
Provability Logic

Benjamin Church

April 1, 2019

Contents

1 Introduction 2
1.1 First-Order Languages . 2
1.2 Proof Theory . 3

2 A Theory For the Natural Numbers 4
2.1 The Language of Number Theory . 4
2.2 Robinson Arithmetic and Peano Arithmetic 5
2.3 Representing Functions and Relations 5

3 Computability Theory 6
3.1 µ-Recursive Functions . 6
3.2 Recursive and Recursively Enumerable Sets 6

3.2.1 Church-Turing Thesis . 7
3.3 The Representability Theorem . 7

4 Number Theory Swallows Itself 7
4.1 Gödel Numbering . 7
4.2 The Provability Predicate . 8
4.3 Self-Reference . 10
4.4 Godel Incompleteness I . 11
4.5 Löb’s Theorem . 12
4.6 Godel Incompleteness II . 13
4.7 Löb’s Theorem Formalized inside Number Theory 13
4.8 Gödel Incompleteness Formalized inside Number Theory 14

1

1 Introduction

1.1 First-Order Languages

.

Definition: A vocabulary or signature σ is a set of “non-logical” symbols which may
be of three types:

1. Constant symbols (e.g. 0)

2. n-ary function symbols (e.g. +)

3. n-ary relation symbols (e.g. ∈)

Along with the signature, a first-order language has a set of “logical” symbols:

1. A countable list of variable symbols: x1, x2, x3, · · ·

2. Logical connectives: ¬,∨,∧,→

3. Quantifiers: ∀ (we get ∃ ⇐⇒ ¬∀¬ for free)

4. An equality relation: =

5. Punctuation: () , etc.

Definition: The set of terms of a first-order language L with vocabulary σ is defined
inductively as follows:

1. Any variable or constant symbol is a term.

2. If f is an n-ary function symbol and t1, . . . , tn are terms then f(t1, . . . , tn) is a
term. For a binary operator (2-ary function), say ◦, we will often write (t1 ◦ t2)
to mean ◦(t1, t2).

Definition: The set of formulas of a first-order language L with vocabulary σ is
defined inductively as follows:

1. If s, t are terms then (s = t) is a formula. Furthermore if R ∈ σ is an n-ary
relation symbol and t1, . . . , tn are terms then R(t1, . . . , tn) is a formula. For a
2-ary relation we will often write sRt to mean R(s, t).

2. If A and B are formulas then ¬A, (A ∨ B), (A ∧ B), and (A → B) are all
formulas.

3. If x is a variable symbol and ϕ a formula in which x is free (ϕ contains x but
no quantifiers over x) then ∀x ϕ and ∃x ϕ are formulas.

Definition: A sentence of a first-order language is a formula with no free variables.

Definition: A first-order theory is a first-order language L along with a set Γ of
first-order L-sentences which are referred to as axioms.

2

1.2 Proof Theory

There are many possible first-order deduction systems each with its own unique flavor.
A deduction system has logical axioms and rules of inference on formulas of L. A
formal proof beginning with some assumptions is a sequence of L-formulas each of
which is either a logical axiom, an assumption, or the result of a rule of inference
applied to previous formulas. Here we work with an example which is a variant of
Hilbert’s propositional logic formal system H extended to first order logic.

Definition: Hilbert’s system H has logical connectives {¬,→} and the following
axiom schemas: for any formulas A,B,C the following are axioms of H,

(H1) A→ (B → A)

(H2) (A→ (B → C))→ ((A→ B)→ (A→ C))

(H3) ¬A→ (A→ B)

(H4) (¬A→ A)→ A

The formal system H has one rule of inference known as modus ponens (MP),

A (A→ B)

B

We can define the formulas A ∨ B to stand for ¬A → B and A ∧ B to stand for
¬(A→ ¬B) and A↔ B to stand for (A→ B) ∧ (B → A) etc.

Definition: We say that a first-order theory Γ syntactically entails or, more simply,
proves A if there exists a formal proof using axioms of Γ and first-order rules of
inference. We write this as Γ ` A.

Example 1.1. We show that `H A→ A for any formula A.

[A→ ((A→ A)→ A)]→ [(A→ (A→ A))→ (A→ A)] axiom (L2)(1)

A→ ((A→ A)→ A) axiom (L1)(2)

(A→ (A→ A))→ (A→ A) MP 1,2(3)

A→ (A→ A) axiom (L1)(4)

A→ A MP 3,4(5)

Remark 1.2.1. Clearly, proofs in H are horrible. Luckily the following wonderful
theorem means we will rarely need to provide explicit proofs.

Theorem 1.1 (Gödel). Every propositional tautology is a theorem of H.

Remark 1.2.2. By tautology here we mean always evaluates to true under the standard
semantics for ¬ and→. In these semantics all axioms of H are tautologies and modus
ponens is locally sound.

3

Definition: The formal system FO extends H by adding the additional axioms,

(EQ1) ∀x (x = x)

(EQ2) ∀x [(x = t)→ (A(x)→ A(t))]

(FO1) ∀x A(x)→ A(t) where t is any term whose variables are not bound in A.

(FO2) ∀x (A→ B(x))→ (A→ ∀x B(x)) where x is free in x and not in A.

and the additional rule of inference called generalization (Gen),

A
∀x A

Remark 1.2.3. We will use the notation A(x) to denote that x is a free variable in A
and then A(t) to denote A with t substituted for x.

Definition: A first-order theory Γ is consistent if there does not exist a statement
A such that Γ ` A and Γ ` ¬A.

Definition: A first-order theory Γ is complete if for every L-sentence A we have
either Γ ` A or Γ ` ¬A.

Lemma 1.2 (Categorization of Consistency). Γ is proof-theoretically consistent if
and only if there exists a first-order sentence A such that Γ 6` A.

Proof. If Γ is consistent and Γ ` A then Γ 6` ¬A. If Γ is not consistent then Γ ` A
and Γ ` ¬A for some A. Using (H3), Γ ` ¬A → (A → B) so applying MP twice
gives Γ ` B for any B. �

2 A Theory For the Natural Numbers

2.1 The Language of Number Theory

Definition: The first-order language LNN has signature σ = {0, s,+, ·} where 0 is a
constant symbol, s is a 1-ary function symbol, and + and · are 2-ary function symbols.

Example 2.1. We be define the abbreviation x < y to mean ∃z (x+ s(z) = y).

Definition: For each natural number i ∈ N we denote the term si(0) by the bold-face
numeral i.

4

2.2 Robinson Arithmetic and Peano Arithmetic

Now that we have a first-order language in which to do number theory, we need an
actual theory.

Definition: Robinson Arithmetic, denoted as Q, is the first-order theory over LNN

with the set of axioms,

(Q1) ∀x ¬(s(x) = 0)

(Q2) ∀x∀y [(s(x) = (y))→ (x = y)]

(Q3) ∀x (x+ 0 = x)

(Q4) ∀x∀y (x+ s(y) = s(x+ y))

(Q5) ∀x (x · 0 = 0)

(Q6) ∀x∀y (x · s(y) = (x · y) + x)

(Q7) ∀x [(x = 0) ∨ ∃y (x = s(y))]

Remark 2.2.1. We see that Q is arithmetic without induction. You might think that
we cannot do very much in Q since it is a very weak theory. However Q is sufficiently
powerful to cause its own essential incompleteness. In fact, Q is the minimal theory
necessary to prove the representability theorem. For completeness, we will now define
the more familiar framework for number theory.

Definition: Peano Arithmetic (PA) is the first-order theory over LNN which has
axioms (Q1) - (Q6) and additionally the axiom schema of induction,

(PA) ϕ(0)→ [∀x (ϕ(x)→ ϕ(s(x)))→ ∀x ϕ(x)]

for each formula ϕ with x free. Note we have dropped (Q7) since it is a consequence
of the induction axiom.

Definition: An extension of Q is a first-order theory Γ over the language LNN such
that Γ ` Q, in particular if Γ ⊃ Q.

Remark 2.2.2. Clearly PA is an extension of Q. In fact, the extension is proper.

2.3 Representing Functions and Relations

Definition: A relation R ⊂ Nn is strongly representable or simply representable in Γ,
an extension of Q if there exists a formula A(x1, . . . , xn) in LNN with n free variables
such that for all natural numbers a1, . . . , an ∈ N we have,

R(a1, . . . , an) =⇒ Γ ` A(a1, . . . , an)

¬R(a1, . . . , an) =⇒ Γ ` ¬A(a1, . . . , an)

In this case we say that A represents R over Γ. Furthermore, we say that A weakly
represents R over Γ if only the first condition holds in which case we say that R is
weakly representable.

5

Definition: An arithmetic function f : Nn → N is representable over Γ iff there
exists a formula A(x1, . . . , xn, xn+1) of LNN with n+ 1 free variables such that for all
natural numbers a1, . . . , an ∈ N with b = f(a1, . . . , an) we have,

Γ ` ∀x [A(a1, . . . , an, x)↔ (x = b)]

3 Computability Theory

We would like to construct representable functions. It turns out that there is a deep
connection between computability and representability. More generally, the incom-
pleteness theorems rely on arithmetic capturing the power of computable functions.

3.1 µ-Recursive Functions

The notion of computability or an effective procedure for computing a function is
not a well-defined notion. We begin with a concrete definition for a class of clearly
computable arithmetic functions. It turns out that in some sense these are all the
computable functions.

Definition: An arithmetic function F : Nn → N is recursive if F is one of,

1. a starting function: addition ((a, b) 7→ a + b), multiplication (·), projection
(Un,k(a1, . . . , an) = ak), or less-then characteristic (K<(a, b) = 1 if a < b and
zero otherwise).

2. a compositions of recursive functions F = G ◦ (H1, . . . , Hk)

3. a minimalization of a regular recursive function

F (a1, . . . , an) = µx[G(a1, . . . , an, x) = 0]

where the regularity condition on G means that such a zero is always required
to exist for all natural numbers a1, . . . , an ∈ N.

3.2 Recursive and Recursively Enumerable Sets

Definition: A relation R ⊂ Nn is recursive (R) if there exists a recursive arithmetic
function f : Nn → N such that R = {(a1, . . . , an) ∈ Nn | f(a1, . . . , an) = 0}.

Definition: A relation R ⊂ Nn is recursively enumerable (RE) if R can be written
as R(a1, . . . , an) ⇐⇒ ∃x Q(a1, . . . , an, x) where Q ⊂ Nn is a recursive relation.

Proposition. A set S ⊂ N is RE iff it is enumerated by a recursive function.

Remark 3.2.1. This proposition explains the terminology recursively enumerable.

6

3.2.1 Church-Turing Thesis

There is no clear universally agreed upon a priori definition for what it means for
a function to be effectively computable. However, logicians Alonzo Church and Alan
Turing proved that a wide class of models of computation (µ-recursive functions,
Turning machines, λ-calculi) are all equivalently powerful. Therefore, we define effec-
tively computable functions to be exactly those computable by any of these equivalent
models of computation. Often, we will invoke this thesis to show that a given function
is recursive if we can find an informal effective procedure for computing it. It should
be stressed that such a use of the Church-Turing thesis is never necessary for proving
meta-logical theorems it is simply a time-saving device for lazy logicians who don’t
want to explicitly construct recursive functions. It is only strictly necessary to invoke
the Church-Turning thesis when computability is assumed as a hypothesis since we
must develop a formal proof using some explicit model of computation.

3.3 The Representability Theorem

Theorem 3.1. Let f : Nn → N be recursive function then f is representable over Q.

Proof. Very technical but conceptually easy. Show that all starting functions are
representable and that given representable functions that we can construct represen-
tations of their composition and minimization. �

Corollary 3.2. Let R ⊂ Nn be a recursive relation then R is representable over Q.

Proof. There exists a recursive f : Nn → N such that f vanishes exactly on R. Then
f is representable by some LNN formula A(x1, . . . , xn+1) such that for all natural
numbers a1, . . . , an ∈ N and b = f(a1, . . . , an) then,

Q ` ∀x [A(a1, . . . , an, x)↔ (x = b)]

Let B(x1, . . . , xn) = A(x1, . . . , xn,0). Then I claim that,

R(a1, . . . , an) =⇒ Γ ` B(a1, . . . , an)

¬R(a1, . . . , an) =⇒ Γ ` ¬B(a1, . . . , an)

and thus B represents R. �

4 Number Theory Swallows Itself

4.1 Gödel Numbering

We need some way of expressing the metalanguage of formulas and proofs inside of
number theory such that we can use number theory to prove statements of its own
meta-theory. This is accomplished by encoding formulas as natural numbers.

Theorem 4.1. There exists an injective function #g : FORLNN
→ N such that its

image S = Im #g is a recursive set.

7

Proof. Consider encoding each symbol as a unique integer and then a sequence of
symbols via pa11 · · · pann where pi is the ith prime and ai is the code of the ith symbol.
By uniqueness of prime factorization, this function is injective. Checking its image is
recursive is highly technical so I will simply invoke the Church-Turning thesis since
there exists an effective procedure to factor a number, translate it into a string of
symbols, and check if this string can be produced by the rules for forming well-formed
formulas. The last step is effectively computable because there are a finite number of
formulas of the correct length or less (restricting to only the variables which appear
in the target string) so we can simply try each. �

Remark 4.1.1. The function #g encodes each formula as a natural number such that
the set of codes corresponding to well-formed formulas is computable.

Definition: Let A be a formula and a = #g (A) its Gödel number. Then let pAq be
the term a.

Remark 4.1.2. This notation is intentionally suggestive of quotation in natural lan-
guage. In fact, the Gödel sentence is not best described as saying “I am provable”
but rather the Quine sentence,

“when preceded by its quotation is unprovable”
when preceded by its quotation is unprovable.

which is self-referential since the object of the sentence (“when preceded by its quo-
tation is unprovable” when preceded by its quotation) is a copy of the entire sentence.
This sentence accomplishes self-reference without the self-referential “machinery” of
the pronoun “I” and therefore is a much better model for how such self-reference can
unintentionally arise in number theory.

4.2 The Provability Predicate

Definition: A theory Γ with language LNN is recursively axiomatized if #g (Γ) is
recursive.

Remark 4.2.1. Intuitively, a theory Γ is axiomatized if there exists an algorithm which
can decide if a given string is an axiom of the theory.

Theorem 4.2. Let Γ be recursively axiomatized. We may extend #Γ
g : PRFΓ → N

to encoding valid Γ-proofs as a sequence of formulas which, using the technique used
above, we can encode in a single number. Again, we require that gΓ be injective and
have recursive image such that the codes of valid proofs comprise a computable set.
Furthermore the relation, CHKPRFΓ ⊂ N2 defined to contain (a, p) iff a is the code
of a valid formula and p is the code of a valid proof of the formula encoded by a is a
recursive relation.

8

Proof. We rely here on the Church-Turning thesis to show that such relations are re-
cursive. They are effectively computable since checking a proof requires only checking
each line to see if it is an axiom (which is decidable by hypothesis) or the result of ap-
plying one of finitely many rules of inference to the finitely many preceding sentences.
This is clearly computable. �

Definition: Since CHKPRFΓ is recursive it is Γ-representable. Let PrfΓ(x, y) be a
formula of LNN such that,

CHKPRFΓ(a, p) =⇒ Γ ` PrfΓ(a,p)

¬CHKPRFΓ(a, p) =⇒ Γ ` ¬PrfΓ(a,p)

Definition: The provability predicate ℬℯwΓ(x) is the formula ∃p PrfΓ(x, p).

Remark 4.2.2. The notation ℬℯw derives from the German word Beweis for proof.

Lemma 4.3 (Hilbert-Bernays). The provability predicate satisfies,

1. Γ ` A =⇒ Γ `ℬℯwΓ(pAq)

2. Γ `ℬℯwΓ(pA→ Bq)→ (ℬℯwΓ(pAq)→ℬℯwΓ(pBq))

3. Γ `ℬℯwΓ(pAq)→ℬℯwΓ(pℬℯwΓ(pAq)q)

Proof. The last two are quite delicate and technical requiring diving into the con-
struction of Prf. However, the first is easy to show. If Γ ` A then there exists a
proof of A which has code p and let A have code a. Therefore, CHKPRFΓ(a, p) so
Γ ` PrfΓ(a,p). Now the axiom (FO1) gives,

Γ ` ∀y ¬PrfΓ(a, y)→ ¬PrfΓ(a,p)

Thus, taking the contrapositive,

Γ ` PrfΓ(a,p)→ℬℯwΓ(pAq)

so by modus ponens Γ `ℬℯwΓ(pAq). �

Remark 4.2.3. The first Hilbert-Bernays derivability condition states that ℬℯwΓ(x)
weakly represents theoremhood (it cannot strongly represent it however as we shall
show). The second condition states that modus ponens is provably (within Γ) a rule
of inference of Γ. Finally, the third Hilbert-Bernays derivability condition is the
formalization of the first property within the system Γ, saying that Γ can prove that
if it can prove A then it can prove that it can prove A.

9

4.3 Self-Reference

Lemma 4.4 (Diagonal). Let F (x) be an LNN formula with one free variable. Then
there exists a ‘fixed-point’ sentence ψ such that,

Q ` ψ ↔ F (pψq)

Proof. There exists a recursive function d : N→ N such that when a = #g (A) where
A(x) is a formula with at least one free variable then d(a) = #g (A(a)) = #g (A(pAq))
(for now we appeal to the Church-Turning thesis). Therefore, D is represented by
some formula D(x, y) such that for all a ∈ N and b = d(a) we have,

Q ` ∀y [D(a, y)↔ (y = b)]

Now define the formula with one free variable,

ϕ := ∀y [D(x, y)→ F (y)]

Let a = #g (ϕ) be its Gödel number and then substitute a = pϕq for x in ϕ,

ψ := ϕ(pϕq) := ∀y [D(pϕq , y)→ F (y)]

The Gödel number of ψ is q = #g (ϕ(pϕq)) = d(a) so we apply the representation of
d applied at d(a) = q,

Q ` ∀y [D(pϕq , y)↔ (y = pϕ(pϕq)q)]

Using the tautology,

Q ` (A↔ B)→ [(A→ C)↔ (B → C)]

we find,
Q ` ∀y [D(pϕq , y)→ F (y)]↔ ∀y [(y = pϕ(pϕq)q)→ F (y)]

Which we can write as,
Q ` ϕ(pϕq)↔ F (pϕ(pϕq)q)

and using ψ := ϕ(pϕq) we have,

Q ` ψ ↔ F (ψ)

�

Remark 4.3.1. If we interpret F (pψq) to represent “the formula ψ has property F”
then the diagonal lemma proves the existence of self-referential fixed points. ψ ↔
F (pψq) is a sentence “saying” ψ is true if and only if ψ has property F . In other
words, ψ has an interpretation as the sentence: “I have property F .” As described
earlier, the diagonal sentence is more better modeled in human language a Quine
sentence,

“when preceded by its quotation has property F”
when preceded by its quotation has property F .

In fact, the above proof of the diagonalization lemma closely resembles the construc-
tion of a Quine sentence: we take a sentence with refers to its object applied to
(preceded by) its own quotation and apply it to (preceding it by) its own quotation.
The predicate ϕ(x) encodes “x when applied to its quotation (Gödel number) has
property F” and the self-referential statement ψ is exactly ϕ applied to its quotation.

10

4.4 Godel Incompleteness I

In this and the following sections, let ⊥ stand for your favorite contradiction, say
(0 = 1) or (x = y) ∧ ¬(x = y) etc. Any choice is as good as any other as long as
Γ `⊥ implies that Γ is inconsistent (which the above certainly do).

Definition: A theory Γ is ω-consistent if for all formulas A(x) with one free variable
Γ cannot simultaneously prove ∃x A(x) and ¬A(n) for each natural number n ∈ N.

Lemma 4.5. ω-consistency implies consistency.

Proof. For each formula with one free variable A(x) either Γ 6` ∃x A(x) or for some
n ∈ N we have Γ 6` ¬A(n). Therefore, there exists some formula that Γ cannot prove
which implies that Γ is consistent. �

Lemma 4.6. If Γ is ω-consistent and Γ 6` A then Γ 6`ℬℯwΓ(pAq).

Proof. Suppose that Γ 6` A and a = g(A) is the Gödel number. Then for each n ∈ N
we have ¬CHKPRFΓ(a, n) since there exist no valid proofs of A. Therefore we have
Γ ` ¬PrfΓ(a,n) for each n ∈ N so by ω-consistency Γ 6`ℬℯwΓ(pAq). �

Corollary 4.7. If Γ is ω-consistent then Γ is consistent so Γ 6`⊥ and thus, by the
previous lemma, Γ 6`ℬℯwΓ(p⊥q) and thus Γ 6`ℬℯwΓ(pℬℯwΓ(p⊥q)q) etc.

Theorem 4.8 (Gödel). Any ω-consistent recursively axiomatized extension of Q is
incomplete.

Proof. Let Γ be an ω-consistent recursively axiomatized extension of Q. Since Γ is
recursively axiomatized PrfΓ and ℬℯwΓ exist. The fixed-point theorem proves the
existence of a sentence G such that,

Γ ` G ↔ ¬ℬℯwΓ(pGq)

Suppose that Γ ` G then Γ ` ℬℯwΓ(pGq) by HB1 and Γ ` ¬ℬℯwΓ(pGq) by self-
reference contradicting the consistency of Γ. Suppose that Γ ` ¬G then, by HB1,
Γ ` ℬℯwΓ(p¬Gq). However, by self-reference Γ ` ℬℯwΓ(pGq). Furthermore, using
axiom (H3),

Γ ` ¬G → (G →⊥)

Therefore, applying HB1 we have,

Γ `ℬℯwΓ(p¬G → (G →⊥)q)

and then by HB2,

Γ `ℬℯwΓ(p¬G → (G →⊥)q)→ (ℬℯwΓ(p¬Gq)→ℬℯwΓ(pG →⊥q))

Applying modus ponens twice we find,

Γ `ℬℯwΓ(pG →⊥q)

so applying HB2 we find,

Γ `ℬℯwΓ(pGq)→ℬℯwΓ(p⊥q)

so one last use of modus ponens gives Γ ` ℬℯwΓ(p⊥q) contradicting ω-consistency.
Therefore, neither G nor ¬G is provable in the theory Γ so Γ is incomplete. �

11

4.5 Löb’s Theorem

Remark 4.5.1. In this section we assume that Γ is a recursively axiomatized extension
of Q.

Theorem 4.9 (Löb). If Γ `ℬℯwΓ(pAq)→ A then Γ ` A for any sentence A.

Proof. Via the fixed point theorem applied to ℬℯwΓ(x)→ A, there exists a sentence
B such that,

Γ ` B ↔ (ℬℯwΓ(pBq)→ A)

Applying HB1 to one direction gives,

Γ `ℬℯwΓ(pB → (ℬℯwΓ(pBq)→ A)q)

and then applying HB2 twice we deduce,

Γ `ℬℯwΓ(pBq)→ (ℬℯwΓ(pℬℯwΓ(pBq)q)→ℬℯwΓ(pAq))

However, HB3 gives,

Γ `ℬℯwΓ(pBq)→ℬℯwΓ(pℬℯwΓ(pBq)q)

and thus putting the previous two together,

Γ `ℬℯwΓ(pBq)→ℬℯwΓ(pAq)

Now we use the hypothesis Γ `ℬℯwΓ(pAq)→ A to get a proof,

Γ `ℬℯwΓ(pBq)→ A

but since ℬℯwΓ(pBq) → A is provably equivalent to B we find Γ ` B so by HB1
Γ `ℬℯwΓ(pBq) and thus Γ ` A by modus ponens. �

Remark 4.5.2. This theorem is truly remarkable because it says that Q and all ex-
tensions are “maximally modest” in the sense that the do not “believe” in their own
validity (i.e. a proof of A entails A) except for statements they already know to be
true. Furthermore, it answers the fascinating question posed by Henkin.

Remark 4.5.3. After seeing Gödel’s proof of the first incompleteness theorem Henkin
asked about a subtle modification. What if we apply the fixed-point lemma not to
¬ℬℯwΓ(x) but to simply ℬℯwΓ(x)? Then there would exist a sentence ℋ ,

Γ ` ℋ ↔ℬℯwΓ(pℋq)

This sentence has the interpretation “I am provable” which seems to convey no in-
formation at all! However, clearly for such a sentence we have,

Γ `ℬℯwΓ(pℋq)→ ℋ

and thus by Löb’s theorem we get Γ ` ℋ . So in fact, such a Henkin sentence which
asserts its own provability must actually be provable.

12

4.6 Godel Incompleteness II

Finally, Löb’s theme gives us enough machinery to give an elegant proof of the second
incompleteness theorem.

Definition: The sentence CℴnΓ is given by ¬ℬℯwΓ(p⊥q) which expresses the con-
sistency of the theory Γ.

Remark 4.6.1. We have shown that if Γ ` CℴnΓ then Γ is not ω-consistent. However,
we are about to show the stronger result.

Theorem 4.10 (Gödel). Let Γ be a consistent recursively axiomatized extension of
Q then Γ cannot prove CℴnΓ.

Proof. By Löb’s theorem if Γ `ℬℯwΓ(p⊥q)→⊥ then Γ `⊥. However, ℬℯwΓ(p⊥q)→⊥
is equivalent to CℴnΓ. Thus if Γ ` CℴnΓ then Γ `⊥ contradicting the consistency of
Γ. Taking the contrapositive, Γ 6`⊥ =⇒ Γ 6` CℴnΓ i.e. the consistency of Γ implies
that Γ cannot prove CℴnΓ. �

Remark 4.6.2. Gödel’s second incompleteness theorem is often stated provocatively
as: a proof of consistency establishes its inconsistency. This makes sense because an
inconsistent theory can prove anything including its own consistency.

4.7 Löb’s Theorem Formalized inside Number Theory

Wonderfully, we can formalize the proof of Löb’s theorem inside the system Γ so that
we may apply Löb inside formal proofs.

Theorem 4.11 (Löb). For any sentence A of LNN,

Γ `ℬℯwΓ(pℬℯwΓ(pAq)→ Aq)→ℬℯwΓ(pAq)

Proof. Let B := ℬℯwΓ(pℬℯwΓ(pAq)→ Aq) and C := ℬℯwΓ(pAq). Then HB2
gives,

Γ `ℬℯwΓ(pB → Cq)→ (ℬℯwΓ(pBq)→ℬℯwΓ(pCq))

Furthermore, since B := ℬℯwΓ(pC → Aq),

Γ ` B → (ℬℯwΓ(pCq)→ℬℯwΓ(pAq))

and by HB3 (since B begins with ℬℯw),

Γ ` B →ℬℯwΓ(pBq)

Given ℬℯwΓ(pB → Cq) we get ℬℯwΓ(pBq) → ℬℯwΓ(pCq). Additionally, given
B we get ℬℯwΓ(pBq) so we get ℬℯwΓ(pCq) but B also gives ℬℯwΓ(pCq) →
ℬℯwΓ(pAq) so we get C := ℬℯwΓ(pAq). Thus by propositional logic,

Γ `ℬℯwΓ(pB → Cq)→ (B → C)

13

Therefore, applying Löb’s theorem,

Γ ` B → C

which, expanded out is,

Γ `ℬℯwΓ(pℬℯwΓ(pAq)→ Aq)→ℬℯwΓ(pAq)

�

4.8 Gödel Incompleteness Formalized inside Number Theory

Much in the way that Löb theorem can be formalized inside number theory, we can
formalize the proofs of the incompleteness theorems inside the formal system itself. In
fact, we can further formalize the notion that consistency implies the unprovability
of the Gödel sentence and thus its truth to give an alternative proof of the sec-
ond incompleteness theorem and furthermore a demonstration of the provable logical
equivalence of all Gödel sentences.

Theorem 4.12. Let G be a Gödel sentence then,

Γ ` CℴnΓ ↔ G

In particular, all Gödel sentences are logically equivalent.

Proof. Since G is a Gödel sentence,

Γ ` G ↔ ¬ℬℯwΓ(pGq)

Therefore, applying HB1 and HB2,

Γ `ℬℯwΓ(pGq)↔ℬℯwΓ(p¬ℬℯwΓ(pGq)q)

However, by HB3,

Γ `ℬℯwΓ(pGq)→ℬℯwΓ(pℬℯwΓ(pGq)q)

Furthermore, since Γ ` ¬A→ (A→⊥) by HB1 and HB2 twice we get,

Γ `ℬℯwΓ(p¬Aq)→ (ℬℯwΓ(pAq)→ℬℯwΓ(p⊥q))

Applying this to A := ℬℯwΓ(pGq) we find,

Γ `ℬℯwΓ(pGq)→ℬℯwΓ(p⊥q)

However, Γ `⊥→ G and thus applying HB1 and HB2 we find,

Γ `ℬℯwΓ(p⊥q)→ℬℯwΓ(pGq)

In summary,
Γ `ℬℯwΓ(pGq)↔ℬℯwΓ(p⊥q)

However, Γ ` G ↔ ¬ℬℯwΓ(pGq) and CℴnΓ := ¬ℬℯwΓ(p⊥q) which implies that,

Γ ` G ↔ CℴnΓ

�

14

Corollary 4.13. If Γ is consistent then by Gödel incompleteness I we know Γ 6` G
and thus Γ 6` CℴnΓ giving an alternative proof of incompleteness II.

Theorem 4.14 (Formalized Gödel I).

Γ ` ω-CℴnΓ → (¬ℬℯwΓ(pGq) ∧ ¬ℬℯwΓ(p¬Gq))

Where ω-CℴnΓ is the sentence ¬ℬℯwΓ(pℬℯwΓ(p⊥q)q) expressing weak ω-consistency.

Proof. First, by HB3,

Γ `ℬℯwΓ(p⊥q)→ℬℯwΓ(pℬℯwΓ(p⊥q)q)

and therefore,
Γ ` ω-CℴnΓ → CℴnΓ

We have already proven above that,

Γ ` CℴnΓ → ¬ℬℯwΓ(pGq)

and thus by transitivity of implication,

Γ ` ω-CℴnΓ → ¬ℬℯwΓ(pGq)

The negation of the Gödel property gives,

Γ ` ¬G ↔ℬℯwΓ(pGq)

and thus by HB1 and HB2 we have,

Γ `ℬℯwΓ(p¬Gq)↔ℬℯwΓ(pℬℯwΓ(pGq)q)

However, by HB3,

Γ `ℬℯwΓ(p¬Gq)→ℬℯwΓ(pℬℯwΓ(p¬Gq)q)

Furthermore via Γ ` ¬G → (G →⊥) and HB1 and HB2 repeatedly we find,

Γ `ℬℯwΓ(pℬℯwΓ(pGq)q)→ (ℬℯwΓ(pℬℯwΓ(p¬Gq)q)→ℬℯwΓ(pℬℯwΓ(p⊥q)q))

and thus by transitivity of implications,

Γ `ℬℯwΓ(p¬Gq)→ℬℯwΓ(pℬℯwΓ(p⊥q)q)

contradicting ω-consistency. That is, taking the contrapositive,

Γ ` ω-CℴnΓ → ¬ℬℯwΓ(p¬Gq)

giving both implications which together show that,

Γ ` ω-CℴnΓ → (¬ℬℯwΓ(pGq) ∧ ¬ℬℯwΓ(p¬Gq))

�

15

Remark 4.8.1. Just as we needed ω-consistency in the standard proof of Gödel Incom-
pleteness I, in the formalized version we require a stronger hypothesis than CℴnΓ, we
need ¬ℬℯwΓ(pℬℯwΓ(pGq)q) which expresses the idea that ω-consistency requires
Γ to be unable to prove that it can prove a contradiction. In fact this hypothesis is
somewhat weaker than full ω-consistency so this is an abuse of notation.

Theorem 4.15 (Formalized Gödel II).

Γ ` ¬ℬℯwΓ(p⊥q)→ ¬ℬℯwΓ(pCℴnΓq)

Proof. Apply formalized Löb with A =⊥ to give,

Γ `ℬℯwΓ(pℬℯwΓ(p⊥q)→⊥q)→ℬℯwΓ(p⊥q)

However, ℬℯwΓ(p⊥q) →⊥ is logically equivalent to ¬ℬℯwΓ(p⊥q) which is CℴnΓ.
Furthermore if Γ ` A ↔ B then Γ ` ℬℯwΓ(pAq) ↔ ℬℯwΓ(pBq) by HB1 and HB2
so we have,

Γ `ℬℯwΓ(pCℴnΓq)→ℬℯwΓ(p⊥q)

which is exactly the contrapositive of formalized Gödel incompleteness II. �

16

