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The Isoperimetric Inequality in R2

Queen Dido’s Problem: Minimize boundary length

among all domains in the plane with a given

area.

Theorem: Let E be a compact domain in R2

with smooth boundary ∂E. Then |∂E|2 ≥ 4π|E|,
and equality holds if and only if E is a disk.

Notation: |E| denotes the area of E, |∂E| de-

notes the boundary length.

There are many different proofs. Hurwitz in

1902 found an elegant proof based on Wirtinger’s

inequality.



Wirtinger’s inequality

Theorem: Suppose f : R → R is 2π-periodic

and ∫ 2π

0
f(s) ds = 0.

Then ∫ 2π

0
f(s)2 ds ≤

∫ 2π

0
f ′(s)2 ds.

Equality holds if and only if f(s) = a cos(s) +

b sin(s).

Proof of Wirtinger’s inequality: Write f(s) as

a Fourier series.



Hurwitz’s proof of the 2D Isoperimetric In-
equality

We want to show that |∂E|2 ≥ 4π|E| for every
domain E in R2.

Without loss of generality, we may assume that
E is connected. (Otherwise, treat each con-
nected component separately, and sum over all
connected components.)

Without loss of generality, we may assume that
∂E is connected. (Otherwise, fill in the holes of
E. This will increase area and decrease bound-
ary length.)

Without loss of generality, we may assume that
|∂E| = 2π. (Otherwise, we dilate the domain
E by a suitable factor.)

Without loss of generality, we may assume that
the center of mass of ∂E is at the origin, so
that

∫
∂E xi = 0 for i = 1,2. (Otherwise, we

translate the domain E.)



Hurwitz’s proof of the 2D Isoperimetric In-
equality (continued)

Let α(s) = (α1(s), α2(s)) denote a parametriza-
tion of ∂E by arclength, so that |α′(s)| = 1.

Since |∂E| = 2π, we can view α1(s), α2(s) as
2π-periodic functions.

Since the center of mass of ∂E is at the origin,∫ 2π

0
αi(s) ds = 0

for i = 1,2. Wirtinger’s inequality gives∫ 2π

0
αi(s)

2 ds ≤
∫ 2π

0
α′i(s)

2 ds

for i = 1,2. Sum over i = 1,2:∫ 2π

0
|α(s)|2 ds ≤

∫ 2π

0
|α′(s)|2 ds = 2π.

In other words, ∫
∂E
|x|2 ≤ 2π.



Hurwitz’s proof of the 2D Isoperimetric In-

equality (continued)

On the other hand, we can apply the diver-

gence theorem to the position vector field x.

This vector field has divergence 2. Therefore,

the divergence theorem gives

2|E| =
∫
E

div(x) =
∫
∂E
〈x, η〉.

Here, η denotes the outward-pointing unit nor-

mal vector field along ∂E.

Consequently,

4 |E| = 2
∫
∂E
〈x, η〉 ≤

∫
∂E
|x|2 +

∫
∂E
|η|2 ≤ 4π.

In the last step, we have used that
∫
∂E |x|2 ≤ 2π

and
∫
∂E |η|2 = |∂E| = 2π.

To summarize, |E| ≤ π, which implies the isoperi-

metric inequality.



The isoperimetric inequality in higher di-
mension

Theorem: Let E be a compact domain in Rn
with smooth boundary ∂E. Then

|∂E|
|∂Bn|

≥
( |E|
|Bn|

)n−1
n
,

and equality holds if and only if E is a ball.

Notation: |E| denotes the n-dimensional vol-
ume of E, |∂E| denotes the (n−1)-dimensional
measure of the boundary ∂E.

|Bn| denotes the volume of the unit ball in Rn,
|∂Bn| denotes the (n−1)-dimensional measure
of the boundary of the unit ball.

There are many different proofs. These em-
ploy a wide range of techniques: Induction
on the dimension, Knothe map, optimal mass
transport, symmetrization techniques, geomet-
ric measure theory, etc.



Connection with the Brunn-Minkowski in-
equality

Theorem: Let E and F be compact subsets of
Rn, and let E + F := {x + y : x ∈ E, y ∈ F}.
Then |E + F |

1
n ≥ |E|

1
n + |F |

1
n.

Proved by Minkowski for convex sets, and in
full generality by Lusternik (1935). Idea: As-
sume E and F are unions of finitely many boxes,
argue by induction on the number of boxes.

Corollary: Let E be a compact subset of Rn.
Let

Nr(E) := E + rBn = {x+ ry : x ∈ E, y ∈ Bn}
denote the set of all points which have distance
at most r from the set E. Then |Nr(E)|

1
n ≥

|E|
1
n + |Bn|

1
n r.

For r small, |Nr(E)| = |E| + |∂E| r + O(r2).
Sending r → 0 in the Brunn-Minkowski inequal-
ity gives 1

n |E|
1
n−1 |∂E| ≥ |Bn|

1
n, which is equiv-

alent to the isoperimetric inequality.



Connection with the calculus of variations
(Bernoulli, Euler, Lagrange)

We can think of the isoperimetric problem as a
constrained variational problem. We minimize
one functional (boundary area) while keeping
the value of another functional (volume) fixed.

Idea: Apply a first derivative test.

Let E be a compact domain, and let V be a
vector field. Let ϕs be a one-parameter family
of diffeomorphisms such that ϕ0(x) = x and
d
dsϕs(x)

∣∣∣
s=0

= V (x). Define Es := ϕs(E).

First order change in volume:

d

ds
|Es|

∣∣∣∣
s=0

=
∫
∂E
〈V, ν〉.

First order change in boundary area:

d

ds
|∂Es|

∣∣∣∣
s=0

=
∫
∂E

H 〈V, ν〉,

Here, H is the mean curvature of ∂E, ν is the
unit normal, and 〈V, ν〉 is the normal velocity.



The mean curvature and its geometric mean-
ing

Mean curvature is the L2 gradient of surface
area.

Alternatively, the mean curvature can be char-
acterized as the sum of the principal curva-
tures.

Consider an n-dimensional hypersurface Σ in
Rn+1 given as a graph of a height function u:

x ∈ Σ ⇐⇒ xn+1 = u(x1, . . . , xn).

If ∇u(0) = 0 (i.e. if the tangent plane to Σ at
0 is horizontal), then the principal curvatures
at 0 are the eigenvalues of the Hessian D2u(0).
The mean curvature at 0 equals the trace of
the Hessian D2u(0), i.e. the Laplacian ∆u(0).

However, this is not true for ∇u(0) 6= 0. Mean
curvature is a nonlinear operator. This is
forced by the fact that the mean curvature
must be invariant under rigid motions in Rn+1.



Mean curvature and minimal surfaces

Definition: We say that a hypersurface Σ in
Rn+1 is a minimal surface if H = 0. This
means that, if we deform Σ (while fixing the
boundary ∂Σ), then the area is unchanged to
first order.

Definition: We say that a hypersurface Σ in
Rn+1 is a constant mean curvature surface

if H = c. This means that, if we deform Σ
in such a way that the enclosed volume stays
constant, then the area is unchanged to first
order.

Many explicit examples of minimal surfaces in
R3 are known, the simplest ones being the
catenoid and the helicoid.

By the solution of Plateau’s problem, every
closed curve in R3 bounds at least one min-
imal surface.



The isoperimetric inequality on a 2D min-

imal surface in R3

Torsten Carleman (Upsala University, 1921):

Does the isoperimetric inequality hold for min-

imal surfaces?

Theorem (Carleman): Let Σ be a compact

two-dimensional minimal surface in R3 with

boundary ∂Σ. If ∂Σ is connected, then |∂Σ|2 ≥
4π|Σ|, and equality holds if and only if Σ is a

flat disk.

This can be proved by generalizing Hurwitz’s

proof of the 2D isoperimetric inequality.

This classical proof uses in a crucial way the

assumption that ∂Σ is connected.



Proof of Carleman’s theorem

Without loss of generality, we may assume that
|∂Σ| = 2π. We may further assume that the
center of mass of ∂Σ is at the origin. In other
words,

∫
∂Σ xi = 0 for i = 1,2,3.

By assumption, ∂Σ is connected. Using Wirtinger’s
inequality in the same way as above, we obtain∫

∂Σ
|x|2 ≤ 2π.

On the other hand, applying the divergence
theorem to the position vector field in R3 gives

2 |Σ| −
∫

Σ
H 〈x, ν〉 =

∫
∂Σ
〈x, η〉.

Here, H denotes the mean curvature, ν de-
notes the unit normal to Σ in R3, and η denotes
the co-normal to ∂Σ in Σ.

On a minimal surface, H vanishes. Hence

4 |Σ| = 2
∫
∂Σ
〈x, η〉 ≤

∫
∂Σ
|x|2 +

∫
∂Σ
|η|2 ≤ 4π.

Thus, |Σ| ≤ π. From this, the isoperimetric
inequality follows.



The isoperimetric inequality for hypersur-

faces in Rn+1

Theorem (B. 2019): Let Σ be a compact n-

dimensional hypersurface in Rn+1 with bound-

ary ∂Σ. Then

|∂Σ|+
∫
Σ |H|

|∂Bn|
≥
( |Σ|
|Bn|

)n−1
n
,

and equality holds if and only if Σ is a flat disk.

Corollary (B. 2019): Let Σ be a compact n-

dimensional minimal hypersurface in Rn+1 with

boundary ∂Σ. Then

|∂Σ|
|∂Bn|

≥
( |Σ|
|Bn|

)n−1
n
,

and equality holds if and only if Σ is a flat disk.

No assumptions on the topology of Σ are needed.



A Brunn-Minkowski-type inequality for min-
imal hypersurfaces in Rn+1

Corollary (B. 2019): Let Σ be a compact n-
dimensional minimal hypersurface in Rn+1 with
boundary ∂Σ. Let E be a compact subset of
Σ, and let

Nr(E) = E+rBn+1 = {x+ry : x ∈ E, y ∈ Bn+1}
denote the set of all points in ambient space
Rn+1 which have distance at most r from the
set E. If ∂Σ ∩Nρ(E) = ∅, then

|Σ ∩Nr(E)|
1
n ≥ |E|

1
n + |Bn|

1
n r

for 0 < r < ρ.

Note: The Brunn-Minkowski-type inequality can
be deduced from the isoperimetric inequality
for minimal surfaces.

Conversely, the Brunn-Minkowski-type inequal-
ity implies the isoperimetric inequality for min-
imal surfaces by sending r → 0.



The special case when E consists of a sin-

gle point

Let Σ be a compact n-dimensional minimal

hypersurface in Rn+1 with boundary ∂Σ.

Let p be an arbitrary point on Σ. Let Br(p)

denote the ball of radius r around p in ambient

space Rn+1, and suppose that ∂Σ∩Bρ(p) = ∅.

Applying the Brunn-Minkowski-type inequality

with E = {p} gives

|Σ ∩Br(p)|
1
n ≥ |Bn|

1
n r

or

|Σ ∩Br(p)| ≥ |Bn| rn

for 0 < r < ρ. This recovers a classical theorem

in minimal surface theory.



Idea of proof

The proof of the isoperimetric inequality for

hypersurfaces relies on the Alexandrov-Bakelman-

Pucci maximum principle in PDE theory, build-

ing on earlier work of Alexandrov, Bakelman,

Trudinger, Cabré.

Alternatively, we can prove the result using

techniques from optimal mass transport. A

novel feature is that we need to consider trans-

port problems between spaces of different di-

mension: we consider the optimal transport

map from (Bn+1, 1√
1−|ξ|2

dξ) to (Σn, dvol).



Further applications

A similar inequality holds if we replace the am-

bient space Rn+1 by a noncompact manifold

with nonnegative curvature. In that case, the

estimate depends on the volume growth at in-

finity of the ambient manifold.

A similar technique gives a sharp logarithmic

Sobolev inequality for hypersurfaces (B. 2019).

Here, we consider the optimal transport map

from (Rn+1, (4π)−
n+1

2 e−
|ξ|2

4 dξ) to (Σn, dvol).


