x2) + ϕ(−x2y3) = y3ϕ(x2)− x2ϕ(y3) = y4 − x3 6= 0.

So we see that ϕ is not properly defined in this case. If we generalize this
example we see that if we are not dealing with a free module then we cannot
simply define a homomorphism by mapping the basis elements of a module.
Let M be any R-module generated by two or more elements of R, given two
such elements f1 and f2 we have an automatic relation f2f1 − f1f2 = 0. So to
understand any non-free finitely generated module we must know the relations
of its generators.

Given a finitely generated module M ⊂ Rt, and a set of generators of M ,
f1, . . . , fs, any relation between generators will have the form:

a1f1 + · · ·+ asfs = 0,with a1, . . . , as ∈ Rt

We see that the set of all such relations is just the set of syzygies on the gener-
ators. This turns out, not surprisingly, to be a submodule of M (a quick check
reveals that it’s closed under addition and scalar multiplication) hence is also
finitely generated. So determining the generators of the syzygy module will give
us all of the information we need about the relations on the generators of M .

In order to compute the generators of a syzygy module, we must first be able
to find a Groebner basis in terms of modules. Looking at Buchberger’s algorithm
for ideals, we only need to modify our monomial order to account for the position
of a term as well as its value, and to modify our notion of the S-polynomial to
allow for column vectors. Both of these tasks can be worked out easily using
the notion of basis vectors, and the resulting changes to Buchberger’s algorithm
gives us a method for determining a Groebner basis for a module. With such a
basis we can compute a Groebner basis for the syzygy module using Schreyer’s
Thm.

With this method in hand we can start to use exact sequences to learm
more about the structure of a finitely generated module M . Given a sequence
of R-modules and homomorphisms

· · · →Mi+1
ϕi+1−→ Mi

ϕ→Mi−1
ϕi−1−→ · · ·

the sequence is said to be exact at Mi if the image of ϕi+1 is equal to the kernel
of the map ϕi. The sequence is exact if it is exact at all of the modules but the
first and last.

Given a finitely generated R-module, M , we can then begin to build a se-
quence where every module is a free module besides M and which is exact. First
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we define a trivial homomorphism mapping all of M to zero. Then we can define
a homomorphism, ϕ0 : Rs0 →M defined by multiplication by the matrix(

g1 g2 · · · gs
)

where the gi’s form a Groebner basis of M. The image of ϕ0 is M since M
consists of all f ∈ R of the form

f = a1g1 + · · ·+ asgs, (a1, . . . , as) ∈ Rs0 .

Thus textrmim(ϕ0) is equal to the kernel of the trivial homomorphism from M
to 0. If we take a look at the kernel of ϕ0, we see that this is just the syzygy
module of M . Using Schreyer’s theorem we can then compute a Groebner basis
for the syzygy module, denoted by h1, . . . , ht where hi ∈ Rs0 for each i. We
define a homomorphism ϕ1 : Rs1 → Rs0 by multiplication by the matrix h11 · · · h1s1

...
. . .

...
hs01 · · · hs0s1


where the hij ’s are the ith entries of the jth syzygy generator. Since we have a
Groebner basis of the first syzygy module we can use Schreyer’s theorem again
to compute a Groebner basis of the second syzygy module, the syzygy module
for the first syzygy generators. We can then create another homomorphism, ϕ2

from the second syzygy module to the first. If we keep adding modules and
homomorphisms in this manner we get an exact sequence

· · · ϕ3−→ Rs2
ϕ2−→ Rs1

ϕ1−→ Rs0
ϕ0−→M → 0

in which each ϕi, except ϕ0, is matrix multiplication by a matrix whose columns
are the generators of the syzygy module of the columns of the ϕi−1 matrix. So
our sequence is exact because the image of ϕi is by construction the kernel of
ϕi−1. The sequence is finite if the kernel of ϕi, for some i, is a free module.
At this point, we can define the homomorphism ϕi+1 : Rsi+1 → Rsi in the
usual manner so that im(ϕi+1 is equal to the syzygy module ker(ϕi). Since
ker(ϕi+1) = 0, from the fact that the generators of im(ϕi+1) are linearly inde-
pendent, we can make the sequence exact at Ri+1 by defining a trivial homo-
morphism of identity from 0 to Ri+1. Thus we will have a finite exact sequence
of free modules describing the module M . All free resolutions are not necessar-
ily finite, but since we will be working over the polynomial ring, k[x1, . . . , xn],
we can use Hilbert’s Syzygy Theorem, which states that all free resolutions of
finitely generated k[x1, . . . , xn]-modules are finite of length at most n. Hence
the last free module in our free resolution outlined above will be Rsn .

If we work in projective space we can get even more information about a
module. First, we must work with homogeneous modules, similar to homoge-
neous ideals, these are generated by vectors of homogeneous polynomials, and
have Groebner bases that are made up of such vectors. With R = k[x0, . . . , xn],
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R has a graded structure—meaning that we can represent R as the direct sum
of the additive groups of homogenous polynomials of the same degree. If we let
Rt represent the group of polynomials of degree t, then we have

R =
⊕
t∈N

Rt.

We can see the graded structure on a homogeneous module M , by defining Mt

as (Rt)s ∩M , where M ⊂ Rs. By the definition of a module, the Mt’s will also
be additive groups and

M =
⊕
t∈N

Mt.

We can also define homomorphisms between homogeneous modules by specify-
ing that a graded homomorphism sends each graded segment of a module to
its own graded segment. In other words, a graded homomorphism maintains
the structure of a graded module—if ϕ : M → N is a graded homomorphism
between two graded modules, then ϕ(Mt) ⊂ Nt+d for all t. In this case, we see
that ϕ sends degree t polynomials to degree t+ d polynomials, and ϕ is said to
have degree d.

We can encode information about the degree of a homomorphism into its
domain by introducing the notation

M(d) =
⊕
t∈Z

Md+t,

where the module M(d) is simply M offset by degree d. Thus we can turn our
homomorphism ϕ into a degree zero homomorphism by specifying its domain
as M(−d). Since M(−d)t = Mt−d, we have ϕ(M(−d)t) ⊂ Nt. From our notion
of a free resolution we can now derive the notion of a graded resolution—a
free resolution of a homogeneous module consisting in free modules and graded
homomorphisms of degree zero. Fortunately, Hilbert’s Syzygy Theorem also
holds for graded resolutions, so every finitely generated homogeneous module
has a finite graded resolution of length at most n.

So given such a module, we have its graded resolution

0→ R(dn)sn
ϕn→ · · · ϕ1→ R(d0)s0

ϕ0→M → 0.

With this we can determine the Hilbert function, the function determining
the dimension of M over the field k (since in our case M is a module over
k[x0, . . . , xn]). First the dimension of the free modules will be defined by

HR(d)(t) = dimkR(d)t =
(
t+ d+ n

n

)
,

which is just a simple adaptation of the R(0) case. Then using the fact that
with a linear map θ : V → W , dimk(V ) = dimk(ker(θ)) + dimk(im(θ)), we see
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that the alternating sum of the dimensions of the modules in our resolution
equals zero. Hence for our graded resolution above

HM (t) = dimkMt =
n∑
i=0

(−1)idimk(R(di)si)t.

In this context, the formula gives us not only the Hilbert function, but the
Hilbert polynomial as well. It is useful to obtain this polynomial because it
provides us with some useful information

2

. If we have a homogeneous ideal I ⊂ k[x0, . . . , xn] that determines the variety
V = V(I), then the degree of the Hilbert polynomial of R/I is the dimension of
the variety, and the leading coefficient is of the form D/d! where d = dimV and
D is the degree of V . So determining the Hilbert polynomial answers many of
our original questions about varieties and ideals.

The experimental section of our project began with the study of the rational
normal curve. This is a curve in projective n-space, k[x0, . . . , xn], where the
variables x0, . . . , xn are parametrized by s and t as follows:

x0 = sn x1 = sn−1t . . . xn−1 = stn−1 xn = tn

The curve is then defined by all the relations between the {xi}. The set of these
relations can be generated by the set of determinants of the 2× 2 minors of the
following 2× n matrix: (

x0 x1 . . . xn−1

x1 x2 . . . xn

)
This is a result which we took for granted.

We used Macaulay 2 to perform computations involving this ideal. First, we
verified that these relations form a Groebner basis for the ideal they generate.
Then, we studied the resolutions of this curve for different values of n, and tried
to come up with a general pattern for the nth case.

We noticed that the generators of the first syzygy module are encoded in
the 3×n matrices created by appending each of the 2 rows in turn to the 2×n
matrix shown above. By taking the 3×3 minors of either of these matrices, and
expanding their determinants along the bottom row, we found that each minor
gave a generator for the first syzygy module (although some of these generators
were redundant and unnecessary). We hypothesized that this pattern continues,
where the ith syzygy module is generated by the determinants encoded in the
(i+2)×n matrices. These are created recursively by appending each row in turn
to each of the (i− 1)th syzygy module generating matrices. This process should
terminate with the creation of n × n matrices, which must then correspond to
the final syzygy module. As we always start with 3 × n matrices for the first
syzygy module, and end with the n× n matrices, this implies that the rational
normal curve in Pn has a resolution of length n− 2.
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We also looked at the gradings for these resolutions. The graded resolutions
for a few values of n are given below. There appears to be a relationship between
the grading on each module and the number of generators for that module, such
that one can predict the resolution for a given n. Here, K = k[x0, . . . , xn].

n Resolution
2 0→ K(−2)1 → I → 0
3 0→ K(−3)2 → K(−2)3 → I → 0
4 0→ K(−4)3 → K(−3)8 → K(−2)6 → I → 0
5 0→ K(−5)4 → K(−4)15 → K(−3)20 → K(−2)10 → I → 0
6 0→ K(−6)5 → K(−5)24 → K(−4)45 → K(−3)40 → K(−2)15 → I → 0

If we look only at the syzygy module gradings (ignoring the 0 and I modules),
and we take the product of the grading and the power for each module, we see
the following:

n Products
2 (−2)
3 (−6,−6)
4 (−12,−24,−12)
5 (−20,−60,−60,−20)
6 (−30,−120,−180,−120,−30)

Now when we pull out the greatest common factor of each row of products, and
call it x, we see that the product pattern is Pascal’s triangle, and that x also
follows a pattern.

n x Pattern
2 −2 (1)
3 −6 (1, 1)
4 −12 (1, 2, 1)
5 −20 (1, 3, 3, 1)
6 −30 (1, 4, 6, 4, 1)
n −n(n− 1) (n− 2)th row of Pascal’s 4

We can take this pattern and apply it back onto the resolution to formulate
a general format for the resolution of the rational normal curve in Pn. A typical
resolution of length n− 2 for the ideal I is written as follows:

0→ Fn−2 → Fn−1 → · · · → F1 → F0 → I → 0.

If we take I to be the ideal of the rational normal curve in Pn, then our pattern
reveals that for each i, Fi = K(−i − 2)j where K is as defined above, and
j = n(n− 1)

(
n−2
i

)
/(i+ 2).

Given this pattern for the resolution, we can easily see that the Hilbert poly-
nomial, which relies on the grading and the number of generators (the power),
also follows a pattern. Using Macaulay 2 (and also manually, in some cases),
we calculated the Hilbert polynomial for the quotient ideal of the polynomial
ring modulo the ideal of the rational normal curve, and found that this indeed
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was the case. For the rational normal curve in projective n-space, the Hilbert
polynomial of the quotient ideal is nt + 1. This implies that the dimension of
the curve is 1 and the degree of the curve is n.

We extended the project to study random projections of the rational normal
curve from n-space to (n−1)-space. These projections were generated by taking
linear combinations of sitn−i where the coefficents were randomly generated in-
tegers in the field Z mod k for some prime number k. These linear combinations
were then assigned to n− 1 variables, x1, . . . , xn, as shown here.

x1 = a1,0s
n + a1,1s

n−1t+ . . .+ a1,n−1st
n−1 + a1,nt

n

x2 = a2,0s
n + a2,1s

n−1t+ . . .+ a2,n−1st
n−1 + a2,nt

n

...
xn = an,0s

n + an,1s
n−1t+ . . .+ an,n−1st

n−1 + an,nt
n

ai,j ∈ Z/k; k prime

We then used Macaulay 2 and applied elimination theory to create implicit-
ized generators in {x1, . . . , xn}. We used these generators to define an ideal, for
which we then computed the quotient ideal (as above) of the polynomial ring
modulo the ideal. We then compared the Hilbert polynomials of these quotient
ideals in hopes of finding a general trend.

For this process, we wrote a program which can be used in Macaulay 2 that
generates a set of random linear combinations of the rational normal curve and
then gives the Hilbert polynomial of the quotient ideal created from that set.
The code and instructions for the program are given in further detail below.

Our method can be replicated by creating a file with file name “projections”
in one’s home directory, and putting the following text in this file.

R = ZZ/k[s,t,MonomialOrder=>Lex]
S = ZZ/k[s,t,x 1..x r,MonomialOrder=>Lex]
T = ZZ/k[x 1..x r,MonomialOrder=>Lex]
a = substitute(matrix{{x 1}..{x r}},S)
g = s -> (b = substitute(
matrix table(s,1,(i,j) -> random(s,R)),S) - a,
hilbertPolynomial(T/substitute(ideal(selectInSubring(2,
generators(gb(ideal b)))),T),Projective=>false))
f = i -> for k from 1 to i do print g r

It is important that there are no return keystrokes placed in the midst of an
assignment (especially that of ‘g’). Errors may occur unless each assignment is
made in one continuous line. After creating this file, start Macaulay 2. Here,
one needs to numerically define k as some prime number. This number is used
to define the field as Z mod k. Also numerically define r, which is the value for
the n-space that the projection is made from. For example, if r = 4, this will
create a projection from projective 4-space to projective 3-space. Once these
values have been defined, type:

load "projections"
f m
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Here m is the number of times you would like the algorithm to repeat; one round
of f gives one set of random linear combinations and the Hilbert polynomial
generated by this set.

Using this program, we ran trials for different values of r and k. Approxi-
mately 40 to 50 trials were done for each value of r and k was usually 101 or
31991, although we did also use 2 to produce the degenerate Hilbert polynomi-
als. The following Hilbert polynomials for each value of r. The second column
shows the Hilbert polynomial that was generated most frequently, followed in
the third column by values for degenerate linear combinations.

Hilbert polynomials
r Most frequent Others seen
2 t+1 1
3 3t 2t+1,t+1
4 4t+1 4t-2,3t+1,3t,t+1
5 5t+1 5t,5t-1,4t+1,4t
6 6t+1 6t,6t-1,5t+1,5t

Looking at these results, we can observe that the dimension of the curve is
almost always 1, except for a degenerate case of 2-space to 1-space, where the
dimension is 0. The degree is predictable for larger values of r, as the general
Hilbert polynomial then takes the form rt+ 1. This is analogous to the case of
the rational normal curve. The degenerate Hilbert polynomials are not entirely
predictable, although for r-values of 5 and 6, the Hilbert polynomials generated
give analogous sets for the respective r.

These computations concluded our study of algebraic geometry this summer.
Further work on this topic could include proving the conjectures made in this
paper, especially that of the resolution pattern for the rational normal curve.
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