Subgroup of a free group is free: a topological proof

ANTON WU

June 27, 2020

Anton Wu

Geometric group theory seminar

Summer UMS 1/21

2 The main theorem

3 Algebra from geometry

- The *free group* F_n of rank n is the group with n generators and no non-trivial relations.
- In other words, F_n is the set of *reduced words* consisting of $\{a_1, a_1^{-1}, \ldots, a_n, a_n^{-1}\}$.

• The goal of this talk is to understand the subgroups of F_n , including a proof of the following theorem:

Theorem (Nielsen–Schreier)

Every subgroup of a free group is free.

Graphs

• A (directed) graph Γ is a pair (V, E), where V is a set of vertices and E is a set of edges which are ordered pairs of vertices.

- An edge path is a list of edges e_1, \ldots, e_k where the terminal vertex of e_i is the initial vertex of e_{i+1} for $i = 1, \ldots, k-1$.
- A loop based at $v \in V$ is an edge path e_1, \ldots, e_k where v is the initial vertex of e_1 and the terminal vertex of e_k .

Fundamental groups

- Let X be a topological space.
- A loop based at $x_0 \in X$ is a continuous map $\gamma : [0, 1] \to X$ with $\gamma(0) = \gamma(1) = x_0$.
- Two loops γ_1 , γ_2 based at x_0 are homotopy-equivalent if there exists a continuous interpolation between them; in other words, a continuous map $h: [0, 1] \times [0, 1] \rightarrow X$ with $h(0, \cdot) = h(1, \cdot) = x_0$ and $h(\cdot, 0) = \gamma_1$ and $h(\cdot, 1) = \gamma_2$.

- Homotopy-equivalence is an equivalence relation.
- The set of homotopy-equivalence classes of loops based at $x_0 \in X$ forms a group under 'concatenation', called the *fundamental group* and denoted $\pi(X; x_0)$.

- Given a graph Γ , define the *reduction* of a loop e_1, \ldots, e_k by repeatedly removing adjacent pairs of inverse edges.
- Define two loops based at $v \in V$ to be *equivalent* if their reductions are the same.
- The fundamental group $\pi(\Gamma; v)$ of the graph Γ is the set of equivalence classes of loops, under 'concatenation'.

Let $\Gamma = (V, E)$ be a finite connected graph, and let n = 1 - |V| + |E|. Then $\pi(\Gamma, v) \cong F_n$ for any $v \in V$.

Proof. Induction on |V|. \Box

1 Introduction

3 Algebra from geometry

Every finitely-generated subgroup of a free group is free.

• We will illustrate the proof with the subgroup $H \subset F_2$ generated by $\{aba, a^2b^2, ba^2b^{-1}, b^3\}$.

Setup of the proof

• Every loop in Γ_H naturally corresponds to an element of H, but not necessarily bijectively.

Setup of the proof

- A graph map Γ₁ → Γ₂ maps the vertices and edges of Γ₁ to the vertices and edges of Γ₂, preserving adjacency.
- A map $\Gamma_1 \to \Gamma_2$ induces a homomorphism $\pi(\Gamma_1; v) \to \pi(\Gamma_2; w)$.

- $r: \Gamma_H \to R$ is a graph map.
- The image of the induced homomorphism $\rho : \pi(\Gamma_H; v) \to \pi(R; w)$ is H.
- Can we modify Γ_H to make ρ injective?

Graph folding

• Given a graph Γ, we can *fold* any two distinct edges with the same initial vertex, as follows:

Source: Figure 4.5 (page 72)

The induced homomorphism π(Γ; v) → π(Γ_f; v) is bijective for a type I fold, and surjective but not injective for a type II fold.

- Suppose $r: \Gamma_1 \to \Gamma_2$ is a graph map, which maps two distinct edges e_i, e_j with the same initial vertex in Γ_1 to the same edge in Γ_2 .
- Let $f: \Gamma_1 \to \Gamma_f$ denote folding (i.e., identifying) e_i and e_j .
- Then r factors through Γ_f ; there exists a unique $r': \Gamma_f \to \Gamma_2$ such that $r = (r' \circ f)$.

- Now suppose r : Γ₁ → Γ₂ is an *immersion*, which means no two distinct edges with the same initial vertex in Γ₁ are mapped to the same edge in Γ₂.
- Then if e₁, ..., e_k is a reduced edge path in Γ₁, then e_i⁻¹ and e_{i+1} are distinct edges that share an initial vertex, so they map to distinct edges in Γ₂.
- Reduced edge paths in Γ_1 are mapped to reduced edge paths in Γ_2 .
- Hence non-trivial loops in Γ_1 are mapped to non-trivial loops in Γ_2 , so the induced homomorphism $\rho : \pi(\Gamma_1; v) \to \pi(\Gamma_2; w)$ is injective.

Lemma

For any graph map $r: \Gamma_1 \to \Gamma_2$, we can write $r = r' \circ (f_m \circ \cdots \circ f_1)$, where each f_i is a fold, and r' is an immersion.

Proof: Repeatedly factor r through folding; if r' is not factorable through folding, then r' is an immersion. \Box

Every finitely-generated subgroup of a free group is free.

Proof: Apply the lemma to the graph map $r: \Gamma_H \to R$. There must be a graph $\Gamma' = (f_m \circ \cdots \circ f_1) \Gamma_H$ such that $r': \Gamma' \to R$ is an immersion. Let ρ, ρ', φ be the induced homomorphisms of $r, r', (f_m \circ \cdots \circ f_1)$. The image of $\rho = (\rho' \circ \varphi)$ is H, and φ is surjective, so the image of ρ' is H. Meanwhile, since r' is an immersion, ρ' is injective. Hence ρ' gives an isomorphism from $\pi(\Gamma'; v)$ to H, so H is free. \Box

1 Introduction

2 The main theorem

New generators, membership problem

- From the graph Γ', we see that H is generated by {b, a², aba} with no non-trivial relations.
- We can write these in terms of the original generators $\{aba, a^2b^2, ba^2b^{-1}, b^3\}.$

$$b = (ba^{2}b^{-1})(b^{3})(a^{2}b^{2})^{-1}$$

$$a^{2} = (a^{2}b^{2})(b^{3})^{-1}(ba^{2}b^{-1})(b^{3})(a^{2}b^{2})^{-1}$$

$$aba = aba$$

• We can also easily determine if a given element of F_2 is in H.

$$aba^{-1}b^{-1} \in H, \qquad ab \notin H$$

A subgroup $H \subseteq F_n$ has finite index iff for each vertex v in Γ' , there are n edges with initial vertex v and n edges with terminal vertex v. In this case, the index of H in F_n is the number of vertices of Γ' .

The cosets H_i correspond to {reduced edge paths in Γ' from v_1 to v_i }, where $v_1 = w$ is the central vertex of Γ' .

• Define Γ' to be *vertex-transitive* if for any vertex v_i , there is an automorphism of Γ' which maps v_1 to v_i , and a_j -edges to a_j -edges.

Theorem

A subgroup $H \subseteq F_n$ is normal iff Γ' is vertex-transitive.

Corollary

If $H \subseteq F_n$ is finitely-generated and normal, then H has finite index in F_n .