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ABSTRACT
Approximate Converse Theorem

Min Lee

The theme of this thesis is an “approximate converse theorem” for globally unramified
cuspidal representations of PGL(n,A), n > 2, which is inspired by [19] and [3]. For
a given set of Langlands parameters for some places of (Q, we can compute ¢ > 0 such
that there exists a genuine globally unramified cuspidal representation, whose Langlands

parameters are within e of the given ones for finitely many places.
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Chapter 1
INTRODUCTION

1.1 Cuspidal representations and Maass forms

Let A be the ring of adeles over Q. Let n > 2 be an integer and 7 be a cuspidal automorphic
representation for A*\GL(n,A). By the tensor product theorem ([L1], [17], [8]), there
exists an irreducible admissible generic unitary local representation , of Q;\GL(n,Q,)
for each place v < o of @Q, such that 7 =~ ®/m,. Here the local representation 7, is

spherical except at finitely many places. Define

at(n) = {(ab o) eCP

Zn]ajZO}.
j=1

Fix a place v < oo. For any o = (avy, . .., o) € ai(n), there exists an unramified character

Xa (for the minimal parabolic subgroup of GL(n,Q,)) defined by

1 * n . 1 *
- (( )) - H |xj|§(n—23+1)+ozj : (for ( ) e GL(TL,@v)) .
Tn j:1 ZTn

For each place v < o, if 7, is spherical, then there exists o, € af(n) such that w, = m,(0,),
where 7,(0,) is the irreducible spherical principal series representation (or the irreducible
spherical subquotient of the reducible principal series representation), associated to the
character x,,. We call o, the Langlands parameter associated to m,. For a cuspidal auto-

morphic representation m = ®,m, define

o= {UU € ag(n)

T, is spherical and }

Ty = Ty(0y)

Then o is called the automorphic parameter for 7. By the multiplicity one theorem (first

proved by Casselman [5]] for GL(2) in 1975, the strong version for GL(2) proved in [17]



by Jacquet and Langlands in 1970, and generalized separately by Shalika [25]], Piatetski-
Shapiro [23] and by Gelfand and Kazhdan [10]), it follows that the automorphic parameter

o is uniquely determined by 7.

At the Conference on Analytic number theory in higher rank groups, P. Sarnak sug-

gested the following problem:

Given a positive number X, a set S of places and a representation 7, of GL(n,Q,)
(for v € S), give an algorithm to determine whether or not there is a global automorphic
representation w with ¢(r) < X and o, within € of 7, for v € S (in whatever reasonable

sense). Here c() is the analytic conductor of .

In this thesis, this problem is solved for the globally unramified case.

Let 7 =~ ®,7, be a globally unramified cuspidal representation of A*\G L(n, A). Then
T, is spherical for every v < o, and 0 = {0, € ai:(n) | m, = m,(0,), Yv < oo} is the
automorphic parameter of 7 such that 7 =~ ®! 7,(0,) =: 7(o). There exists a unique (up to
constant) Hecke-Maass form f, (associated to 7w(c0)) on SL(n, Z) for the generalized upper
half plane H" = R*\GL(n,R)/O(n,R). The Whittaker-Fourier coefficients of f, are de-
termined by the automorphic parameter 0. Moreover, there is a one-to-one correspondence
between unramified cuspidal representation of A*\G'L(n, A) and Hecke-Maass forms on

SL(n,Z).

The existence of Maass forms on SL(2,7Z) was first proved by Selberg [24] in 1956.

He used the trace formula as a tool to obtain Weyl’s law, which gives an asymptotic count



for the number of Maass forms with Laplacian eigenvalue |A\| < X as X — oo. In 2001,
Selberg’s method was extended by Miller [21] to obtain Weyl’s law for Maass forms on
SL(3,7). In 2004, Miiller [22] further extended Selberg’s method to obtain Weyl’s law for

Maass forms on SL(n,Z), n = 2.

More recently, in 2007, Lindenstrauss and Venkatesh obtained Weyl’s law for Maass
forms on G(Z)\G(R)/K [19] where G is a split semisimple group over Q and K, < G
is the maximal compact subgroup. In the Appendix [[19]], they explain a constructive proof
of the existence of Maass forms. Our work is inspired by this proof; for a given set of
Langlands parameters, we give an explicit bound, which ensures that there exists a genuine
unramified cuspidal representation within the boundary of the finite subset of the given pa-

rameters.

1.2 Approximate converse theorem

The converse theorem of Cogdell and Piatetski-Shapiro ([6], [7]) proves that an L-function
is the Mellin transform of an automorphic form on G'L(n) if it satisfies a certain infinite
class of twisted functional equations. In this thesis we introduce the approximate converse
theorem whose main aim is to prove that an L-function is the Mellin transform of a function
which is very close to an actual automorphic form provided a finite set of conditions are
satisfied. We now explicitly describe these conditions and quantify the notion of closeness

in this context.



Let M be a set of places of QQ including co. Let n > 2 be an integer. Define

0y { ) € at(n) ‘ 7o (£y) is an irreducible unitary spherical } .

generic representation for QX\GL(n,Q,), (ve M)

Then ¢, is called the quasi-automorphic parameter for M. For example, the automorphic

parameter for a cuspidal automorphic representation is a quasi-automorphic parameter.

We use the usual quasi-mode construction for a given quasi-automorphic parameter
¢ys. The Whittaker-Fourier coefficient can be constructed from the parameters ¢, € ¢, for
each v € M. By summing these constructed coefficients, we define a function Fy,,(z) on
the upper half plane H" =~ R*\GL(n,R)/O(n,R) which is essentially a finite Whittaker-
Fourier expansion. The function F},, is called a quasi-Maass form associated to ¢j;. In
general the quasi-Maass form is not automorphic; but it is an eigenform of the Casimir

operators A,(lj) (forj =1,2,...,n— 1), such that
Ag)FfM (Z) = Ag)(goo) ) FfM (2)

with eigenvalues A () € C. Also, for each positive integer N > 1, the quasi-Maass

form is an eigenfunction of the Hecke operator 7, such that
TNF@M (Z) = AZM (N) ’ FZM (Z)

with eigenvalues Ay,,(N) € C. Foreach j = 1,...,n — 1, and a prime ¢ € M, define the

Hecke operators
T = (—1)*Tpen TOY, (qu) = T,, for any integer r > 0) :

Then
T(j)FeM (Z) = /\gj) (fq) ’ FZM (Z)



for )\éj)(fq) e C.

Let M and M’ be sets of places of QQ including oo and let ¢); and o, be quasi-
automorphic parameters for M and M’, respectively. Let S € M n M’ be a finite subset

including co. Let € > (. The quasi-automorphic parameters lyr and oy are e-close for S'if

n—1
SN AD () = AD (o) + Z\w )" < e
j=1 g€s, j=1

finite

Fix the fundamental domain §" =~ SL(n,Z)\H" (described in Proposition and

based on [14]). Define an automorphic lifting

Fiy,(2) = Fi, (72),
for z € H" and vy € SL(n,Z), which is uniquely determined by vz € §". Then ﬁgM is
automorphic for SL(n,Z), and square-integrable. But it is neither smooth nor cuspidal in
general. We can get the distance between the given quasi-automorphic parameter ¢,; and
a genuine automorphic parameter, by determining the distance between the quasi-Maass

form Fj,, and its automorphic lifting.

For 6 > 0 and a finite set S of places of Q including oo, let B"(d;.S) be a region
bounded by ¢ and finite primes in .S, around the neighborhood of the boundary of the
fundamental domain §", as described in (5.1). Let Hs be a smooth compactly supported,
bi-(R* - O(n,R))-invariant function on R*\GL(n, R), which is given in
Theorem 1.1. (Approximate converse theorem) Let n = 2 be an integer, M be a set
of places of Q including oo, and let {,; = {{, € ai.(n), v e M} be a quasi-automorphic
parameter. Let Fy,, be a quasi-Maass form associated to (). Define

6007 g n H n (1 — pf(ef‘,il JF"'JFZT,‘J;C)*(EP,]&+"'+Zp»jk))

<1 <-<Jp<n 1<iy<--ip<n



and assume that h (boo, L) # O for some prime p € M. Assume that H;(L) # 0 where Hy

is the spherical transform of Hy. Let S be a finite subset of M including oo.

Then there exists a genuine unramified cuspidal automorphic representation (o) for
A*\GL(n, A) with an automorphic parameter c = {0, € af(n), v < o} such that {y;

and o are e-close for S where

sup ‘Fer FfM ) CP(”?& S)
B"(5;5)
~ 2
sl it )] 52 55 W )P oy
for some
-1
- G)( *
0<d< 5 ln x| {‘)\OO ‘} max J 1d*z +1

H™,
u(z)=t

where C,(n,0;S) > 0 is a constant and W (*; L) is the Whittaker function on H". Here

T > 1is a positive constant determined by ¢, the prime p and n.

In this theorem, we see that the closeness for the given quasi-automorphic parameter
and a geuniue automorphic parameter mainly depends on the difference between the quasi-
Maass form of the given quasi-automorphic parameter and its automorphic lifting on the
neighborhood of the boundary of the fundamental domain §”. This theorem does not give
uniqueness. However, by Remark 8 in [4], if the difference between F, v, and [y, is small
enough when S is sufficiently large, then the cuspidal representation should be uniquely de-
termined. The neighborhood for the boundary of the fundamental domain becomes much
larger as the primes in S becomes bigger. The formula for C,(n,d; S) is given in (5.5).
A more general result is described in Theorem where we take arbitrary ¢ > 0 and an

arbitrary compactly supported bi-(R* - O(n,R))-invariant smooth function Hy, such that



I/{\g(&o) # 0 for the given Langlnads parameter /4, at co. It is an interesting problem to
choose Hj so that the e in Theorem [I.1] (or in Theorem is as small as possible.

The constant Hz (£, £p) turns out to be an eigenvalue of the annihilating operator 77,
which maps L? (SL(n, Z)\H") to cuspidal functions, i.e., i} (EM * Hg) is a smooth cus-
pidal automorphic function. The annihilating operator 3 plays an important role in the
proof of the approximate converse theorem. It is constructed by following Lindenstrauss
and Venkatesh [19]. They observe that there are strong relations between the spectrum of
the Eisenstein series at different places. From this observation, they construct the convo-
lution operator X, whose image is purely cuspidal. They use this operator N to get Weyl’s
law for cusp forms in [19]. For example, for automorphic functions on SL(2,7Z), for any
prime p,

R=1T,—pVi-a —p-via
and it also has a rigorous interpretation in terms of convolution operators. More detailed

explanation and explicit description of ) are given in chapter

In the 1970’s a number of authors considered the problem of computing Maass forms
on PSL(2,7) numerically. The first notable algorithms for computing Maass forms on
PSL(2,7)\H? are due to Stark in [26] and Hejhal in [13]]. In [27], Hejhal’s algorithm was

used by Then to compute large Laplace eigenvalues on PSL(2, Z)\H?.

In [3]], Booker, Strombergsson and Venkatesh compute the Laplace and Hecke eigen-
values for Maass forms, to over 1000 decimal places, for the first few Maass forms on
PSL(2,7Z)\H?. Their paper is another inspiration and source for the approximate converse

theorem. In particular, we followed the method for verification of their computation in



Proposition 2, [3]]. The € in the approximate converse theorem may recover (38) in [3]
weakly, with good choices for ¢ and Hj, for the case n = 2 and S = co. In [3] they choose

0 < 4\% for a given Laplacian eigenvalue A\, and H; as

2
-2 {1 z2 1 el 22 1 52 .
H&(z):{?)(l_% Glrs+y)-1) . is(vrs+y) 1<%

0, otherwise,

where z = (§ 7) € H2. See [3] for more details.

Recently, Booker and his student Bian computed the Laplace and Hecke eigenvalues for
Maass forms on PSL(3, Z)\H? [2], [1]]. Moreover, Mezhericher presented an algorithm for
evaluating a (quasi-)Maass form for SL(3,7Z) in his thesis [20]. We expect that we might

use the approximate converse theorem to certify Bian’s computations.

1.3 Format of Thesis

The main theorem is stated and proved in chapter 5| In chapter[2] we review the theory of
automorphic forms for SL(n,Z)\H" and introduce notations. The main reference for this
chapter is [12]]. In chapter[3] we review the theory of automorphic cuspidal representation
for A\GL(n,A). The main reference for this chapter is [13]. In we define the
quasi-automorphic parameter and the quasi-Maass form of the given quasi-automorphic
parameter. The annihilating operator ) is defined in chapter 4] Several properties of the

annihilating operator are proved in



Chapter 2

AUTOMORPHIC FUNCTIONS FOR
SL(n,Z)\GL(n,R)/(O(n,R) - R*)

2.1 Parabolic subgroups

Let n > 1 be an integer. For an integer 1 < r < n, define an ordered partition of n to be a

set of integers (ny,...,n,) where 1 <nq,...,n, <nandny +---+n, =n.

Definition 2.1. (Parabolic subgroups) Fix an integer n > 1 and let R be a commu-
tative ring with identity 1. A subgroup P of GL(n, R) is said to be parabolic if there

exists an ordered partition (ny,...,n,) of n and an element g € GL(n, R) such that

n, (R) is the standard parabolic of GL(n, R) associ-

..........

ated to the partition (ny, . .., n,) defined by

Ay *
Py, (R) 1= e GL(n,R) | Aie GL(n;,R), 1<i<rp. (2.1)
Ay
The integer r is termed the rank of the parabolic subgroup P,, . . (R). Define
A
My, 0, (R) == A;e GL(ni, R), 1 <i<r (2.2)

A,
n.(R)g™! a Levi factor of

..........

P. Define

o (R) = e GL(n,R) %, (2.3)
I,

-----

where I, is the k x k identity matrix for an integer k = 1, to be the unipotent radical of

n.(R)g ™! the unipotent radical of P.

----------
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Two standard parabolic subgroups Py, .. (R) and Py .. (R) of GL(n, R) corre-

-----

sponding to the partitions n = ny + --- +n, = n{ + --- + n, are said to be associated if

ni,...,n.p ={ny,...,n.}. Wewrite B, _, (R)~ Py . (R),if P, ., and Py .
1 r 1 r 8 1 1o

................

are associated.

Let n > 1 be an integer and fix an ordered partition (n4,...,n,) of n. For each j =
1,...,r define a map
My, 0 Py (R) = GL(n;, R), such that (2.4)
m,(g) *
m, (9) *
9= € Pryn, (R) (mn;(9) € GL(n;, R)).

mn; (9)

The standard parabolic subgroup associated to the partition n = ny + - - - + n, (denoted by

P,, . (R))is defined to be the group of all matrices of the form
ma(g) o+ . s
m,,(g) ... x
g= B . |ecrin, ) 2.5)
m,, (9)

where m,,,(g) € GL(n;, R) fori =1,... r.
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Let n > 1 be an integer. For » = n, let

N(n,R) :=Uy,,.1(R) (2.6)
(/1 T12 13 T1in )
I o3 T2
= < : r;je Rforl <i<j<njcGL(n,R),
1z,
L 1
ay
A(n,R) == My, 1(R) = 0#ajeRforj=1,...,np < GL(n, R),
Qn,
and
P(n,R) = P11 1(R) = N(n,R) - A(n, R).

Here P(n, R) is called the minimal parabolic subgroup of GL(n, R).

2.2 Coordinates for GL(n,R)

Definition 2.2. (Generalized Upper half plane) Let n > 2 be an integer. Define the

generalized upper half plane H" to be a set of matrices z € GL(n,R) and z = xy such

that
1 Ti2 T13 ... Tin
1 Tog3 ... Ton
x = : € N(n,R) (2.7)
1 Tn—1,n
1
and
Y1 Yn-1
y = - € A(n,R), (W1 Yn1 > 0). (2.8)
Y1
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By the Iwasawa Decomposition,
GL(n,R) = N(n,R)A(n,R)O(n,R), (2.9)

so H* = GL(n,R)/(R* - O(n,R)), i.e., for any g € GL(n,R) there exist unique = €
N(n,R) as in (2.7), and y € A(n,R) as in (2.8), some k£ € O(n,R) and a positive real

number d, such that
g=d-xy-k=d-z-k, (z = xzy e H"). (2.10)

Remark 2.3. Let W,, denote the Weyl group of GL(n,R), consisting of all n x n matrices
in SL(n,Z) nO(n,R) which have exactly one +1 in each row and column. The Weyl group
W, acts on the diagonal matrices as a permutation group. For any w € W, there exists a

unique permutation o,, on n symbols such that

ai a gy, (1)
w. =W w = (2.11)

Cln an acru,(n)
ai
for any diagonal matrix ( ) with a; € R (or a; € C).
By the Cartan decomposition,
GL(n,R) = O(n,R)A(n,R)O(n, R). (2.12)

So for any g € GL(n, R) there exist ki, k2 € O(n,R) and a unique A(g) € A*(n,RT) (up

to the conjugation by the Weyl group WW,,) such that
g =|detg|n -k - A(g) - ko, (2.13)
where

A'(n,RT) = {ae A(n,R7) | deta =1}. (2.14)
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For an integer n > 1, define the set
a(n) :={a=(as,...,a,) eR" |y +-- -+, =0}. (2.15)

Definition 2.4. Let n = 2 be an integer. For g € GL(n,R) define In : GL(n,R) — a(n)

such that

In(A(g)) := (Inay,...,Ina,) € a(n) (2.16)

where A(g) = ( ) with ay,...,a, > 0 as in (2.13). This In(A(g)) is uniquely

determined up to the Weyl group action, i.e., permutation for A(g). Moreover, Ina; + - - - +

Ina, = 0 since det A(g) = 1.

Conversely, define exp : a(n) — A'(n,R") such that

e
exp(h) := e A'(n,RT) (2.17)
ehm
forany h = (hy,..., h,) € a(n).
For any g € GL(n,R) define
IIn A(g)|| := v/(Inay)? + - - - + (Ina,)? (2.18)

ai
forA(g)z( )withal,...,an>Oanda1---an=1asin 2.13).

Lemma 2.5. (Relations between the coordinates for generalized upper half plane and
Cartan decomposition) Let n > 2 be an integer. For any g € GL(n,R), by the Iwasawa

decomposition and Cartan decomposition, we have
e

g=d- 2y ki = (|det g|)7k ko, (Ktwa, k1, ko € O(n, R)),

Qn
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where d > 0 with d" - det y = |det g

’

1 T j Y1 Yn—1
T = € N(n,R), Yy = e A(n,R"),

and In(A(g)) = (a1, ..., a,) € a(n). Then

e~20m AW < U < 62\\11114(9)”7 (2.19)

el AWI oy < Al AW (forj=2,...,n—1).

Proof. Let z := xy € H". Then for g € GL(n,R),

et
z =zy = (det y)%kl kgkfwla,
e
and
62041
z- 'z =xy* 'z = (det y)%k 'k
€2an
So
€2a1
xy*(det y)’% tr =k 'k,
62an

for k = k; € O(n,R). Compare the diagonal parts. For the left hand side, for j = 1,...,n,

we have
?J} + y}+1x?,j+1 t+o- y;xinv (Tnn = 1)
on the diagonal, where y; = (det y) (- “Yn—j)? and y), = (det y) . For the right

hand side, for j = 1, ..., n, we have

2 2aq 2 2«
]{ZJ’1€ + Tt + k?],ne "
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on the diagonal, where

kl,l kl,n
k‘g,l R /fgm

k= ] . € O(n,R).
kn 1 . kn,n

Soforany j =1,...,n,

/ 4 ! 2 /2 1.2 2a1 2 2«
Yi S Y5 T YinTiin o R T, = K et e ket

< (k2 + o 4 K2, ) = 2lm Al

Since ||In A(g)|] = || In A(g™")]|], we also have
y}_l < 2l AW (forj=1,...,n)
SO
e AmAON < yf < AMAGN (forj=1,....n).
Forj=1,...,n— 1, we have

1
—[[InA(g)l| < ——In(dety) +Inyy + - + Inyu; < || In Ag)]]
and
1
—[ln A(g)[| < = In(dety) < || In A(g)]].

Therefore, we have

—2|[In A(g)[| < Inyr < 2[|In A(g)|]]

and

Al A(g)|| <Iny; < 4| mA@),  (forj=1,...,n—1).
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Definition 2.6. (Siegel Sets) Fix a,b > 0. We define the Siegel set ¥, ;, — H" to be the set

of all matrices of the form

1 T12 213 --- Tin 1Yz Yn—1
1 x93 ... @2y y2- - Yn—-2
e H",
1 Tn—1,n Y1
1 1

with |x; ;| < bforl <i<j<nandy, >aforl <i<n-—1

Definition 2.7. (Fundamental Domain) For n > 2, we define §" to be the subset of the

Siegel set 2?,%’ satisfying:
e for any z € H", there exists v € SL(n,Z) such that vz € §",
e forany z € §", vz ¢ §" for any v € SL(n,7Z) (with vy # I,).
Then §" becomes a fundamental domain for SL(n,Z) and
§" = SL(n, Z)\H".

We introduce the partial Iwasawa decomposition for H" to describe the fundamental

domain explicitly. Let n > 2 be an integer. For any z € H", we may write

1 o ... Tipa Tin Y Yn—1
1 T23 R Ton Y1 Yn—2
Z =
1 Tn—1,n W
1 1
Tin 0
= L ; A (2.20)
xnfl,n 0
0 0 1 0 . 0 1
where
1 Tin-1\ (Y2 " Yn1
Z,: EHn_l.
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The following proposition is an interpretation of §2 in [[14].

Proposition 2.8. (Explicit Description of the Fundamental domain) Let n > 2 be an

integer and " be the closure of the fundamental domain .

(1) for n = 2, the closure of the fundamental domain F? is the set of z = (1 %) (¥9) eH”

for x,y € Randy > 0 satisfying

DO | —

2 +y* = land|z| <

(2) forn > 2, the closure of the fundamental domain §" is the set of

forzy,...,x, 1 € Randy, > 0 satisfying the following conditions:
(i) " el
b1
(ii) for any ( £ ) € GL(n,Z)/{£I,}, we have
Cl ... Cpn—1 7g1

Cc1
(a+cimy+- o+ cparn 1) il .. ocp1)? Y ( ; ) > 1;
C

lzi2 ... T1n-1 21
1 ... zapn1 22 Yrtn—t YL Yn—2
ie,ifz = . : . . e H", then
1 1

1
(a+aTin+ -+ Co1Zn1n)’
+yi [C%(yz Y1)’ (AT + ) (Yo Yna)? H
+ (e + ot emia i+ ey Yn )

(111 + -+ CpaTpop1 + Cn71)2] = 1;
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(iii) |zj| < Sforj=1,...,n—1

Proof. The proof is again an interpretation of §2 in [14]]. Let SP, denote the space of
quadratic forms of determinant 1, which is identified by

O(n,R)\GL(n,R) — SP,
O(n,R) - g = lg-g=:Z.

Then v € GL(n,Z)/{+1,} acts on SP,, discontinuously by Z — Z[v] := '~vZ~. Every

Z € 8P, can be represented as

Yy 1 0 c. 0 1 Tn—1 1
0 0
Z = ) .
. ymZ’ . [n,1
0 0
withy > 0, Z/ € SP, 1 and x1,...,2, 1 € R by the partial Iwasawa decomposition

(2.20). By repeating this, we can get the Iwasawa decompositon for Z € SP,,, namely
. ;

Yy E Li,j

» e 2 .‘
(yl ynfl) 1

with y1,...,Yn—1,¥ > 0, 7;; € R, (for 1 <4 < j < n). In [14], by using the partial Iwa-

sawa decomposition, the fundamental domain F,, = SP,,/ (GL(n,Z)/{*1,}) is described

y~1 0 0 (1)$n71 . ox
as the set of all Z = ( T > [ ( : ) ] € SP,, satisfying:
: yn—l VA : In_1
0 0

(i) Z' e Fu;

Cn—1

(i) forany(¢ %) e GL(n,Z)/{+1,}, a€Z, b,c= ( > € Z" ' and D € Mat(n —

Cc1

1,Z), we must have

((l + Tp—1Cp—1 + - 1’161)2 + y% (Cn,1 N Cl) 7' . = 17
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(iii) for j =1,2,...,n — 2, we have
1
O<In_1<—, |$]|<_-
2

Let
1
_ . _ 1 _ Wp—1
T T O e
1

We may identify SP,, by H" via

H" — SP,

1

z > w, ((det z)’ﬁz) - ((det z)’iz) w, =: Z.

T1,n 0

Then for any z = < In—1 > ( e > € H" and 2’ € H" !,
Tn—1,n 0
0..0 1 0..01

Z = w, ((det z)_%z) St ((det z)_%z) (1

(det z) = 1 Zpoy ... 1

- 2 . € Spna
(det z) =D 7’ : I, 1

where

Z'=wp_4 ((det z')fﬁz') St ((det z')fﬁz') Wy_1 € SPh_1.
So for v € SL(n,Z),

Yz > wy, ((det z)_%yz) St ((det z)_%72> wy, = Z[w, "yw,],

and w,, "yw, € SL(n,Z). Therefore by using the fundamental domain F,, for SP,,, we

can get the explicit description for the fundamental domain §" = SL(n, Z)\H". O

Consider GL(n,R) or GL(n,R)/R*, with Haar measure dg, which is normalized as

J dk = f dk = 1.
O(n,R) O(n,R)/RX
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By [[12]], the left invariant G L(n,R)-measure d*z on H" can be given explicitly by the

formula

&z =d'wdsy, (2.22)
n—1
where d*zr = H dr,;, d*y = ny};k(nfk)fl
I<i<j<n k=1

2.3 Invariant differential operators

Let n > 2 be an integer and gl(n, R) be the Lie algebra of GL(n,R) with the Lie bracket
[,] given by [a, B] = af — Ba for «, 8 € gl(n,R). The universal enveloping algebra
of gl(n,R) can be realized as an algebra of differential operators D, acting on smooth

functions f : GL(n,R) — C. The action is given by

at (g + tga) (2.23)

D.f(g) := jt (g - exp(ta)) =3 .

t=0
for a € gl(n,R). For any o, 3 € gl(n,R), Doy3 = Do + Dg and Do 51 = [Dy, Dg] =
D, o Dg— Dgo D,. Here o is the composition of differential operators. The differential

operators D,, with a € gl(n,R) generate an associative algebra D" defined over R.

For 1 < i,j < n, let E;; € gl(n,R) be the matrix with 1 at the 7, jth entry and 0

elsewhere. Let D; ; = D, for1 <i,j <n.

Definition 2.9. (Casimir operators) Let n > 2 be an integer. For j = 1,....n — 1, we

define Casimir operators Aq(zj ) given by

B j + 1 Z Z Dll 7/2 12 13 s 0 D’ij+17’i1' (2.24)

i1=1 141

Let A, := AY be the Laplace operator.
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For n > 2, define Z(D") to be the center of the algebra of differential operators D". It
is well known that the Casimir operators Ag), ce ArDez (D™). Moreover every dif-
ferential operator which lies in Z(D™) can be expressed as a polynomial (with coefficients

in R) in the Casimir operators Ag), e A,(ln_l), ie.,
Z(D") =R[AD,... AlY]

(see [12]).

There is a standard procedure to construct simultaneous eigenfunctions of all differen-

tial operators of D € Z(D"). Let n > 2 be an integer and v = (vy,...,v, 1) € C"7L
Define
n—1n—1 b
Lg) =[] ]w"" (2.25)
i=1 j=1

1x12 T1,n Y1+ Yn—1
where ¢ = |detg|vlw< o ) < -, )k € GL(n,R) for z;;,y; € R,
.. : 1
1

i
y; > 0,with1 <i<j<nandke O(n,R). Here

1] ifi+j5<n
(n—i)(n—y) ifi+ji=n

Forj=1,....n—1,let

n—j 7j—1
Bi(v):=j- > k-vp+(n—3) Y k- vy (2.26)
k=1 k=1
Then
Y1 Yno1
g T8
I, : = n Y,
Y1 j=1
1

Clearly, Bj(v + p) = B;(v) + B;(u) for any v, p € C*1.
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Forv = (vy,...,v,_1) € C"!, the function I, is an eigenfunction of Z(D"). Define

Ay : Z(D") — C to be the character such that
DI, = \,(D)I, 2.27)
for any D € Z(D"). For any Dy, Dy € Z(D"), we have
Av(D1 o Da) = Ay (D1) - Au(Do),

A(Dy + Dy) = A\ (D1) + Au(Ds).

The Weyl group W, (defined in Remark actsonv = (vy,...,V, 1) in the following

way. For any w € W,,,

w == (p1,.. ., pae1) € C" Vifand only if I,_1 (y) = I,_1 (wy), (2.28)

n

Yi1-Yn—1
fory = ( ),yl,...,ynl >0.Herev —+ = (y —%,...,v, 1 — +). Then
1

for any w € W, we have \, = A, for any v € C"!, i.e,, I, and I,,, have the same

eigenvalues for Z(D").

Let a*(n) = a(n) as in (2.15) and

ag(n) :=a*(n) ®r C (2.29)

={l=,....0,)eC" | b1+ ---+4£,=0}.

Definition 2.10. Letn > 2 and v = (vy, ... ,v, 1) € C"\. The Langlands parameter for
v is defined to be
U (V) = (b1 (1), ..., loon(V)) € ai(n),

where
_nl i B (), forj=1,

L+ B, j(v) = Bu_j(v) forl<j<n, (2.30)
=l Bi(v), for j =n.
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Here Bj (for j = 1,...,n — 1) are defined in (2.26). Then (1 (v) + - - + Lo (v) = 0.

Remark 2.11. (i) The Langlands parameter is the same parameter defined in p.314-315,

[12].
(ii) Foranyv = (vy,...,vp_1) € C"71,
n—1 n )
g‘f (v n—25+1 Z'ﬂ;J 5%7 (V)+n72k+1
H(ylyn—j) -,.7( )+ p) :ny]k 1( k 2 )
j=1 j=1
n—1 B,

Lo (f) = Lo (V). (2.31)

(iv) The Weyl group W,, acts on the Langlands parameter as a permutation group. For

any w € W, there exists a permutation o,, on n symbols such that
foo (w.l/) = Oy (Eoo (I/)) = (éoo,gw(l)(y), Ce ,foo,gw(n)(l/)). (232)

(v) Since (@) and @ are linear, from the given loy, = (b1, . .., loon) € a5 (n) With
by + -+ Ly =0, wecan getv e C"1, satisfying LForj=1,...,n—1,

let
Vi(le) = % (Cos—losir 1), (b)) = (n(ln)s s vm 1(Le)). (233
Then loo(v) = v (L (V). Forj = 1,...,n — 1, define
AD(Co) 1= Ao,y (AD). (2.34)

The following Lemma is given in [12].
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Lemma 2.12. (Eigenvalues for D, ;) Letn > 2 and v = (11,...,v,—1) € C" 1. For
1<i,5<nandk =1,2,..., we have
Y k U
Dk-]l, _ ( 22]+1 + goo,j(”)) L, ifi=y, (2.35)
I , otherwise.

Here (oo (V) = (b1 (V), - ., loon(V)) € afe(n) is defined in (2.30).

Proposition 2.13. (The Laplace eigenvalue) Let n > 2 and v = (vq,...,v,_1). The

Laplace eigenvalue is

1 1 )

M(A,) = % (n® —n) - 5 (Cooq(V)? + -+ + Lo n(V)?) (2.36)

where A, is the Laplace operator in Definition Here loo(V) = (Lo 1 (V) -, loon(V))

is the Langlands parameter for v, defined in (2.30).

Y1-Yn—1
Proof. For any y = ( ) € A(n,R*) withyq,...,y, 1 > 0, consider A, I, (y).
1
Then

AL = -2 33Dy D)

i=175=1

:--{ZDHOD L)+ (DmoDj,Z-+DjﬁioDi,j)L,(y)}.

1<i<j<n
1, ifi=j,
Forl <i,j,7,j' <n,wehave[E,;, Ey j| = 0y jE; y—0; y By ; Where 0, ; =
So

4,59

[D D, ,] = D[Ei,jin/,j/] = 5i’,jDi,j’ — 5i,j’Di’,j

For 1 <17 < j < n, we have

DijoDji+ Djio Dy =2D;;0Dj; + Djj; — Dig,

0, otherwise °



and

D, ;o Dj,ifu(y)

Y1 Yn 1 t 1
0, | |
T Ot Oty " E E ty
1 1 t1=t2=0
For1 <i < j < n, we have
1 1
2 1 to
| 1 tB+1)72 ... —(tg+1)%
L (t3+1)3
1 1
1
_1 1
t2+1)"z ... (t%fl)% +t(t3 +1)2
= . ; mod O(n,R),
(t3+ 1)z

so D; ;o D;;I,(y) =0and

Here
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Therefore,

2.4 Maass forms

Definition 2.14. (Automorphic Function) For an integer n = 2, an automorphic function

for SL(n,Z) is a function f : H" — C such that

fvz) = f(2)
forany vy € SL(n,Z) and =z € H".

Consider L? (SL(n,Z)\H?) to be the space of automorphic functions f : H* — C
satisfying
= | ) e <
SL(n,Z)\H"

For fi, fo € L*(SL(n,Z)\H"), define the inner product

<f1, f2> = fl(Z)fg(Z) d*Z (237)

J SL(n,Z)\Hr
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Definition 2.15. (Cuspidal function) Let n > 2 be an integer and let f : H" — C be an

automorphic function for SL(n,Z). The function [ is cuspidal if

J f(uz) du =0 (2.38)

(SL(n,Z)ﬁUnl ,,,,, ne (Z))\Unl ,,,,, e (R)

for any partition ny + --- +n, = nandr = 2. Here Uy,

defined in (2.3).

.....

Let L2, (SL(n,Z)\H") denote the space of automorphic cuspidal functions. Let

cusp

C* (SL(n,Z)\H") (resp. Cgr,, (SL(n,Z)\H")) denote the space of smooth automorphic
functions (resp. smooth automorphic cuspidal functions) and C* ~ L? (SL(n,Z)\H")

(resp. C® n L2 (SL(n,Z)\H")) denote the space of smooth automorphic functions

cusp

(resp. smooth automorphic cuspidal functions), which are square integrable.

Letn > 2 be an integer and f € L2 (SL(n,Z)\H"). By Theorem 5.3.2 [12], f has

cusp

the following Fourier expansion:

f(2) (2.39)

- xSy S (7)o )

o
YEN(n—1,Z)\SL(n—1,Z) mi1=1 Mp—2=1mp_1#0
o ©
- 2 D 2 Wy ma)
YEN (n—1,Z)\SL{n—1,Z) m1=1 Mp—2=1myp_170

% eQm‘(mlxl_Ln +~~-+mn_2x;’3 +mn_1$12)

where (7 )z = 27y" € H" for z = xy € H" with z,y, 27, y" given as in (2.7) and (2.8).



Here the sum is independent of the choice of coset representative . Further

We(z; (ma, ..., mp_1))

' J(N(n,]R)mSL(n,Z))\N(n,R)

28

(2.40)

f(uz)€727ri(m1un_1,n+'--+mn_2u273+mn_1u172) d*u

— J L f(uz)e—Qﬂi(mlun—l,n+"'+mn—2u2,3+mn—lu1,2) d*u
Z\R Z\R
1ue Ul,n
with u = < RIS ) e N(n,R) and d*u = [[,c;op<, du;; asin (2.22). Here
Un—1,n = =
N(n,R) is the minimal unipotent radical defined in (2.6).
Definition 2.16. (Maass forms) Let n > 2 be an integer and v = (vy, ... ,v, 1) € C"7L

A smooth automorphic function f : H" — C is a Maass form of type v if:
(i) f isan eigenform of Z(D")i.e.,forj=1,...,n—1,
ADf =N (AD),
where \, is the Harish-Chandra character of type v defined in (2.27);
(ii) f is square-integrable, i.e.,

1713 = f FEP d*z < o
SL(n,Z)\Hn

(iii) f is cuspidal.

Definition 2.17. (Jacquet’s Whittaker function) Let n > 2 be an integer. For each v €

C"! and € = +1, we define a function W;( ;v,€) : H* — C such that

(—1)l%J 1 U2 .. Uln
1 1 <. U2n
Wy(zv,€) = J I, :
N(n,R) . ‘
1 1

exp (—2mi (eur o — Uz g — -+ — Up—14)) d*u,

z

(2.41)
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for SN(n,]R) d*u = Siooo e Siooo 1<E< du; j. The function Wj (z; v, €) is called Jacquet’s
<i<j<n

Whittaker function or Whittaker function of type v.

Remark 2.18. The Whittaker function of type v is an eigenfunction of Z(D") of type v,
i.e., forany D € Z(D"),

DWy(z;v,€) = M\J(D) - Wy(z;v,€).

Let f be a Maass form of type v = (v1,...,V, 1) € C" L. Then by (9.1.2) [12], f has

a Fourier-Whittaker expansion of the form

0

Aplma, ... mn
SR VI WD YD s i CRe)

’YGN(n IZ)\SL(H 1Z ml 1 Mp—2=1myu_1#0

my--- |mn71|

y WJ e . (7 1) 2, mp—1
mq |mn—1|
1

where A¢(my,...,m,_1) € C. Here A¢(myq,...,my_1) is called the (mq,...,m,_1)th

Fourier coefficient of f foreach 1 < my,..., m, o € Z and nonzero m,, | € Z.

2.5 Hecke operators and Hecke-Maass forms

Recall the general definition of Hecke operators from [[12]]. Let X be a topological space.
Consider a group G that acts continuously on X. Let I' be a discrete subgroup of G, and

set
Co(l):={geG |[T:(g7'Tg)nT] <wand[¢g"'Tg: (¢g7'Tg) "I <0}

to be the commensurator group of I' in GG. For any g € C(T"), we have a decomposition of

a double coset into disjoint right cosets of the form

gl = | JTau.
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For each such g € Ci(I"), the Hecke operator T, : L*(T\X) — L*(T'\X) is defined by

Tgf(x) = Z f(&il’),

where f € L?(T'\X), z € X. Fix a semiring A where I' € A < Cg(T"). The Hecke ring

consists of all formal sums

Z CkTgk

k
for ¢, € Z and g, € A. Since two double cosets are either identical or totally disjoint, it

follows that unions of double cosets are associated to elements in the Hecke ring. If there
exists an antiautomorphism g — ¢* satisfying (gh)* = h*¢g*, I'* = ' and (I'gl")* = I'gl’

for every g € A, the Hecke ring is commutative.

Definition 2.19. (Hecke Operator T) Let f : H" — C be a function. For each integer

N =1, we define a Hecke operator

Ci1 C2 ... Cin
Co - Con
Tnf(z) = —0 > f _ A (2.43)
Nz 7y =N, P
Oﬁciﬂj <cj (1<i<j<n) CTL

Clearly T is the identity operator.

For n = 2, the Hecke operators are self-adjoint with respect to the inner product (2.37),
i.e., for any fi, fo € L?(SL(2,Z)\H?) and any integer N > 1, we have (T f1, fo) =
(f1,Tn f2). For n = 3, the Hecke operator is no longer self-adjoint, but the adjoint operator
is again a Hecke operator and the Hecke operator commutes with its adjoint, so it is a

normal operator. The following Theorem is proved in Theorem 9.3.6, [12].

Theorem 2.20. Let n > 2 be an integer. Consider the Hecke operators Ty for any integer

N =1, defined in ([2.43). Let T}, be the adjoint operator which satisfies

(ITnf,9) = (f,Txg) (2.44)
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forall f,g € L* (SL(n,Z)\H"). Then T} is another Hecke operator which commutes with

T'n so that Ty is a normal operator. Explicitly,

—1
N Ci Ci2 ... Cin
. .. Co ... Con
TR () = >, S
? Iy ¢j=N, N ’
0<c; j<cj(1<i<j<n) N C,

(2.45)
Definition 2.21. (Hecke-Maass form) Letn > 2. A Maass form f is called a Hecke-Maass

form if it is an eigenfunction of all Hecke operators Ty for N > 1.

Assume that f is a Hecke-Maass form then f has the Fourier-Whittaker expansion as
in (2.42). Let A¢(my,...,m,_1) € C be the (my,...,m,_1)th Fourier coefficients for
0 # my,...,my,_1 € Z. Since f is a Hecke-Maass form, A¢(1,1,...,1) # 0. Assume that

A¢(1,...,1) = 1. Then we have the following (multiplicative) relations (see [12]):
o I'nf=A;(N,1,...,1)f for any integer N > 1;

e for (my,...,m, 1) € Z"', we have

Ar(mp_q,...,mq) = Ar(mq, ... ,my_1);

e for (my,...,m, 1) € Z" ', and a nonzero integer m, we have
Ar(m,1,...,D)As(mq,...,mp_1) (2.46)
_ Y A, <mlcn’ mQCl’”"mnlan) .
n _ C1 (6)) Cn—1
15—y ej=m,
cilmy,..., Cp—1lmp—1
Let p be a prime. Then forany £ = 1,2,.. .,
A1, DAL, 1p 1, 1) (2.47)
—_—
= Ar(p", 1, L p L D)+ Ap(pRT L L T,
—_ | S "

r r+1
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forr=1,...,n—2,and
Ap(", 1, DAL, L p) = AR L Lp) + AP LT,

Definition 2.22. Letn > 2 and fix a prime p. For j = 1,...,n — 1, define

7j—1
T = > (1) T TOHY (2.48)

k=0

and T 153 ) = T, for any integer v = 0 and ngo) is an identity operator.

Lemma 2.23. (Eigenvalues of Hecke operators T}ST)) Let n = 2 be an integer and
f be a Maass form for SL(n,Z). Then f has the Fourier-Whittaker expansion as in
2.42) and let Ag(my,...,m,_1) € C be the (my,...,m,_1)th Fourier coefficients for
0 # my,...,mu_1 € Z. Assume that f is an eigenfunction for T,; for j = 0,...,n and

Ai(1,...,1) =1 Thenforr=1,...,n—1,

TOf = Ap(1,...,1L,p,1,...,1)f
—_——

T

for any prime p.

Proof. By using the definition of T,ST) (forr =1,...,n—1) and the multiplicative relations

in 1i we get the eigenvalue of T,Sr) (forr=1,...,n—1). 0

Definition 2.24. Let n > 2 be an integer and fix a prime p. Let f : H" — C be an
eigenfunction for ngj)forj =1,...,n—1asin Deﬁnition ie,forj=1,...,n—1

there exists A )( f) € C such that

Define the parameters

6(f) = Gpa(f)s - bpn(f)) € ag(n) (2.49)
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such that
1+ Z J/\(J) + (=) = n (1— p—ém(f)x) .
j=1
Here al(n) < C" is the complex vector space defined in . So,forj=1,....n—1,

/\éj)(f) _ Z p*(fp,kl(f)Jr"'Hp,kj €))) (2.50)
1<k <-<kj<n
A (F)).

Remark 2.25. (i) Let f be a Hecke-Maass form with (my, ..., m, 1)th Fourier coeffi-
cients Ag(my,...,my_1) € Casin . Assume that Ag(1,...,1) = 1. Then we
have

— _Ep,j D+ epij- ) — j

N 1<ii<...<jr<n

foranyl <r<n-—1
(ii) The parameter is given by the equation

1—Af(p,1,.... )z +Ap(L,p,1,...,1) +--- (2.51)
+(—1)"A;(1,...,Lp ... 2" + -+ (=1)"2" =0
—_——
and it has solutions p~»)__ p~%=\) This equation comes from the pth factor

of the L-function of the Hecke-Maass form f. For s € C with R(s) > 1, let

e}

)= > A1, p ke (2.52)
=0

=1-Arp,1...,)p 4+ -+ (—1)"Ap(1,...,1,p,1,...,p " 4+
—_———

r
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(see [I2)]). Conversely, if the parameters (,(f) € af(n) is given then we can deter-

mine A¢(1,...,1,p,1,... 1) foreachr =1,...,n— 1.
———

T

Recall the definition of dual Maass forms and the properties from Proposition 9.2.1,

[12].

Proposition 2.26. (Dual Maass forms) Let ¢(z) be a Maass form of typev = (11, ... ,Vp_1) €

C" L, Then

is a Maass form of type v = (vVy_1,...,1v1) for SL(n,7Z). The Maass form & is called

the dual Maass form. If A(mq,...,m, 1) is the (mq, ..., m, 1)th Fourier coefficient of

¢ then A(my,_1,...,my) is the corresponding Fourier coefficient of (E If o = 5, then the

Maass form ¢ is called the self-dual Maass form.

Remark 2.27. Let f be a Hecke-Maass form of type v. Then the dual Maass form fof type

v has the following Langlands parameters.

(i)

(ii)

v = 0. Since Bj(V) = B,,_;(v)forj =1,...,n— 1, we have
goo(.f) = 600(17) = _goo,nfjJrl(V) = _goo,nfjJrl(f)? (forj = 1a s 7n)

N

v = p, prime: Since

A1, 1,p1,...,1) = As(1,...,1,p,1,...,1), orj=1,....n—1),
i p ) = Ag( p ), (forj )

J n—j

we have
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2.6 Eisenstein series

We defined parabolic subgroups, their Levi parts and unipotent radicals in Definition [2.1

Then for each partition n = ny + - - - + n,. with rank 1 < r < n, we have the factorization

----------

-----

m, (¢ 0 ... 0
My, (g) 0
g€ Un,,.n(R) i
mnr (g)

where m,,,(g) € GL(n;,R) fori =1,...,r.

Let n > 2 be an integer and fix a partitionn =ny +--- +n, with1 <nq,... ., n, <n.
For each i = 1,...,r, let ¢; be either a Maass form for SL(n;, Z)\H" of type u; =
(fits- -y fin;—1) € C%~ ! or a constant with p; = (0,...,0). Fort = (¢1,...,t,) € C"

with nit; + - - - + n,t, = 0, define a function

by the formula

" forge P, .. (R).

.....

(@t 60 - 60) = [ ] Gulma(9)) - [det(m (9))

- (2.53)
Foreach i = 1,7, Tet ¢u(hn (g£)) = ¢1(h,(9)) and [det(mn, (9k))] = |det(my, ()]
(2t bns. . 0,) forg = dozk

withz € H",de R*and k € O(n,R). Letn; =0andn; = ny+---+mn; ;fori =2,...,r.

where k € O(n,R). SoIp, . (g;t;¢1,...,6,) = Ip,,

,,,,,,,,,,

There exists a unique v = (vy,...,v,_1) € C"! (up to the action of the Weyl group W,,)
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such that Ip, . (#;t;¢1,...,,) is an eigenfunction for Z(D") of type v. Furthermore,

AAAAA

]_[ yprw) (2.54)

n;—1

njt; B () +(nj—k)t;
= H ((yl o 'yn*nrnj) e H ynﬁnlj-—nj-‘rk )
j=1 k=1
Y1+ Yn—1
for any y = € A(n,R7) (see Proposition 10.9.1, [12]]). Then for
1

1<ig<n-—1,

[ Bi_(neny) (1) + (n — i)ty

fn—m+1l<i<n—1

B(I/) .y nity + - +7’Lj_1tj 1+ B (n—n;—n;) (Iuj) ( -1 — )

' if 2 < randn—n]—n]+1<z n—mn;—1
n1t1+---+njtj,

ifi=n—n; —n;.

(2.55)
Therefore, by (2.30), for 1 < j <randn; + 1 < i <n; + n;, we have
n+n
loi(v) = <T 4 m) i, (117). (2.56)

Definition 2.28. (Eisenstein series) Let n = 2 be an integer and fix an ordered partition
n=mny+---+n.withl <nq....,n. <n. Foreachi = 1,...,r, let ¢; be either a
Maass form for SL(n;, Z)\H" of type p; = (fti1;- - -, tin,—1) € C"~ ! or a constant with
wi =(0,...,0). Lett = (t1,...,t.) € C" withnyt; + - - - + n,t, = 0. Define the Eisenstein

series by the infinite series

,,,,, w(Ztidr, . dy) (2.57)
= Z IPn1 ,,,,, nr(r)/zatv ¢17"'7¢r)

V€(Pay ..o (2)NSL(n,Z) \SL(n,Z)

for z € H™.
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Remark 2.29. (i) Since Ip, ., (#;t;¢1,...,¢.) isactually a function on H", the Eisen-

,,,,,

stein series are well-defined on H", but they are not square-integrable.

(ii) Eisenstein series are automorphic, i.e., for any v € SL(n,Z), we have

nT»(,yZ;t;gbl?“'?QsT):EPnl AAAAA n,-(z;t;¢17""¢7')7 (ZEHn)

,,,,,

(iii) Each Eisenstein series is an eigenfunction of type v of Z(D™) where v is given by the

formula .

The Fourier coefficients for Eisenstein series are given in Proposition 10.9.3 [12]].

Proposition 2.30. Let n > 2 and fix a partitionn =ny + ---+n, withl < nq,...,n, <
n. Foreachi = 1,...,r, let ¢; be either a Hecke-Maass form for SL(n;, Z)\H" or a
constant. Lett = (t1,...,t.) € C" withnity + - -+ + n,t, = 0. Then the Eisenstein series
w(Zits d1, .., @) Us an eigenfunction of the Hecke operators T (for any N > 1)

.....

with eigenvalues

_n—1 - nit ti+m;
Ao, (N) =N > T] <A¢j(0j)0j 2 " *”) (2.58)
A =t
-1 m—lyy ma—l nr=lyy 4o
- N~ "% Z Ay (C) -+ Ay, (C) - C) 2 +t ;> otz ot 7
Cq-Cr=N
1stEZ

where 1 = 0 and n; = ny + -+ +nj_y (for j = 2,...,r). Here Ay, (Cj) is the Hecke

eigenvalue of Tc; for ¢;.

Remark 2.31. If ¢; is a constant, then

1 nj—l
Tobi = |G 7 (H d) X2 (2.59)
i\ k=1
n;—1 njfl
and Ay (Cj) =C; 7 . (n d’,j—1>.

didn=C; \ k=1
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Now, we can extend the parameters defined in Definition 2.24, Let n > 2 and fix a
partiton n = ny + --- +n, with 1 < ny,...,n. < n. Foreachi = 1,...,r, let ¢;
be either a Maass form for SL(n;, Z)\H" or a constant. Let ¢t = (¢,...,t,.) € C" with

nity + -~ +n,.t, = 0. Let E(2) := Ep, (z;t;01,...,¢,) then

nj—l

_k(n=1) r j j
Ap(*) =p~ 2 M T TAs e

Cy--Cr=pk, j=1
1stEZ

for a prime p and k£ > 0. By (2.52), define

U(E) == (lp1(E), ..., lyn(E)) € at(n) (2.60)

in the following way. For R(s) > 0, s € C, we have

- r © n;—n
Z AE(pk)p_kS = n Z (A¢7_ (p’fj)pkj<J2+tj+m)kjS>
k=0 j=1 \kj= '
r nj B .
= n (p Uy, (05)+ I+t p s)
j=1k=1
= H (pfep,k(E) p s)_l
k=1

Then fori=1,...,randn; + 1 < 5 < n; + n;, it follows that

n, —n

bi(E) = by (0 = (M5 +ti ) (2.61)

Lemma 2.32. Let n > 2 and fix a partitionn = ny+---+n, with1l <nq,...,n, <n. For
eachi = 1,...,r, let ¢; be either a Hecke-Maass form for SL(n;, Z)\H" or a constant.
,,,,, w2601, Br).
By ([2.56) and (2.61), fori=1,...,r andn; +1 < j < n; + n;, we have

Lett = (t1,...,t,) € C"withnity +--- +n,t, =0. Let £ := Ep,

n;, —mn

£y (B) = (=1 (

0, ifv=o0;
1, ifv < oo,

+ 1t + m) + Ly (04)

whereez{ andn; =ny + - +n;_y andm = 0.
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Chapter 3

AUTOMORPHIC CUSPIDAL REPRESENTATIONS FOR
A*\GL(n,A)

3.1 Local representations for G L(n,Q,)
Let G be a group and let V' be a complex vector space. A representation of GG on V' is a pair
of (m, V') where

7 : G — End(V) = { set of all linear maps: V' — V'}

is a homomorphism. We let 7(¢g).v denote the action of 7(g) onv and 7(¢'¢") = 7(¢’).7(g")
forall ¢, ¢” € G. The vector space V is called the space of the representation (7, V'). If the
group GG and the vector space V' are equipped with topologies, then we shall also require
the map G x V' — V given by (g, v) — m(g).v to be continuous. A representation (7, V') is

said to be irreducible if V' # 0 and V" has no closed 7-invariant subspace other than 0 and V.

Let V be a space of functions f : G — C and 7% be the action given by right translation,

(@ (h)f)(9) = f(gh), (Vg,h e G).

Then (7, V) is a representation of G.

In this section we review the properties of local representations of GL(n,Q,). The

main reference is [[13]].

Let n > 1 be an integer. Consider the archimedean case with v = c0. Let V be a

complex vector space equipped with a positive definite Hermitian form (, ) : V xV — C.
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A unitary representation of G L(n, R) consists of V' and a homomorphism 7 : GL(n,R) —
GL(V) such that the function (g, v) — 7(g).v is a continuous function GL(n, R)xV — V,
and

(m(g).v,w) = (v,7(g )W), (forallv,w eV, g e GL(n,R)).

The representation (7, V') has the trivial central character if 7 (( )) v = v for any
acR*,veV.

As in §2.3| for an integer n > 1, the Lie algebra gl(n, R) of GL(n,R) consists of the
additive vector space of n x n matrices with coefficients in R with Lie bracket given by
[a, 5] = af — Ba for any «, 8 € gl(n,R). The universal enveloping algebra of gl(n, R)
is an associative algebra which contains gl(n,R). The Lie bracket and the associative
product o on U(gl(n,R)) are compatible, in the sense that [«, 5] = a0 — o « for
all o, 5 € U(gl(n,R)). The universal enveloping algebra U(gl(n,R)) can be realized as
an algebra of differential operators acting on smooth functions F' : GL(n,R) — C as in
- Set i = /—1. For any o, 3 € gl(n,R) we define a differential operator D, s
acting on F' by the rule

Da+iﬂ = Da + ZDB

The differential operators D, ;g generate an algebra of differential operators which is iso-

morphic to the universal enveloping algebra U(g) where g = gl(n, C).

Fix an integer n > 1. Let K, = O(n,R). We define a (g, K, )-module to be a complex

vector space 1/ with actions
g U(g) = End(V), 7k, : Ko — GL(V), 3.1

such that for each v € V' the subspace of V spanned by {rx, (k).v | k € Ky} is finite
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dimensional, and the actions 7y and 7, satisfy the relations

To(Da) 7, (k) = Trc,, (K)o (Di-10k)
for all « € g and k € K. Further, we require that

Tg(Dy).v = lim% (k. (exp(ta)).v — v)

t—0

for all « € gl(n, R) such that exp(«) € O(n,R). We denote this (g, K )-module as (7, V)

where 7 = (74, Tk, ).

Let (7, V') be the (g, K )-module. For each v € V' define a vector space W, < V to be
the span of {rx (k).v | k € Ky } and define a homomorphism p, : Ko, — GL(W,,) given
by py(k).w = 7k, (k).w forall k € Ky and w € W,. Then (7, V') is admissible, if for each
finite dimensional representation (p, W) of K, the span of {ve V | (p,, W,) = (p, W) }
is finite dimensional. Let (7, V") be a (g, K, )-module. Then it is said to be unramified or

spherical if there exists a nonzero vector v° € V' such that
7K, (k).0° = 0° (forall k € Ky).

Otherwise, it is said to be ramified.

The (g, K, )-module (7, V') is said to be unitary if there exists a positive definite Her-

mitian form (, ) : V' x V' — C which is invariant in the sense that

(mr, (k)v,w) = (v, T, (K1) w), (mg(Da)v,w) = — (v, mg(Da).w),

forallv,we V, ke K, and a € gl(n,R).

Theorem 3.1. Fix an integer n > 1.
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() If (m,V) is a unitary representation of GL(n,R) then there is a dense subspace
Vie.i,) © V such that ((1q,7k..), Vig k..)) is a unitary (g, Ko )-module called the
underlying (g, K )-module of (m, V).

(i) If ((mg,7K,), V) is a unitary (g, Ko)-module, then there exists a unitary representa-
tion (7, Varmmr)) of GL(n, R) such that ((7q, 7k,.), V') is isomorphic to the underly-

ing (g, Ko )-module of (7, Varnr))-

(iii) A unitary representation of GL(n,R) is irreducible if and only if its underlying
(g9, K )-module is irreducible. Moreover, two irreducible unitary representations of
G L(n,R) are isomorphic if and only if their underlying (g, K )-modules are isomor-

phic.
Proof. Theorem 14.8.11 in [13]]. L]

Let n > 1 be an integer. Consider a prime v = p < o0, and G = GL(n,Q,). A
representation of GL(n,Q,) is a pair of (7, V) where V' is a complex vector space and
7 : GL(n,Q,) — GL(V) is a homomorphism. Such a representation is smooth if for any
vector £ € V there exists an open subgroup Us < GL(n,Q,) such that 7(g)¢ = ¢ for any

g € Ug. It is admissible if for any r > 1, the space
{€eV |nk)=¢, forallk e K, }
is finite dimensional where
K, ={keGL(n,Z,) | k—1,ep" - Mat(n,Zy,)}.

If (7, V') is an irreducible smooth representation of G L(n, Q,) then there exists a unique
multiplicative character w, : QY — C* such that 7 (( ))5 = wyr(a) for any

a € Q) and § € V. This character w, is called the central character associated to the
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representation (7, V'). A smooth representation (7, V') of GL(n,Q,) is said to be unitary

if V is equipped with a positive definite Hermitian form (,) : V' x V' — C and

(W(g)v, ﬂ-(g)w) = (U7w) ) (VQ € GL(”: @p))

A representation (m, V') of GL(n,Q,) is termed unramified or spherical if there exists a

nonzero G L(n, Z,) fixed vector £° € V. Otherwise it is said to be ramified.

3.2 Adelic automorphic forms and automorphic representations

Fix an integer n > 1. Let A be the ring of adeles over Q and
K(n,A) := O(n,R) n GL(n,Z,)
p

be the standard maximal compact subgroup of GL(n, A). In this section we review adelic
automorphic forms and automorphic representations for (A* - GL(n, Q))\GL(n, A). As in

the previous section, the main reference is [13]].

Definition 3.2. Let n > 1 be an integer and ¢ : GL(n,A) — C be a function.

(i) Smoothness: A function ¢ is said to be smooth if for every fixed gy € GL(n,A),
there exists an open set U = GL(n,A), containing gy and a smooth function ¢Y. :

GL(n,R) — C such that $(z) = ¢% (20) for all & = {xe, T2, ..., Tp,...} € U.

(ii) Moderate growth: For each place v of Q define a norm function || ||, on GL(n,Q,)
by ||g||s := max ({|gi]v, 1 <i,7 <n}u{|detg|,}). Define a norm function || ||
on GL(n,A) by ||g|| := 1, llgv|l- Then we say a function ¢ is of moderate growth
if there exist constants C, B > 0 such that |¢(g)| < C||g||? for all g € GL(n, A).

(iii) K'(n, A)-finiteness: A function ¢ is said to be right K(n,A)-finite if the set
{o(gk) | k € K(n,A)}, of all right translates of ¢(g) generates a finite dimensional

vector space.
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(iv) Z(U(g))-finiteness: Let Z(U(g)) denote the center of the universal enveloping al-
gebra of g = gl(n,C). Then we say a function ¢ is Z(U(g))-finite if the set
{Do(g) | D e Z(U(g))} generates a finite dimensional vector space.

Definition 3.3. (Adelic automorphic form on GL(n, A) with trivial central character)
Let n = 1 be an integer. An automorphic form for GL(n, A) with trivial central character

is a smooth function ¢ : GL(n, A) — C which satisfies the following five properties:
(i) o(vg) = ¢(9), Vg€ GL(n,A), v € GL(n,Q);
(i) ¢(zg) = ¢(9), Vg€ GL(n,A), z € A,

(iii) o is right K (n, A)-finite;

(iv) ¢ is Z(U(g))-finite;

(V) & is of moderate growth.

An adelic automorphic form ¢ is a said to be a cusp form (or cuspidal) if

onlg) = f o(ug) du =0
UQ\U(A)

for any proper parabolic subgroups P(A) of GL(n, A) and for all g € GL(n, A). Here U

is the unipotent radical of the parabolic subgroup P defined in Definition

Let A(A*\GL(n,A)) denote the C-vector space of all adelic automorphic forms for
GL(n, A) with the trivial central character. Let A, (A*\GL(n, A)) denote the C-vector

space of all adelic cuspidal forms for GL(n, A) with the central character.

Let Agyite denote the finite adeles. For an integer n > 1, let GL(n, Agpie) denote the

multiplicative subgroup of all agpnite € GL(n, A) of the form agpite = {1, as, as, ..., ap, ...}
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where a, € GL(n,Q,) for all finite primes p and a, € GL(n,Z,) for all but finitely many

primes p. We define the action
Ttinite © GL(1, Agnite) = GL(A(A“\GL(n, A)))
as follows. For ¢ € A(A*\GL(n,A)) let

T finite (aﬁnite) . ¢(9) = ¢(gaﬁnite) )
forall g € GL(n,A), afnite € GL(1, Afinite)-

Definition 3.4. Let n > 1 be an integer. Let g = gl(n, C) and Ko, = O(n,R). We define a

(9, Koo) X GL(n, Agnite)-module to be a complex vector space V' with actions
g : U(g) = End(V), 7k, : Ko — GL(V), Thnite : GL(n, Aginite) = GL(V),

such that (14, 7, ) and V form a (g, Ko )-module, and the actions (74, Tk, ) and Tepite
commute. The ordered pair (((7g, T, ), Thnite) , V') is said to be a (g, Ko ) X GL(n, Aginite)-

module.

(i) The representation (((7y, Tk, ), Thnite) , V') is smooth if every vector v € V is fixed by

some open compact subgroup of GL(n, Agyie) under the action Tgpite.

(i) The representation (((7g, Tk, ), Thnite) , V') is admissible if it is smooth and for any
fixed open compact subgroup K' < GL(n, Agnite), and any fixed finite-dimensional
representation p of SO(n,R), the set of vectors in V fixed by K' and generate a
subrepresentation under the action of SO(n,R) (which is isomorphic to p) spans a

finite dimensional space.

(iii) The representation (((7y, Tk, ), Tenite) , V) is irreducible if it is nonzero and has no

proper nonzero subspace preserved by the actions T.
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Definition 3.5. (Automorphic representation) Let n > 1 be an integer. An automorphic

(resp. cuspidal) representation with the trivial central character is an irreducible smooth
(9, Koo) X GL(n, Aginite)-module which is isomorphic to a subquotient of A(A*\GL(n, A))
(resp. Acusp(A\GL(n,A))).

3.3 Principal series for GL(n,Q,)

Again the main reference for this section is [13]].

Definition 3.6. (Modular quasi-character) Ler n > 2 and fix a prime v < oo. The

modular quasi-character of the minimal (standard) parabolic subgroup P(n,Q,) is defined

as
aq * n
5, =] ] lay 7" (3.2)
Qy, =1
ail *
for any ( - ) € P(n,Q,). Here P(n,Q,) is the minimal parabolic subgroup defined

in ([2.6)).

Let x : A(n,Q,) — C* be a character. Then we can extend the character y to the

minimal parabolic P(n,Q,) as

where (al ' ) € P(n,Q,).

an

Definition 3.7. (Principal series) Let n > 2 be an integer and fix a prime v < oo. Let x be
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a character of A(n,Q,). Denote

In dGL(n Qv)(X) 3.3)

P(n,Qy)
[ is locally constant, f(umg) = 55 (m)x(m)f(g), }

= {f :GL(n,Q,) - C forallu e N(n,Q,), me P(n,Q,), g€ GL(n,Q,)

Define a homomorphism % : GL(n,Q,) — GL (IndG(LT%Q)” (X)) where (7% (h)f) (9) =

GL(n,Qy GL(n,Qy .
f(gh) forany g,h € GL(n,Q,) and f € Ind}, L Q ). Then ( R IndP(Ln @Q) )(X)) is called

the principal series representation of GL(n, Qv) associated to x.

For each v < oo and n > 1 define

_[OmR), ifv=uw
Ky(n) = { GL(TLaZp)v if v = p, finite prime.

Let x : A(n,Q,)/(Ky(n) n A(n,Q,)) — C* be a character, i.e., a spherical character of

A(n,Q,). There exists

Co(x) = (b1 (X),- -, lom(x)) € C"

such that

a1

X = [ [laslera®. (3.4)

Qn, i=1

If x is trivial on the center, i.e., x (( )) = 1 forany a € Q), then £, 1(x) + -+ +

lon(Xx) = 050 l,(x) € a&(n). If x is unitary, then £, ;(x) € iRforj =1,...,n

Let £ € C" and y,(¢) be the spherical character of A(n,Q,) which is associated to

the parameter ¢ as in . When the representation (7TR IndG(LY%Q)” ) (X (ﬁ))) is not ir-

reducible, there exists a unique spherical subconstituent. Denote 7, (¢) as the spherical
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subconstituent of ( R IndG(LY%Q)” )(Xv (é))) It is called the spherical representation asso-

ciated to ¢ (or x,(¢)). We abuse notation and denote IndGLé?LQQf ) (xv()) as the vector space

of the representation 7, (¢).

For each ¢ = (¢1,...,/(,) € C", define the function y, with parameter ¢ € C" by

\ bl
ax * n ai

o k=TT laly -0, (3.5)

n 2]+1

j=1
n

al *
for any < > € P(n,Q,) and k € K,(n). Then ¢, € IndGL"Q“)(XU(f)) for any

an

¢ e C", and it is unique.

Let n > 2 be an integer and v = oo. For v = (vy,...,v,_1) € C"! we have already
defined the eigenfunction /, of Casimir operators of type v in and defined the Lang-
lands parameter /., (v) € C" in Definition Then I,(z) = ¢, )(2). Conversely, for
each { = ({1,...,¢,) € a%(n), asin 2.33), and for j = 1,...,n — 1, we have

1
vi(l) = E(gj — {1 — 1),
and
1 —2k+1 n=l n—2j+1
0i(2) = (det(2)) " w Eim 6t ) T [ (yy ooy )5F 2
j=1

n 2k+1)

= L)(2)

[

Definition 3.8. Let n > 2 be an integer and { € af(n). Fix a place v < co. Then m,({)
is an irreducible spherical representation of GL(n,Q,) associated to { with trivial central

character. Define:
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e v=o0o0forj=1,...,n—1,
AD(0) := M\ (AD) (3.6)

where v({) € C" ! as in and M,y is the Harish-Chandra character defined in
227

ev=p<owforj=1...,n—1

MO = 3 pT ), (3.7)

1<k1<-~~<kj<n

3.4 Spherical generic unitary representations of G L(n,Q,)

Definition 3.9. (Additive character) Fix a prime v < o0 or v = o0. Let e, : Q, — C be

defined by
—2mi{z}

e
ev(x) = { e?m':v

ifv < oo,
ifv =00,

where

{x}:{ j_:l_kajpj, ifsz?O:_kajpjerwithk‘>0,0<aj<p—1,
0,

otherwise,

ifv=p< o0

Definition 3.10. (Whittaker model for a representation of GL(n,Q,)) Fix an integer
n = 1 and v = p a finite prime or v = . Let e, : Q, — C be the additive character in
Definition[3.9} Fix a character ), : N(n,Q,) — C of the form

1 U2 .- Uin
1 UQ73

1/)1) . KR = ev(alul,Q + -+ an—lun—l,n) (38)
1 Un—1,n

1

foru;;€Q,, I1<i<j<n)witha;eQ), (i=1,...,n—1).
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(i) Forv = p, let (m, V') be a complex representation of GL(n,Q,). A Whittaker model
for (m, V') relative to 1y, is the representation (', W) = (m, V') where W is a space of
Whittaker functions relative to 1, i.e., of locally constant functions W : GL(n,Q,) —
C satisfying

W (ug) = 4p(u)W(g)

forallue N(n,Q,), g€ GL(n,Q,) and 7' is given by the right translation.

(ii) Forv = oo, let (m, V') be a (g, Ky )-module where g = gl(n,C) and K., = O(n,R).
Following Theorem we refer to (w, V') as a representation of GL(n,R). A Whit-
taker model for (m, V') relative to 1, is the representation (7', W) = (7, V') where W
is a space of Whittaker functions relative to 1, i.e., of smooth functions of moderate
growth satisfying

W(ug) = Poo(w)W (g)

forallue N(n,R), g€ GL(n,R) and 7' is given as in (3.1).

Remark 3.11. For v = oo, let Yy ((1 " )) = exp(uig + +++ + Uy 1,). Then
Jacquet’s Whittaker W;( ;v, 1) for some v € (C}”_l defined in is the Whittaker func-
tion relative to 1. Moreover, for every automorphic cuspidal smooth function f, the
Fourier coefficient

We(;(ma,...,m,_1)) defined in is also a Whittaker function relative to an additive
character 1y, ((1 " >) = exp (27 (T U1+ MUyt M1 2))

1
formqy,...,m,_1 € Z.

Definition 3.12. (Generic representation of GL(n,Q,)) Fix an integer n = 1, let v be a
finite prime or v = o0, and let 1, be an additive character as in ([3.8). A representation
(m, V) of GL(n, Qy,) is said to be generic relative to 1, if it has a Whittaker model relative

to 1, as in Definition
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Definition 3.13. (Spherical generic character) Let n > 2 be an integer and v < o be a

prime. If there exist

e aninteger 0 <r < Fandty,...,t, €R,
e real numbers oy, . . ., a, € (0, %),
such that
Cy=(lyry... lyn) € ag(n) (3.9

= (Oél + itl, —o + itl, e, O itT, —0y + Z.tr,l.trJrl, Ce ,itn,r),
then the character x,({,) : P(n,Q,) — C* is called a spherical generic character.

Theorem 3.14. (Classification of irreducible spherical unitary generic representations)
Letn = 2 be an integer and v < o0 be a place of Q. Let m be an irreducible spherical uni-
tary generic representaiton of QX\GL(n,Q,). Then there exists { € af.(n) which satisfies

the condition in Definition such that m = ,({).

3.5 Quasi-Automorphic parameter and Quasi-Maass form

Let A be the ring of adeles over Q. Let n > 2 be an integer. Let 7 be a cuspidal automor-
phic representation of GL(n,A). The representation 7 is unramified or spherical if there
exists a vector v° € V, (the complex vector space of ), such that w(k)v® = v° for any

ke K(n,A) = O(n,R)[], GL(n, Z,).

Let 7 be an unramified cuspidal automorphic representation of A*\G L(n, A). Then by
the tensor product theorem ([[L1]], [[17], [8]), there exist local generic spherical unitary rep-

resentations 7, of Q;\GL(n,Q,) for v < co such that 7 = ® ’m,. Since 7,’s are generic,
VK00
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unitary, and spherical, there exist an automorphic parameter o = {0, € a%(n), v < oo}
where o, satisfies conditions in Definition for any v < oo, such that 7, = m,(0,). So,

T = ®,m,(0,) and we may denote
(o) = @ m,(0,) = . (3.10)

Definition 3.15. (Quasi-Automorphic Parameters) Let n > 2 be an integer and let M
be a set of primes including . Let {y; = {{, € aj(n), ve M} satisfy the conditions in

Definition Then 0y is called a quasi-automorphic parameter for M.

By the tensor product theorem combined with the multiplicity one theorem, for any un-
ramified cuspidal automorphic representation = for A*\G L(n, A), there is an automorphic
parameter o for {00,2,3,...,} such that 7(0) = = as in (3.10) and o is also a quasi-
automorphic parameter. There exists a unique Hecke-Maass form F), of type v(0) such

that
o AVF, = N (0w)Fy, (forj=1,...,n—1),
. ngj)Fa _ )\g)(ap)Fa, (forj =1,...,n—2), for any finite prime p.

See [13] for more explanation. So, ¢,(F,) = {,(0,) for any v < oo. Conversely, let F’
be a Hecke-Maass form of type v € C"!. Then there exists a unique unramified cuspidal

automorphic representation w(o ) for A*\GL(n, A) such that
o V(0pw) =V,50 (V) =l (F) = lop(0Fw);
o op, ={,(F)andforeachr =1,...,n — 1, we have

Ar(1,...,1,p, 1., 1) = A (op,),

where Ap(1,...,1,p,1,...,1)isthe (1,...,1,p,1..., 1)th Fourier coefficient as in
Lemma[2.23
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Definition 3.16. (Quasi-Maass Form) Let n > 2 be an integer and M be a set of primes

including . Let {yy = {{, € ai(n), ve M} be a quasi-automorphic parameter for M.

Let
Lz 1] ¢,
qeM,
finite prime
L = o0,

and define for z € H",

FfM (Z) =

2

YEN(n—1,Z)\SL(n—1,Z) mi1=1
my--- |mn—1|

XWJ

where Ay, (1,...,1) = Land Ay, (my, ...

(if M is a finite set)
(3.11)
(if M is an infinite set),
L
Z AE]\/[(m]J"'?mTL*l) (312)

n—1 k(n—k)/2
Mp—2=1 mp_1#0, k=1 |mk| ( )/
|mp—1I<L

Y mp—1
( 1> Zvy( 00)7 |mn—1| )
1

ma

,Mp_1) € C satisfy the multiplicative condition

in (2.46)), if this series is absolutely convergent. Forr = 1,... ,n—1 and any prime q € M,

,1,q,1,...

Ag, (1,00 ,1)

r

1<gi<<gr<n

Then F},, is called a quasi-Maass form of (), of length L.

Remark 3.17.

D)

YEN(n—1,Z\SL(n—1,Z) m1=1

FE}M (Z) =

« 627rim1(an71,1l"1,n+---+an71,n71$1)

ml...

X WJ

(i) By Theorem 9.4.7, [12|], we can rewrite (3.12) as

N

AgM (77’117 .. ,mn_l)
Z;i |mk|k(n—k)/2

(3.13)

mn72=1 My 1#0,
1 1<L
627ri(m2xg+---+mn,1xlil)

M1

: y77 V(goo)u 1



54

where
a1 T a1,n—1
a2 1 T a2 n—-1
v = . _ e N(n—1,Z)\SL(n—1,7Z)
Ap—1,1 "' Ap—-1n-1

and x7, y" are defined by (7 | )z = 7 -y € H" by Iwasawa decomposition, for

27 € N(n,R) as in and y? € A(n,R") as in (2.8).

(ii) Forany~y € P,_11(Z) n SL(n,Z), we have

Fy,,(vz) = Fy,,(2), (z € H"). (3.14)

(iii) Forj=1,...,n—1

and for any finite prime qe M, j =1,...,n —1,
Tq(j)FZM = >\((]j) (gq)Fva

where AS}')(@) is defined in Definition orv e M. Moreover, {,,(Fy,,) = {, for any

v e M. For any integer 1 < m < L, we have
TmeM = AZM (mv 1., 1)F£M-
Definition 3.18. (e-closeness) Let n > 2 and € > 0.

(i) Forv < oo, let m,(¢,) and m,(0,) be irreducible unramified unitary generic represen-
tations of GL(n,Q,) as in Theorem with parameters (,, 0, € a(n) satisfying

the condition in Definition The representations m,({,) and 7,(0,) are e-close if

AD (L) = XD (o) < € (3.15)
Z‘ v v

j=1

where m = n — 1 forv = o0 and m = |§| for v < oo.
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(ii) Let M and M’ be sets of primes including oo and let {; and oy be quasi-automorphic
parameters for M and M’ respectively as in Definition Let S ©« M n M’ be a

finite subset including co. The quasi-automorphic parameters {; and oy are e-close

for S if

Z IND (€)= D (00) [ + SN A(E,) ~ AD ()" < e. (3.16)

We obtain a condition for e-closeness with a given quasi-automorphic parameter in the
following Lemma. The idea of the lemma and its proof are generalizations of Lemma 1 in

(3], 3.1.

Lemma 3.19. Let n > 2 be an integer and M be a set of places of Q including co. Let
lyr be a quasi-automorphic parameter for M as in Definition Let S < M be a finite
subset including co. If there exists a smooth function [ € L*(SL(n,Z)\H"), which is
cuspidal, such that

n—1
2 (A=A f||2+ZZ|| =N ()) fIE <e-IflE - 3D
j=1

q€Ss, 1
finite j

for some € > 0, then there exists an unramified cuspidal automorphic representation (o)

as in (3.10) such that the parameters (; and o are e-close for S.

Proof. By the spectral decomposition, the space L (SL(n,Z)\H") is spanned by Hecke-

cusp (
Maass forms u;(z) with |Ju;||3 = 1 for j = 1,2,.. .. For each u; there exists an unramified
cuspidal automorphic representation 7(c;) = &/, 7(0;,) such that £, (u;) = £,(o;,) for any
v K 0.

Forany f e L2 _ (SL(n,Z)\H"),

2) = > {fug)uy(z)

j=1

cus (
P
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For € > 0, let

Uc(lyr) :={u; | o; and £, are e-close for S},

and define

Pr(() = 3 {(fiu)us(s) € L, (SL(n,Z)\H").

’LtjEME(EJM)

Assume that f is a smooth automorphic function which satisfies (3.17)). Then

IPr(NIE=1F1E— >, [ u)l

w; €U (Lpr)
> |13
0 = ) 5] )
5 .
= > Ko - DA (000) = AP (L) [+ D DTN (070) = AP(L))]
= k=t e k=1
1 n—1 l%J
= |11 - - STIHAE = AP () f115 4 D5 DT IHTE = AP (@e,) £113
k=1 q€S, k=1
finite
> 0.
Therefore, U, ({rr) # . O

Definition 3.20. (Automorphic Lifting of Quasi-Maass forms) Let n > 2 and M be a
set of primes including oo and let {); be a quasi-automorphic parameter. Let Fy,, be a
quasi-Maass form of (. Define
F,,(2) := F,,,(v2), (forany z € H" and a unique v € SL(n,Z) such that vz € §").
(3.18)
We say F, vy 18 an automorphic lifting of a quasi-Maass form. Here §" is the fundamental

domain described in Proposition

Remark 3.21. (i) Letn = 2. Define

= U <7 1)3" (3.19)

yeSL(n—1,Z),

(7 T )GSL(n,Z)
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where §" is the fundamental domain described in Proposition[2.8} By , we have

Fo, (2) = Fo (2), (z€3). (3.20)

(i) Since Fy,, is square-integrable, Fy,, € L2 (SL(n,Z)\H"). However F is not contin-

uous and is not cuspidal in general.
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Chapter 4
ANNIHILATING OPERATOR

4.1 Harmonic Analysis for GL(n,R)/(R* - O(n,R))

For vectors v = (vy,...,v,), v/ = (v],...,v),) € C", the inner product ( , ) : C" x C" —

C denotes the usual inner product

n

(v,0") = Zvj-v} e C.

j=1

We define the norm ||v|| :== 4/(v, v). For any w € W,,, define

w.v = (Uow(l), PN ,’l}aw(n)) (4.1)

where o, is the permutation on n symbols corresponding to w defined by

Vo (1) U1

Il
g
g

Vo, (n) Un,

Then for any v, v € C" and w € W,
(wou,wa') = (v,0).

For n > 2, a(n) is isomorphic to the Lie algebra of A'(n, R™) which is isomorphic to

Al(n,R*) = A(n,R)/(R* - (O(n,R) n A(n,R))) via the exponential map in (2.17)).

Let y : A'(n,RT) — C* be a character. Since A'(n,R") = A(n,R)/(R* - O(n,R)),

ay
as discussed in there exists £ () € C™ such that x (( )) =[1= la; |£.§f’“j(x>

with lo 1(X) + -+ + leo.n(Xx) = 0, and it is a one-to-one correspondence. Define
a*(n):={l=,....0,)eR" | l1+---+(,=0}, 4.2)

agc(n) :=a*(n) +ia*(n) = Hom(ax(n),C*).
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Then a(n) is isomorphic to the group of characters of A'(n,R") and ia*(n) < a(n) is
isomorphic to the set of unitary characters of A'(n,R") and this has the R-vector space

structure. For any character x : A'(n,R") — C*, we may write
ay
x(a) = el0m@) = (for g = ( ) e A'(n,RY)).

Let

p= (%) e a*(n). (4.3)
2 i

Then for any a € A'(n, R"), we have

N

elpina) — do(a)?,

where d, is the modular quasi-character defined in (3.6)).

By the Iwasawa decomposition, for any g € GL(n,R), we have

Hiwa(g) € a(n), n(g) € N(n,R), k(g) € O(n,R) 4.4)
such that g = |det g|§O -n(9) - exp(Hwa(9)) - k(9).

For each / € af(n) and g € GL(n,R), we defined the function ¢,(g) in (3.5). Then

welg) = e{l+pHiva(9)) L/(e)(g)- (4.5)

For any w € W,,, the Weyl group, we have

oG Ha(wg) _ (bwHra(9)) — o(w™"6Hiwa(g))

SOE—p(wg) = = @w.é—p(g)-

This explains the definition of the action of the Weyl group W,, on v € C" ! in (2.28).
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Let H (ax(n))"™ be the space of holomorphic functions on a%(n), which are invariant

under the action of W,,, the Weyl group of GL(n,R). Define the spherical transform:
CZ (O(n, R\GL(n,R)/(R* - O(n,R))) > H (ag(n))""

Definition 4.1. (Spherical Transform) For any compactly supported, smooth, bi-O(n,R)-
invariant function k € C* (O(n,R)\GL(n,R)/(O(n,R) - R*)), the spherical transform
%(f) € C is defined as the corresponding eigenvalue of the convolution operator associated

tok,ie.,

e+ k() = f e R(E)dE = B(0) - (o), 4.6)
GL(n,R)/R*

and

k(€) _ e<é’+p7H1Wa(£)>k(£*1)d§7

LL(n,R) JRX

where @, is the eigenfunction of Z(D") with the parameter {, defined in (@)

Definition 4.2. For each ( € af.(n), define

Be(g) = f wi(Eg) dE = el eHmal&)) e (4.7)
O(n,R)/R* O(n,R)/R*

for any g € GL(n,R). Then B, is called the spherical function of type {. Moreover, (3, is

(R* - O(n, R))-bi-invariant function. i.e., for any &1, & € O(n, R), we have

Be(&1-g-&2) = Bilg).

The spherical function is again an eigenfunction of the convolution operator whose
eigenvalue is the corresponding spherical transform. For any compactly supported, smooth,

bi-O(n, R)-invariant function k£ € C* (O(n, R)\GL(n,R)/(R* - O(n,R))), we have

Be+ k(g) = k(0)Be(9).
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We recall the following inversion formula for the spherical transform as given in [[18].

For any bi-(R* - O(n, R))-invariant, compactly supported smooth function &, we have

1 ~
o) = | F@(9) drtana ()i, @8
where
FR(Oék —Q; + 1)FR(—I€ + ]) 2
(bPlanch(a) = ] : 5 (49)
1<lg<n FR(Oék — Oéj)FR(—]C + 7+ 1)
fora = (ay,...,q,) € ia*(n), and

We recall the Paley-Wiener theorem from [19].
Theorem 4.3. (Paley-Wiener)

() Let k € C(O(n,R\GL(n,R)/(R* - O(n,R)), such that k(g) = 0 for any g €
GL(n,R) with ||In A(g)|| > 0 for some 6 > 0. Then the spherical transform ke

H (aé(n))wn- Moreover, for any integer N, there exists a constant C'y > 0 such that
BO| < Ox (e el
forany l € ai.(n).

(ii) Assume that Rs € H (a&"z(n))W” (for 6 > 0) satisfies the following condition. For any

integer N there exists a constant C'y > 0 such that
|R5(£)] < Ciy - (1+|[¢))™ - IOl (4.10)

for any € € af(n). Then there exists H; € C* (O(n,R)\GL(n,R)/(R* - O(n,R)))

with Hy(g) = O for any g € GL(n,R), || In A(g)|| > 6 such that H; = Ry and

Hi(g) = f Rs(0)Bu(9) dtprancn (£).

ia*(n)
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Let n > 2 be an integer and f be a smooth function on H". For D € Z(D") and
any k € C* (O(n,R)\GL(n,R)/(R* - O(n,R))), since D is invariant under the action of
GL(n,R), we have

D(f=k)(2) = (Df) = k(2)

if the integral is absolutely convergent. Let S be a Hecke operator and f be a function on

H™. Then

S(f k) (2) = (Sf)  k(2)
when the integral is absolutely convergent. Therefore, the convolution operator associated
to the function k € C (O(n, R)\GL(n,R)/(R* - O(n,R))) commutes with the Hecke op-
erators S if the integral is absolutely convergent and also commutes with any D € Z(D")

if the function is smooth and the integral is absolutely convergent.

Let D (O(n,R)\GL(n,R)/ (R* - O(n,R))) be the space of O(n, R)-bi-invariant com-
pactly supported distributions on GL(n,R)/R*. For any compactly supported distribu-
tion T € D (O(n, R)\GL(n,R)/ (R* - O(n,R))), the spherical transform 7'(¢) (for any
¢ € af(n)) is defined to be the scalar by which 7" acts on the function ¢,. Furthermore, by
[16], for any R € H (a* (n))"™ satisfying an inequality

[R(O)] < C(1+ [Je]])YelRON, (¢ € ag(n)) (4.11)

for some positive constants C', N and ¢, there exists a distribution bi-(R* - O(n, R))-invariant

distribution 7" such that its spherical transform 7/(¢) = R(¢) for any ( € ai(n).

Forany 7' € D (O(n,R)\GL(n,R)/(R* - O(n,R))) we define the spectral norm

T |lspec :=  sup  |T(0)], (if finite). (4.12)

zEa;C" (n),
oo (€(X)), unitary
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4.2 Annihilating operator

The annihilating operator maps L? (SL(n,Z)\H") — L?(SL(n,Z)\H"), and has the

property that it has a purely cuspidal image.

Lemma 4.4. (Construction of 1) Letn > 2 and fix a prime p. Forany {, = ({11, .., {1 ),

EQ = (6271, R ,fgm) € af&(n), deﬁne

[5]
hz} (01, 0) = 1—[ 1—[ (1 _p_(€17i1+...+£1’z‘k)—(€27]‘1+~..+Z2,jk)) . (4.13)

k=1 1<ji<<jpsn 1<) <--<ip<n

|3

Then there exists an operator denoted 1, which is a polynomial in convolution operators
(associated to some compactly supported bi-(O(n,R) - R*)-distributions), and in Hecke

operators at p, satisfies

~

b f(2) = 15 (Lo (), 6o(f)) - f(2), (z € H").

Here f is a smooth function on H™ which is also an eigenfunction of Z(D") and the Hecke
operators at p. The parameter {,(f) = ly(v), as in (2.30), since f is an eigenfunction of

type v € C"™1, and the parameter (,(f) is defined in .

Remark 4.5. Before proving this Lemma we give an example of 1) for the cases n = 2 and

n = 3.

(i) Forn = 2, we have
2 =Te+T. —2T,L.+1 (4.14)

where L, is the convolution operator associated to the distribution k such that k({) =
P+ p™ for any ( = ({1, 0y) € a%(2). This operator satisfies hg = N? for the operator

N constructed in 2, [19].
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(ii) Letn = 3. Forj = 1,2, 3, define the compactly supported bi-R*-O(n, R)-distributions

K+j such that

Fi(0) =p" +p2 +p"%,  Fa()=p T +p4p

Ro(l) = =R 1(0)° + 3/1(0), R a(l) = Au(0)? = 3R_1(0),

r3(l) = —Fa(l) - £1(L), and F3(0) = —R5(0) - K (0),
forany € = (£, 6y, £s) € a(n). Then

0 =Ty Loy + ToLyy, — T — Tp(TSV) Loy (4.15)

p

+T2TOL,  + (TP)PL, , + (TP)P + TP, .

p

Proof for Lemma For any wy, wy € W, (the Weyl group of GL(n,R)), we have

~ ~

hg(wl.ﬁl,wg.ﬁg) = ug(€17€2)7

~

where {7 ({1, {3) is holomorphic and satisfies the condition (4.11)) for both (1, > € ag(n).

For each 1 < k < |5], consider the polynomial

1_[ (1 — ap~ +"'+51,k))

1<j1 < <jr<n
=1 =Bz + -+ (=1 Bp(O)z" + - - + (—1) %) g
forany ¢ = (04,...,0,) € af(n), where di(n) = #Lk)' Foreach 1 < r < di(n) — 1, the

coefficients
B,x(C) € H (af(n)""

satisfy (4.11). For 1 < k < |3], we have,

1_[ 1_[ (1 _p—(fl,qzl+~~~+f1,ik)—(€2,jl+"'+f2,jk))

I<ii<o<gpsn 1<ip << <n

k(1)

ajk(l1) - bj(l2)

<
Il
o
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forty = (011,...,0n), ba = (laq,...,02,) € af(n) and some positive integer dy(n). So,

dj,(n)
Zagkfl bk (l2)

di.(n)

1< < <ip<€n r=0

di.(n)
n <Z B, 1 (¢2)p T(gl’i1+"'+£11ik)> )

1<) < <ip<n r=0

~

For 1 < j < di(n), we have,
aj(01), bjx(lz) € H (ag(n))"

satisfies (4.11) because a; j(¢1) (resp. b;x(¢2)) is a polynomial in B,.;(¢1) (resp. B, x(l2))

(for 1 < r < dg(n)). So there exist compactly supported bi-(R* - O(n, R))-invariant

distributions ngk)

1<y < Jk (n), let Ln(k) be the convolution operator associated to the distribution ng).

J

whose spherical transform is a;;(¢;). For each 1 < k < [3] and

We also have the p-adic version of Theorem [{.3] as explained in [19] (also see [9]). So

there exist Hecke operators Sj(.k) such that
k
S =bintp(f) - f

where f is an eigenfunction of Hecke operators with parameter £,(f) € af(n).

Therefore,

and

where f is an eigenfunction of Casimir operators and the Hecke operators. [
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Since we use distributions to define 7, the operator is well defined in the space of

smooth functions. For any § > 0, let
U(0) :={ge GL(n,R) ||/In A(g)]| <4} . (4.16)

Let Hs be a bi-(R*-O(n, R))-invariant compactly supported smooth function with supp(Hs) <

U(9),i.e., Hs(g) = 0 forany g ¢ U(J). We define the operator Hs3} to be
Hyf'F = §(F + Hy) (4.17)

for a function F' : H" — C which makes the integral convergent. By the Paley-Wiener
Theorem the operator Hsf) is a polynomial in convolution operators (associated to the
bi-(R* - O(n,R))-invariant, compactly supported smooth functions), and in Hecke oper-
ators at the prime p. Then the operator Hsf)) can be defined for the functions in L2 (H")

and
Hsn(01,02) = Hy(0)) - 52(01, ) (4.18)
where (; = ({j1,...,¢;,) € ag(n) for j = 1,2.

Proposition 4.6. Let n > 2 and p be a prime. Let E(z) be an Eisenstein series as in

Definition Then

~

(0o (E), 6,(E) =0 and §'E=0 (4.19)

T3

for any prime p. Let ¢ be a self-dual Hecke-Maass form as in Proposition Then

(lo(0), 6p(9)) =0 and ¢ = 0. (4.20)

=30

b

Moreover, for any constant C' € C,

7C = 0. 4.21)
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Proof. Letn =n;+---+n,withl <nq,...,n., <nandr > 2. Foreach: =1,...,r
let ¢; be either a Hecke-Maass form for SL(n;, Z)\H" of type w; = (tti1,- -, tin,—1) €
C"~! or a constant with y; = (0,...,0). Lett = (ty,...,t,.) € C" withnyt; +---+n,t, =
0. Let E(z) :== Ep,, _, (2;t;¢1,...,¢,) be an Eisenstein series as in Deﬁnitionm Let

m=0andn =ny+---+n,_yfori =1,...,r. By Lemma[2.32] we have

i +n N —n ni+n;
D o i(E) = ( : S +m> ni=— > L(E)
J=mi+1 J=ni+1

for any prime p. Therefore,

1 — p*(zfﬂ,m#l(E)JF"'JF["L,WHH(E))*(Zpyni+1(E)WL"'JFZP,W-HLI-(E)) =0

and u%(goo(E)v t,(E)) = 0.

p

Let ¢ be a self-dual Maass form for SL(n,Z). Then by Remark 2.27]

up to permutations, for any place v < oo. So either there exists 1 < j < n such that
0, (@) = 0 or there exist 1 < j # j' < n such that £, ;(¢) + £, ;(¢) = 0. Therefore
15 (Leo(9), 6p(0)) = 0.

Let C € C be a constant. Then

for any z € H" and
—27+1\" -2+ 1\"
() = (=2 and £,(C)= (=2
2 i1 2 i1

So 1 —p tril@ i = ( forany j = 1,...,n. Therefore, hz}(foo(C),Ep(C’)) =0. O
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The idea of the following theorem and its proof is in [19].

Theorem 4.7. Let n > 2 be an integer and p be a prime. Let 6 > 0 and Hs # 0 be a bi-(R*-
O(n, R))-invariant compactly supported smooth function with supp(Hs) < U(6). Then the
space of the image of Hs3; on L? (SL(n,Z)\H") is cuspidal and infinite dimensional. So

there are infinitely many non self-dual Hecke-Maass forms.

Proof. The Langlands spectral decomposition states that

L*(SL(n,Z)\H")

=2

cont

(SL(n, Z)\H") @ L? (SL(n, Z)\H") @ LZ ., (SL(n, Z)\H")

residue

2
residue

where L2 . denote the space of Maass forms, L consists of iterated residues of

cusp

Eisenstein series and L2, is the space spanned by integrals of Eisenstein series. The

Eisenstein series are studied in So, for any f € L?(SL(n,Z)\H") there exists

feont(2) € L2, fresidue(2) € Ligque and feusp(2) € L2, such that
f(Z) = fcont(z) + fresidue(z) + fcusp(z)-

By Proposition @, for any Eisenstein series £ and constant C, we have i) F' = 17C = 0.
Since the invariant integral operators and Hecke operators preserve the space of cuspidal
functions,

Hst? f = Hst! fousp € L2, (SL(n, Z)\H") .

cusp

Therefore the image of Hsy on L? (SL(n, Z)\H") is cuspidal.

We will show that the image of Ht» on L* (S L(n, Z)\H") is infinite dimensional. First

we show that it is non-zero. Take ae = (Ao, -+, Qoo n), Ap = (Ap1, ..., Qpy) € a5(N)

~

such that ]/-I\(;(ozoo) g7, ) # 0 and v and ay, satisfies the condition in Definition|3.13}
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As in Definition [3.16} we construct a quasi-Maass form F' of type v(a.,) for {oo, p} and of
length L = oo such that
Ap (ph, ... ph—
Fz) = >, y Al )

S kj(n—j)j
AeN(n—1,Z\SL(n—1,Z) k1,..okn 120 P2 =9=17
kl"’"""’k‘nfl

- W <7 1) z;v(ae), 1
1

where

Ap(1,...,1,p,1,...,1) = > p Crm o) (for i =1, n—1)
W

y 1§k1<~~~<kj§n

and Ap(p*, ..., pke-1) satisfies the multiplicative condition (2.46)) and (2.47). Then

Hyq" F(2) = Hs(w) - 520, ) - F(2)

for z € H"™.

Let F' be the automorphic lifting of F as in Deﬁnitionm Then F € L? (SL(n, Z)\H")
and H(;h;‘ﬁ € C® n L*(SL(n,Z)\H") is cuspidal as we show above. To show that

H 5hgﬁ’ # 0, we need Lemma below.

Let
1 T12 .. Tin Y1 Yn—1

1 .0 @z, . ST

ET = . . : € Hn . Yi ’
o n fore=1,...,n—1
1 1
(4.22)
then
Y U AF" (T > 1).

YEPn—1,1(R)NSL(n,Z)
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Lemma 4.8. Let

T > max {exp(45), exp (2 ([%J _Ti!)l!n(]:l . l%J)'> } (4.23)

then for any z € Y,

~

Hs7"F(2) = Hy(oo) 1) (o, ) - F(2).

By Lemma[4.8] for any z € ¥, and for any 7" as in (4.23)), we have
Hytp F(2) = Hytp F(2) = H(uw) - £ (s ) - F(2) # 0.

So Hgbgﬁ # 0. Therefore, the image of Hst on L? (SL(n, Z)\H") is not empty.

Assume that the space of image of " on L? (SL(n,Z)\H") is finite dimensional. Let

hguj # 0, }

"U := { u;, a Hecke-Maass form of type p; € C**
i { J YPe Ky and |[ul2 =1

#J.

Then it is the basis of the space of image of H;lj,. Since we assume that it is finite dimen-
sional, it follows that £7¢/ is a finite set. Suppose that the number of elements of 3/ is

B < oo, where B is the positive integer and
bgl/l = {Ul,...,UB}.
Then there are ¢4, ..., cg € C such that

B
HstnF(z) = ) cjuy(2). (4.24)
j=1
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Compare Fourier coefficients on both sides. For nonnegative integers ki, ..., k,_1, the

(p*, ..., p"-1)th Whittaker-Fourier coefficient for H, 5b§ﬁ is

Wi (50,07

1 V12 ... Uin
1 1 ~ 1 ... Uan
1
. 6*27Ti(pk1Un—l,n+pk2vn,—2,n—1+~~~+pk1v1,2) dvy 15 - dvl72.

For each j = 1,...,B, the Hecke-Maass form u; is of type p; € C" ', and let
A;(phr, ... pF==1) € C be the (p*, ..., p*=—1)th Fourier coefficient of u;. By (4.24) we

have
Y1 *Yn—1
WHéugﬁ 7pk17 7pkn_1
1
ki tkn—
i k’1 pkn—l) P '
<oy . WJ . 2 1
' Zn 1 k (TL*Z)?, . b /]
j=1 p2 1
for any z € H". For 2z € X7, we have
Y- Yn-1
Wit o TR N T
1
Pl thn—
= Hj(aw) 'bg(aooaap) Wy z;v(Qep), 1
1
k14 +kn
(P, ") - 1
:Z Z" lk(n—i)i Wy zi g, L],
j=1 p2
1
and [/{\5(0400) . uz}(aoo,ap) # 0 by our assumption. Fix k; = --- = k, 1 = 0. Since B is

a finite positive integer, it is possible to assume that v(a,) # p; for j = 1,..., B. Then



there are ¢, . ..

Y1+ Yn—1
Wy
1

for at least one ¢ # 0 (forj = 1,...

, g € C such that for yy, . ..

72

s Yn—1 > T, and

B Y1 Yno1
=D Wy S HTN
= 1

, B). Assume that ¢ # 0. Since W is an eigenfunc-

tion ongf),foryl,...,yn,l > T and forany: =1,...,n — 2, we have
Y1 Yn—1
(A(Z )\(Z (aoo)) W sv(ag), 1 [=0,
1

SO

B n “Yn—1

Z o (1)) = AP () - Wiy o i | =0,

=1 1
where )\(i)(a ) and /\(j)(€ (uj)) (forj =1,...,Bandi = 1,...,n—1) are eigenvalues of
An as in ( . Since we assume that v(ay) # p, .. ., i, there exists t = 1,...,n— 1

such that
AD (e (7)) —
Again, there exist c5, . . .

Y1 Yn—1

)\gé)(ozoo) # 0,

(forj=1,...,B).

, cyy € C such that

Y1 Yn—1

B
W, o =YWy R 2!
7j=2

1

for yq, . ..

deduce that there exists p € {p, . ..

Wy

for any v, . ..

;Yn—1 > T and ¢} # 0 for at leastone j = 2,.. .,

1

B. So in a similar manner, we

, i} such that

*Yn—1

s, 1 [=0
1

,Yn—1 > T'. This gives a contradiction. Therefore, f;/ should be an infinite

set. It follows that the image of Hsfy on L? (SL(n, Z)\H") is infinite dimensional. O
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To complete the proof of the Theorem, we give a proof of Lemma[4.§]

Proof for Lemma Let k be a compactly supported function with support in U(J). Let
t > exp(44). For any z € %, assume that || In A(zh1)|| < § for some h € GL(n,R). By

Iwasawa decomposition,
Y1 Yn—1

forz e N(n,R),y1,...,Yn_1 > 0and

aet) \* [T
h:<|e()|> u S Y

Hn—l Unfj
Jj=1"%j 1

for u € N(n,R),v1,...,v,1 > 0 and k € O(n,R). Then by Lemma 2.5 for j =
1,...,n—1, we have

exp(—46) < %< exp(49).

j
So,

vj = y; - exp(—40) =t - exp(—46) > 1.

Then F'(h) = F(h) because ¥ < User, 1 @nspmz Y8 So for z € 5, we have

~

Fxk(z) = F(h)k(zh ') dh

JGL(n,IR) JRX

J Fh)k(zh=Y) dh = F + 5(2) = #aw) - F(2).
GL(n,R)/R

Let 7" € R satisfies (4.23). For a non-negative integer B < exp <2(l n!lnp ), and

for any z € X,

TsF(z) = Ap(p®,1,...,1) - F(2).

The operator H;(y) is a polynomial in Hecke operators and convolution operators associated

with compactly supported functions which have support in U(9). By combining the above
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computations, for any z € X7, we obtain

Hst"F(2) = Hy(aw) - (0o, ) - F(2).

Lemma 4.9. Let n = 2 and p be a prime. Then

) 5] _ k(n2-1) k(n2-1) 4dj,(n) )
||uzf||2<ﬂ(p i ) I (4.25)
k=1

3

forany f € C*° n L*(SL(n,Z)\H"). Here di(n) = ﬁikﬂfor k=1,...,5] Moreover,
forany Hs € C* (O(n,R)\GL(n,R)/(R* - O(n,R))) and 6 > 0, there exists a positive
real number C'r; < o0 such that

[5] 9 4dy(n)
Hotm 12 < C2 S g e 2 426
[|Hst, fll2 < Ch, - p 7T 4 p il (4.26)

k=1

0|3

forany f e L*(SL(n,Z)\H").

Proof. Since ¢ kills the continuous part, we only need to consider cuspidal functions. For

any cuspidal function f € C° n L? (SL(n,Z)\H"), we have

o6}
qujuj ,

where u;(z)’s are Hecke-Maass forms for SL(n, Z) of type u; with ||u;||3 = 1. So

8

/1B < ) o) 10F, )

If there exists a constant A > 0 such that

T (Cao (), ep(uj))‘ < A for any u;, then

a5 115 < A% - IfI[3.
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By (.13),

ORI I SO V(R

(4.27)

Eond
I
.
A
S
A
A
.
=
3
—
0
A
A
.
e
N
3

151
< H H H ‘1 — p_(el,il +...+E1,ik+€27j1+...+52,jk)‘

I<ji<<gpsn 1<t << <n

< H H H (1 + p*%(h,il ooty 2,5, +“'+Z2vﬂ'k))

k=11<j1<-<gpsn 1<ip << <n

for any (1, {5 € af(n). Recall the following theorem from [[12].

Theorem 4.10. (Luo-Rudnick-Sarnak) Fix an integer n = 2. Let f be a Hecke-Maass

form for SL(n,Z). Then for j =1, ... ,n and any prime v < o, including o,

(4.28)

For (1 = {s(u) and 5 = £,(u) for any Hecke-Maass forms u, the last line of the (4.27)

is less than or equal to

(5] 2:di(n)
L)
I (1 +p' ) :
b=l j=1
where :cg»k) < kshf;ll) and Z?f’f(”) xg ) = 0. Soforeachk = 1,..., 151
2-dy,(n) () 2K) . 2-dy(n)

1—[ (1+p1,‘§_k)):p,(1T+, +M) H (14—]95))
j=1 Jj=1

2-di(n) RO NO)
_J _J
= p 2 + p 2
j=1

2di(n) k(n2-1) k(n2—1)
< p n2+41 + p n2+1 ,

) k(n2-1)
since p »?+1 > 1. Therefore, for any Hecke-Maass form w,

~ n _ k(n2-1) k(n2—1) 2:dy(n)
hg(éoo ‘ 1_[ n2+1 nZ+1 .
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By Theorem [4.3] for any Hecke-Maass form u, we have
(b)) << (1 -+ [enfan)] ) SIRCR0N

By Theorem ||R (s (u))|| is bounded. So there exists a real positive constant Cly,
such that

Hi(to(w)| < O
for any Hecke-Maass form u. Since Hfy f is cuspidal for any f € L* (SL(n,Z)\H") it

follows that

2 : T _k(n?=1) k(n2-1) \ k(1) )
||H6h2f||2<OH6n(p n241 +p n241 ) ||f||2 '

k=1
O
4.3 Example for H;
For any g € GL(n,R), by (2.13), we have
g =|det g|" ki - A(g) -k, (forky, ks € O(n,R)),
then define
1 2 1 2a 2a
u(g) := Etr(A(g) )—1= - (e®M 4 -+ e™) — 1, (4.29)

where A(g) = ( ) such that aq,...,a, € Rand a; + --- + a, = 0. Then since

€2a1.....€2an:1’

0 < u(yg), (for g € GL(n,R)),

and

u(g) +1 < exp(2||InA(g)|)), (for any g € GL(n,R)).
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We generalize the function used in [3]. Let ¢ : [0,00) — [0, 00) be a smooth function

with supp(¢) < [0, 1] and
JOO o(z) de = 1.
0

Forany d > 0,letY = equ Define
Hs(g) == o (Y -u(g)), (for g € GL(n,R)). (4.30)

Then Hjy is a compactly supported smooth bi-(R* - O(n,R))-invariant function. Since

¢(Y - u(g)) = 0 for u(g) > +, we have

supp(Hs) < {g € GL(n,R) | [[In A(g)|[ <}

For example, for x € [0, 0), let

1 1 .
b(z) =1 © exp ( x(l_z)) , for0 <z <1 431
0, otherwise,

where ¢ = Sé exp <—ﬁ> dt. Then ¢ is always non-negative and it is a smooth function

with a support (0, 1).

91,1 --- gi,n
For any g = ( ; : ) € GL(n,R), we have

gn,1 --- gn,n

tr(fg-g)= > g2 = I|detg|" |lg|> = |det g|" tr (A(g)?).
1<i,y<n
So,
1

u(g) = ~llgl* =1, (forge GL(n,R)).

Lemma 4.11. Take 6 > 0 such that (625 — 1) < 1and

(e*—1) - J 1d'z < 1, (for0<t<1),

H7,
u(z)=t
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and let Hs be a function defined in . Then we have

Hs(z)d*z <

< 1.
]H[TL
Proof. LetY = —;

- Then

HE = |6 at) d*z=fo f oV -1) d*= dt

_ %f:ogb(t) J 1 d*z dt.

1L(z)¥t

Since ¢(t) = 0 fort > 1, we have 0 <

t
7y S

Hs(z) d*z < f

0

H'Il
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Chapter 5
APPROXIMATE CONVERSE THEOREM

5.1 Approximate converse theorem

Let S be a finite set of primes including co. Let g5 := max{v e S | v < w0} for S # {o0}

and gg := 1 for S = {oo}. For 6 > 0, define

B"(S;6) := {z ¢ 3 | [|In A(z"7)]| < 6 for some T € C‘{”} (5.1)

U {z eg" | ||In A(z~'7)|| < & for some T ¢ %\ﬁ}

. 0o \

) z ¢ % for some

U {7€%" ga" ;
non-negative integers a; + - - - + o, = | 5]

J

gs'
' = for some z € §", for some
U < B . G non-negative integers oy + - - - + a,, = | 5]
s

where @71 is the extended fundamental domain defined in (3.19).

We state the main theorem.

Theorem 5.1. (Approximate Converse Theorem) Let n > 2 be an integer and M be a set
of primes including oo and at least one finite prime. Let {y; = {{, € ai(n), ve M} be a

quasi-automorphic parameter for M and Fy,, be a quasi-Maass form of £, of length L as

in Definition Let ]:}M be the automorphic lifting of Fy,, in . Assume that there

~

exists a prime p € M such that i ({, £,) # 0. Let S < M be a finite subset including oo.

Choose arbitrary § > 0 and an arbitrary bi-(R* - O(n, R))-invariant compactly supported
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smooth function Hs with supp(Hy) < U(6), satisfying Hs((s) # 0.

Then there exists an unramified cuspidal automorphic representation (o) = &' m,(0,)

with an automorphic parameter o as in (3.10) such that { and o are e-close for S where

2

) Cp(na S7 H57 gOO)

sup ‘ﬁfM - FZM
) ‘2 . (5.2)

B™(S;é

A~

e, )| | Aot - DE )

Here Cy(n, S, Hs; ly) is a positive constant (which is determined by {,, the prime p and

Hy) given explicitly as
5] K1) kn2 1)\ 44k (1)
Cp(n, S, Hs; o) :=Vol (B"(5;6) N §") - (p_ e ) (5.3)
k=1
AL ([, 0 - o) )
j=1 WY
2] ?
2 _in+) etk
X475 VD M F'an D S Ll I
j=1 «q€s, 1<k <--<kj<n
finite prime
and
2 c A, (m Mp—1) 2
2. 1y n—1
L(FZM) = Z Z Z M;L—l k(n—k)/2
mi=1 mp—2=10#|mp—1|<L Hk:l mk|
2
o - my--- |mn_1|
J J W, y;v(l), 1 d*y,
T T

1

where di(n) = k!(%kﬂfor k=1,...,15] and Cy; > 0 is a constant defined in Lemma

for Hs. Forr =1,... ,n —1, we have

*(zq,k +"'+£q,k7«) . M
Aehl(17..-717q) 177]-) - { 21<k1<"'<kr<nq ! ’ l‘f‘qe )
—_——

0, otherwise,
M
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and Ag,,(1,...,1) = 1 while Ay, (my,...,m,_1) is determined by the multiplicative re-

lations in (2.46) for (m,...,m,_1) € Z" . Here T is a constant such that

n!ln
T > max{exp(45), exp (2 ([%J — 1)! (i — [%J)') } .

Remark 5.2. (i) Ifein is sufficiently small, then by Remark 8 [4], (o) is uniquely

determined.
~ 2
(ii) The constant € in (5.2) mainly depends on sup ‘FZM (2) — Fy,, (z)‘ . It is an inter-
Bn(5,5)
esting problem to choose Hs so that € is as small as possible.

(iii) Taking 6 and H; is also important to get a good €. We give an example for Hs in

(iv) For any finite set S, since the space B"(S;0) is bounded, there are finitely many

My .-y € SL(n, Z) such that

715" U U%Sn = Bn(éa S)

and

~ 2
Sup FZ}VI(’Z)_FZM(Z) = sup {|F5M(f}/jz)_F5M(Z)|2 |j:1,...,T}.
B"(5,5) B(6,5) "

(v) For an unramified cuspidal representation m = ®,7,(0,) of A“\GL(n, A), define an

analytic conductor

=]+ |ow,))

7=1
as in [4)], where 0o, = (001,-..,00,) € a&(n). Fix Q = 2. By [4], for any

n

unramified cuspidal representation 1 = ®,(0,) of A\GL(n,A) with C(w) < Q,

there exists a prime p < log () such that

h (0o, ap)‘ is sufficiently large.
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5.2 Proof of Theorem 3.1

Proof of Theorem Take H; such that IEI\(;(EOO) # 0. By Theorem since bz}(foo, l,) #

0, the automorphic function H hgﬁ vy 7 0and

hg (ﬁZM * H§) = HJhgﬁéM € L2 (SL(?”L,Z)\H”) :

cusp

If bg (EM % H5> satisfies (3.17) for ¢ > 0 then, by Lemma [3.19, there exists an unrami-

fied cuspidal representation with an automorphic parameter o, which is e-close to ¢,,. Let

v :=v(ly) asin (2.33).

To get the lower bound for || H, 5b$ﬁ’g |3, we use the following Lemma.

Lemma 5.3. For an integer n > 2, let f be a square-integrable, cuspidal, automorphic,

smooth function for H". For T > 1,

o0 0 e} Q0
||f||; > Z Z Z J J |Wf(y;mla"'7mn727mnfl)|2 d*y
T T

mi=1 mp_2=1my_1#0

Y1 Yn—1
where y = < y s Yls ooy Yno1 > 0 and d*y = 1—[?;11 yjfj(n*j)*ldyj. Here
1
1

We(z;ma, ..., mn_1) is the Fourier coefficient of f for my,...,m,_; € Z, defined by

We(z;ma, ... ,mp_1)

= J f(uz)e*QTfi(mlun—l,n+~-~+mn—2u2,3+mn_1u1,2) d*u
Z\R Z\R

1 Us, 5
where u = < >,ui’j€Rf0r1<i<j<nandd*u=1—[1<i<‘j<nduivj,
1

Let T > max {exp(46), exp (2(L"J—T)l!n(i—[nj)l)} > 1. By Lemma for any z €
Z]T 1 C 8’71’

’2

5 (B + H ) (2) = Hyllo)5 (s ) - oy (2).
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Then for z € ¥ 1, and for integers 1 < my, ..., my,_ s, |m,_1| < L, the (my, ..., m,_1)th
72

Fourier coefficient for Hsfp Fy,, is

WH&EZEM (Z; my, ... ’m”_l)
— ~ Ael\l (ml’ o ,mn—l)
= Hé(goo)ug(eoojgp) ) HZ: |7nk|k(rrk)/2
My Mg |My 1|
X WJ . Y; V(foo), 1 e2ﬂi(mlﬂ3n71,n+m2xn72,n71+'“+mn71$1’2).

Therefore, by Lemma/5.3]

L L
||H5b;‘ﬁ’gM||§> Z Z Z

m1=1 Mmp—2=10#|mn_1|<L

2
AEM (m17 ce 7mn71)

Z;i |mk|kz(n—k)/2

Hy ()52 (Cos, €,)

(5.4)

2
1" 'mn72|mn71|

ee} e} m
% f f W, |y v(le), 1 d*y.
T T

Consider the case when v = o0. For j = 1,...,n — 1, there exist A} (ly) € Cas
in Definition for the corresponding character associated to the parameter {,,. So for

j=1...,n—1, wehave

(AP = XD () 55 (Fiy + Hs ) I3

15 ] k2-1) w21\ 4k (n) A | .
< (p n2+41 + p n2+1 ) . || (Ag) _ )\gé)(goo)) FZJW " H(SH% :
k=1

since the operator {; commutes with the invariant differential operators AY). Since

(AD — 2D (b)) Foy, * Hs(2) = 0

n

for any z € H", it follows that
1(AD = XD (€o)) By + o3 = 11 (AD = XD () (Foyy = Fio, ) » i3

— 1| (P = P ) = (AP = XD () HS) I3
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and

1 (Foay = Fr ) + (AP = XD (€)) Hs) |1

- J;" JGL(n,R)/RX
2
<[ (] () @) 180 -] dc) e
Bn(S;8)ngn \JBn(S;0)

" Vol (B"(5;8) n§) - ( |

2

(Four = Foas ) (€) - (AP = AD (L)) Ho(€7'2) de| d*z

2
< sup | ‘FgM - Fy,, \(Aﬁf? - Aﬁ{;)(éoo))Ha\ df) )

B"(S;6 L(n,R)/R*

Consider the case whenv = ¢ < ccand g € S. Forj = 1,..., |7 there exists A (¢,) €
C, as in Definition for the corresponding character associated to the parameter ¢,. Since

ngg commutes with Hecke operators, it follows that

1 (T = XD(4,)) Hstp 113

3]  k(n2-1) k(n2—1) 4dy,(n) 9 ) ) ~
< (p nH 4 p el ) ) CH5 ) || (Tq(J) - )‘gj)(gq)) FZMH% )
k

0|3

Il
—

forj=1,...,|%]. Since (Téj) — )\gj)(ﬁq)> F,, =0and F,,,(2) = Fy,, () for z € 3", we

have

|| (Tq(j) - )‘tgj)(gtI)) ﬁfMHg = J

J n
U

By the definition of Tq(j ) in ll for each j = 1,...,[5], there exists a positive integer

il (Tq(j )) such that

Tq(]) (FKM - FfM) (Z) = j(n=1) Z c(kl 7777 k) ” qul o .quj <F£M N FeM) (Z)
q 2 0<k1<--<k;<y
H(75”)

= Tinn Z (ﬁzM - FZM) (Okz)a

q 2 k=1
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where ¢, .. x,) € Z and C}’s are upper triangular matrices with integer coefficients which

are determined by Hecke operators in the first line. So
2

0 (F 2 g L Q@ .
f qu (FZM — FéM) (Z)‘ d*z < L 1) Z ‘(FEM — FZM) (CkZ)‘ d*z
" "\q 2 k=1

. ~ 2
< Vol (B™(S;6) n§") - (Tq(ﬂ>1)2 S ‘FeM — Iy
2

_ j(nt1) 2

1<k1<<[§7<n BTL(S;‘s)

To complete the proof of the main theorem, we give the proof of Lemma/|5.3]

Proof of Lemma[5.3] Let f : SL(n,Z)\H" — C be a cuspidal automorphic function,

which is smooth and square integrable. For 7 = 1,....,n — 1, let
Ul n—j+1
I,_; : On—jxj—1
Up—j+1 = Un—jn—j+1 € N(n,R)
0jxn—j I
where Uy p—ji1, ..., Un—jn—j+1 € Rand 0,4; 1s an a x b matrix with O for every entry. Here

N(n,R) < GL(n,R) is the set of n x n unitary upper triangular matrices. We follow the
argument in 5.3, [12]. Let n > 2 be aninteger. Fix j = 1,...,n — 1. Form,, ..., m; € Z,

define

fj(z;mly-"amj) ::J f(un'un—l"'un—j-i-lz)
Z\R Z\R

« 6727m(m1un_1,n+~~~+mjun,j,n,]~+1) d*un L. d*unfjJrla

where
n—j

£
d*Up_j41 = nduk,n—jH-

k=1
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Then for mq, ..., m,_1 € Z,

fooi(zyma, oo mp) = We(zima, ... mp_1).

Let fo(z) := f(z) with z € H". By following the proof of Theorem 5.3.2, [12], we can

also prove the following.

(i) Forj =1,...,n— 1, we have

fj(Z; my,... ,mj)
. — 2T Uy — oy — *
= f T fj—l(un—j+127 my,... 7mj—1)€ ==t Uy
Z\R Z\R
(i) Fix y = 1,...,n — 2. For positive my, ..., m;_; € Z, we have
fj—1(2; my,... 7mj—1)
< o
_ n—j .
= Z Z fj(( [) z,ml,...,mjl,mj).
m;=1 7, €Pn_j 1,1(Z\SL(n—j,2) /
(iii) For positive integers my, ..., m, o, we have
Faa(zimu, o ompa) = >0 faa(zma, My, ma )
0#my,_1€Z
= Z We(zymy, ... ,My—g,Mpy_1) .
0#£my_1€Z

Since the Siegel set Elé c 5",

= [ s s = [T [T [ er e

1 1
2 2
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Then
0 © % 1 ,
| e T
1 1 J-3 -3
o0 o i 1
— j - J j . f Z Z m627ﬁ:m1('Ynfl,livl,n+"'7n71,n711’n71,n)
1 1 J—3 ~3 mi=1 yy_1€Pp_21 (Z\SL(n—1,2)
0
x fi (%_1 1). vzt my | ds
0
0O ... 01
where v, 1 = (yuo11 o nciner ) € Pu21(Z)\SL(n — 1,Z). For a positive integer m; and
Yot = (mcrn * ynins ) € Pu_a1(Z\SL(n — 1,7), it follows that
1 1 n—1
j2 : f(2)627rim1(A/nfl,1$l,n+"'7n71,n71mn71,n)dek
4 )
0
Tn—1 ! :
= fi ( ) Y1z :
1 0
0 .01
So,
0 o ,t 1 )
[ e e
N
o o0 % 1 o
g R FE
0 2
s pe )
An-1€Pn_21(Z\SL(n—1,Z) 0
0O ... 01

#
H dl’i’j d Yy
I<i<jsn—1
2

© o0 o % % ! .
> Z J e f J A, f fl Y1z N K 1_[ dSL’Z'J' d*y
- 0

1<i<j<n—1
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Then using
Tin-1 0
2 = Iy o : Yo"
Tn—2n—1 0
0 ... 0 1 0 ... 01

with yo > 0, 2" € H"2, for 0 < m, € Z, we obtain

xl,n—l 0 0 O
L o ; ; Y1y2z" ;
fl Tp—2n-1 0 0 0 T
0 ... 0 1 o]]o 0 v 0
0 .. 0 1 0 0 1
0 O
e} Yn—2 y1y22" :
ma=1 'Y7L72EP7L73,1\SL(n72>Z) 0 1 0 L 0 yl 0
0 o 0 1

2mima(Yn—2,1Z1,n—1++Yn—2,n—2Tn—2,n—1)
X e 3

® .
Where ’Ynf2 = (’Yan,l e Ym—2,n—2 )' We get agaln’

EEE b il R N A

1
mi=1mo=1 2

N

0 0 ?
yiye”
E 0 0[>M1,m2 H dz; ; d*y.
O o 0 m 0 Isi<y<n—2
0o ... 0 1

After continuing this process inductively for n — 1 steps, we finally obtain

o0 0 o0 o0
ey 3 3 f j Wy (g oy )| dy
1 1

my1=1 mp—2=1my_1#0

Yi1-Yn—-1
wherey=< ".yl ),yl,...,yn_1>0. 0
1
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5.3 Proof of TheoremI.1l

Let Hs(z) = ¢(Y - u(z)) where ¢ is a function defined in li and Y = —;—. Choose

e20—1"

6 > 0 such that

max {‘/\g)(ﬁw)‘}jzl 77777 o, -max f 1d*z (¥ —-1)< 1.
Hr,,
u(z)=t o<t<1

Thenforj=1,...,n—1,
f (AD — XD (6)) Hs(r)| d*r

<f IADH ()| d*r + \Agg><eoo)\f (Y -u(r)) d*r
H™ H™

As in Lemma4.11] we have

. o | P2
DP(Ea)| - | o ) = | o) LT | di
Hn Jo Y
Hn,
u(r)=%
eel
< | o)dt=1
Jo
So,
f [(AD = 2D (00)) Hs(7)| d*r < J |AD Hy(r)| d*r +1,
n ]H[n
then
151 k(n2—1) k(n2—1) 4dy,(n)
Cp(n,0;8) :=Vol(B"(S;0) n§") - (p R i ) (5.5)
k=1
n—1 ' 2
X Z (f ‘Ag)é(Y-u(T))‘ d*t + 1)
j=1 \H?
2
! J(n+1)
+Ch > D> T Y, R
j=1 4q€Ss, 1<k <<kj<n

finite prime



By (5.2) and (5.3), we have Theorem[I.1]
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