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Abstract

We will begin the talk by introducing an important tool in combinatorics known
as the generating function and give some examples of how it can be used for problems
such as coin counting and evaluating a formula for the fibonacci sequence. We will
then introduce one of the most important tools that will guide us this summer: the
Ehrhart Series. For this lecture we will mostly focus on the example of the simplex,
basic properties, and giving intuition for how the Ehrhart Series relates the continuous
and discrete. Lastly, we will finish the talk by introducing and proving Pick’s theorem.

1 Generating Functions

Definition. Given a sequence {ak}k≥0 the generating function for that sequence is the power
series:

F (z) =
∑
k≥0

akz
k

Generating functions are useful in that we can oftentimes deduce properties about the se-
quence ak from its generating function F . Furthermore, the expressions for F can oftentimes
be even simpler than the expression for the series itself.

Example 1. Let ak = 1 for all k. Then the generating function for ak is:

F (z) =
1

1− z
= 1 + z + z2 + · · ·

Example 2. Let ak =
(
n
k

)
for some fixed n then by the binomial theorem

F (z) = (1 + z)n

(Note this also holds for n that aren’t integers!)

Example 3. Generating functions can also be a useful combinatorial tool. For example
suppose we have an infinite number of two denominations of coins worth m1 and m2. Suppose
we want to try to find the number of ways we can make a value k out of the coins we have.
Let Ck be the number of ways we can make k. We claim the generating function for Ck is(∑

i≥0

zm1i

)(∑
j≥0

zm2j

)
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To see this consider what terms contribute to the zk term. These will precisely be the pairs
(i, j) such that m1i + m2j = k. This problem in general (where we may have more than 2
denominations) is referred to as the coin exchange problem. Chapter 1 devotes significant
attention to this topic. For the purposes of getting to the more central topics of this book,
we are mostly going to omit the discussion.

Example 4. We’ll now show how generating functions can also be useful for algebraic
purposes by employing them to find a formula for the fibonacci sequence. Let fk be the
fibonacci sequence with f0 = 0, f1 = 1 and fn = fn−1 + fn−2 for n ≥ 3. Let

F (z) =
∑
k≥0

fkz
k

be the generating function for the fibonacci sequence. Then

zF (z) + z2F (z) =
∑
k≥1

fk−1z
k +

∑
k≥2

fk−2z
k

=
∑
k≥2

fkz
k

= −z + F (z)

F (z) =
z

1− z − z2

So we obtain a nice formula for generating function! We now use a partial fraction decom-
position:

F (z) =
1√
5

[
1

1− φz
− 1

1− φ̄z

]
From which we get

fk =
φk − φ̄k

√
5

Example 5. For our final example we will show how roots of unity can be used in concert
with generating functions to study specific subsets of terms of a generating function. Suppose
we want to find the summation(

100

0

)
+

(
100

4

)
+ · · ·+

(
100

96

)
+

(
100

100

)
To do this we will construct a generating function for the series ak =

(
n
rk

)
for any r. Plugging

in n = 100, r = 4 will give us the desired result. Observe that if we have an r-th root of
unity ω where r 6= 1 then:

1 + ω + ω2 + · · ·+ ωr−1 = 0

Now take an r-th primitive root of unity ω and consider the sum of generating functions:

r−1∑
t=0

(1 + ωtz)n
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The coefficient of zk will be (
n

k

) r−1∑
t=0

ωtk

If k is not a multiple of r then ωt is an r-th root of unity distinct from 1. Thus by our result
on sums

r−1∑
t=0

ωtk =

{
0 r - k
r else

Thus
1

r

r−1∑
t=0

(1 + ωtz)n =
∑
k≥0

(
n

rk

)
zrk

In particular if we set n = 100, r = 4, z = 1 this tells us

25∑
k=0

(
100

4k

)
=

(1 + 1)100 + (1− 1)100 + (1 + i)100 + (1− i)100

4
= 298 − 249

2 Ehrhart Series

We begin with some definitions to guide our later work

Definition. A convex polyhedra P is a convex polyhedra if it satisfies either of the following
equivalent properties:

1. P is the smallest set convex set (the convex hull) containing some set of points
v1, . . . , vn. In this case, the smallest subset V of v1, . . . , vn with P as its convex hull
are the vertices of P

2. P is a bounded intersection of finitely many half planes.

Note that this definition implies that P contains the interiors of the resulting shapes.
For instance, the boundary of a triangle would not be a convex polyhedra, only a triangle
and its interior.

Definition. Say H is a supporting hyperplane if P lies entirely on one side of H. A face
of P is an intersection of P with a supporting hyperplane. The 0-dimensional faces are the
vertices and the d− 1-dimensional faces are the facets (if P has dimension d).

We will now define a generating function that will be central to our studies for the rest
of the summer: The Ehrhart series.

Definition. The lattice point enumerator or discrete volume of P is

LP(t) = #(tP ∩ Zd)

The Ehrhart Series is the generating function of the lattice point enumerator:

EhrP(z) = 1 +
∑
t≥1

LP(t)zt
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Before we give some of the properties we’ll begin by giving a result that gives an intuition
as to why we should care about the Ehrhart series.

Lemma 1.

vol P = lim
t→∞

1

td
LP(t)

Proof. Note that

1

td
LP(t) =

1

td
#

(
P ∩

(
1

t
Z
)d
)

Imagine placing a box with sides 1
t

at each point of
(
1
t
Z
)d

insides P . Then the above
expression is simply the sum of the boxes. As t shrinks the amount of area not covered by
the boxes tends to 0. Thus the above lemma holds.

In fact, as we’ll see in later lectures an even stronger connection with the area function
holds – one that is directly computable.

2.1 Examples

Theorem 2.1. Let P be a unit d-cube. Then:

LP(t) = (t+ 1)d

and satisfies LP◦(t) = (−1)dLP(−t) where P◦ is the interior of P. Lastly, we can write

EhrP(z) =

∑d
k=1A(d, k)

(1− z)d+1

Theorem 2.2. Let P be the unit d-simplex. Then:

LP(t) =

(
t+ d

d

)
and satisfies LP◦(t) = (−1)dLP(−t). Lastly, we can write

EhrP(z) =
1

(1− z)d+1

Proof. Note that
LP(t) = #{m1 + · · ·+md+1 = t}

By a standard combinatorial argument, this is
(
t+d
d

)
. Now notice by the logic used for the

coin exchange problem

EhrP(z) =

(∑
m1≥0

xm1

)(∑
m1≥0

xm2

)
· · ·

 ∑
md+1≥0

xm1


=

1

(1− z)d+1
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2.2 Pick’s Theorem

We’ll end with one of the simplest theorems relating point counting to areas:

Theorem 2.3. (Pick’s Theorem) Let P be a convex polygon with coordinates at integer pairs.
If I is the number of interior points of P and B is the number of boundary points then the
area of P is

[P ] = −1 + I +
B

2

Proof. We follow the proof from Computing the Continuous Discretely. Suppose P is the
union of convex polygons P1 and P2 which are disjoint aside from sharing a single side. Then
we claim if Pick’s theorem holds for P1 and P2 then it holds for P . By disjointness

[P1] + [P2] = [P ]

and so

[P ] = −2 + I1 + I2 +
B1 +B2

2

Let S be the side shared by P1,P2 with vertices v1, v2. Then the interior points of P will be
the interior points I1, I2 plus the points of S minus v1, v2. Now notice every point is being
counted precisely once in I1+I2 and B1+B2

2
except for those on S each of which we are adding

two halves for. As all of the points except for v1, v2 become interior points that means we
are only over counting for v1, v2. However, we are overcounting by precisely 1. Thus:

−2 + I1 + I2 +
B1 +B2

2
= −2 + I +

B

2
+ 1 = −1 + I +

B

2

as desired. By similar reasoning we can also show that if the theorem holds for P1,P then
it holds for P2. Now notice for any polygon with greater than or equal to 3 sides, we can
simply split it into two convex polygons with fewer sides each. Thus it suffices to prove the
theorem for triangles.

Now given any triangle we can adjoin right triangles to it to form a rectangle. Thus
by the additive property it suffices to prove the theorem for rectangles and right triangles
with sides parallel to the axes. As two isomorphic right triangles can be combined to form
a rectangle, by additivity it suffices to prove the theorem for right triangles which can be
shown via a computation.

Corollary 2.1. Let P be an integral convex polygon with B points on its boundary and area
A. Then

LP(t) = At2 +
1

2
Bt+ 1

and

EhrP(z) =
(A− B

2
+ 1)z2 + (A+ B

2
− 2)z + 1

(1− z)3
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