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Submitted in partial fulfillment of the

requirements for the degree

of Doctor of Philosophy

in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2010



c©2010

Thomas David Peters

All Rights Reserved



ABSTRACT

Computations of Heegaard Floer Homology: Torus
Bundles, L-spaces, and Correction Terms

Thomas David Peters

In this thesis we study some computations and applications of Heegaard Floer homology.

Specifically, we show how the Floer homology of a torus bundle is always “monic” in a cer-

tain sense, extending a result of Ozsváth and Szabó. We also explore the relation between

Heegaard Floer homology L–spaces and non-left orderability of three-manifold groups. Fi-

nally, we discuss a concordance invariant coming from the Floer homology of ±1–surgeries.
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iv



Acknowledgments

First, I would like to thank my advisor, Peter Ozsváth, for all he has done: discussed
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Chapter 1

Introduction

Heegaard Floer homology was introduced by Ozsváth and Szabó in [OS04e; OS04d]. It

provides extremely powerful invariants for closed oriented three-manifolds in the form of a

package of abelian groups, denoted collectively by HF ◦. There is also an extension, called

knot Floer homology, due to Ozsváth and Szabó [OS04c] as well as Rasmussen [Ras03], to

a homology theory for knots inside closed oriented three-manifolds. Recently, there have

even been extensions of Heegaard Floer theory to manifolds with boundary: a theory for

sutured manifolds due to Juhasz [Juh06] and a theory for “bordered” three-manifolds by

Lipshitz, Ozsváth, and Thurston [LOTa; LOTb].

Heegaard Floer theory has led to many interesting advances in the theory of three

and four-dimensional topology, contact geometry, and knot theory. For instance, in the

four-dimensional setting, it has been used to reprove Donaldson’s diagonalization theorem

[OS04a], as well as give restrictions on the topology of symplectic four-manifolds [OS04f].

The three-dimensional theory detects the Thurston semi-norm [OS04b], and gives informa-

tion about the existence of taut foliations [OS04b]. Knot Floer homology detects the genus

of a knot [OS04b; Juh06] and detects fiberdness [Ghi08; Ni09b; Juh08]. In Chapter 2 we

provide an overview of some aspects of Heegaard Floer theory.

For fiber bundles with fiber genus greater than one, a computation of Ozsváth and

Szabó shows that their Floer homology is “monic” in the “outermost” Spinc structure (see

Theorem 3.1.1 for a precise statement). Ni proved the remarkable fact that the converse

holds in [Ni09a]. For a torus bundle, the Floer homology is always infinitely generated as
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an abelian group, though it was believed that the Floer homology should still be monic

in some sense. In Chapter 3, which was joint work with Yinghua Ai, we show how this is

indeed possible using twisted coefficients with values in a certain Novikov ring.

A group is called left-orderable if there exists a strict total ordering on its elements

which is invariant under left-multiplication. Left-orderability of three-manifold groups re-

flects interesting geometric properties of the corresponding manifolds. For instance, if the

fundamental group of a three-manifold is not left-orderable then it cannot possess any R–

covered foliations (see Calegari and Dunfield [CD03]). Heegaard Floer theory can also rule

out the existence of certain taut foliations on three-manifolds. Specifically, the family of L–

spaces (a class of three-manifolds whose Floer homology is “as simple as possible”) cannot

possess any co-orientable taut foliation [OS04b]. In Chapter 4 we discuss some of the rela-

tions between orderability properties of the fundamental group and the class of L–spaces.

We then provide some examples in the hyperbolic setting.

A knot K in the three-sphere is called smoothly slice if there exists a smoothly embedded

disk in the four-ball with boundary K. More generally, two knots K1 and K2 are smoothly

concordant if there exists a smoothly embedded annulus in a thickened three-sphere, ϕ : S1×

[0, 1] → S3× [0, 1] such that ϕ|S1×{0} = K1 ⊂ S3×{0} and ϕ|S1×{1}) = K2 ⊂ S3×{1}.

The connect sum of knots descends to an operation on concordance classes of knots giving

the smooth concordance group, denoted C. The study of knot concordance is an active area

of research, one to which Heegaard Floer theory has applications. For instance, Ozsváth

and Szabó [OS03b] and independently Rasmussen [Ras03] used knot Floer homology to

define a powerful homomorphism τ : C → Z. In certain cases, the Heegaard Floer homology

of a three-manifold can be equipped with a natural Q–grading. By studying this grading

on the branched double cover of a knot, Manolescu and Owens were able to derive a further

concordance invariant [MO07]. In Chapter 5, in much the same spirit as Manolescu and

Owens, we study a concordance invariant of knots obtained from the grading on the Floer

homology of the +1–surgery of the knot.
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Chapter 2

Heegaard Floer homology

In this chapter, we outline some of the fundamental constructions and properties of Heegaard

Floer homology.

2.1 Heegaard diagrams

Let Y be a closed oriented three-manifold. Y may be described by a tuple (Σ,α,β) (called

a Heegaard diagram for Y ) where Σ is a oriented genus g surface and α = {α1, α2, ..., αg},

β = {β1, β2, ..., βg} are collections of closed embedded curves in Σ (called the α and β–

curves, or circles, respectfully) such that

1. The α–curves are pairwise disjoint (likewise for the β–curves).

2. The homology classes of the α–curves are linearly independent in H1(Σ;Z) (likewise

for the β–curves).

3. The α–curves intersect the β–curves transversely.

These data (Σ,α,β) give rise to a Heegaard decomposition for Y (a decomposition into two

handlebodies) as follows: start with a thickened surface Σ× [0, 1]. Attach thickened disks to

Σ×{0} along the β–curves and then attach thickened disks to Σ×{1} along the α–curves.

By condition 2, it follows that we have just constructed a three-manifold with two spherical

boundary components. These components are then filled in uniquely by three-balls to give a

closed oriented three-manifold (the orientation is chosen to be compatible with the natural
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orientation on Σ × [0, 1] induced by the orientation on Σ). By considering a self-indexing

Morse function f : Y → R, it follows that any three-manifold admits such a decomposition.

Heegaard decompositions are not unique; there are three moves which do not change the

underlying three-manifold. These are isotopies, handleslides, and stabilizations. Isotopies

are the simplest to describe: they just move the α– and β–curves in a smooth one-parameter

fashion in such a way that all the α–curves remain disjoint (likewise for the β–curves).

Stabilization enlarges Σ by connect-summing with a torus T , Σ′ = Σ#T and replac-

ing {α1, α2, ..., αg} with {α1, α2, ..., αg , αg+1} and {β1, β2, ..., βg} with {β1, β2, ..., βg , βg+1}

where αg+1 and βg+1 are a pair of transversely intersecting curves in T meeting in a single

point. Finally, handleslides take a pair of α–curves (or β–curves) and change one of them to

be a “connect-sum” of its previous self and a parallel copy of the other curve. In fact, these

three moves and their inverses are sufficient to go between any two Heegaard diagrams for

a given three-manifold, by a theorem of Singer [Sin33].

2.1.1 The Heegaard Floer complex

In [OS04e; OS04d], Ozsváth and Szabó introduced Heegaard Floer homology. Starting with

a closed oriented three-manifold Y , they associate a pointed Heegaard diagram (Σ,α,β, z).

This is just an ordinary Heegaard diagram with the additional choice of a point z ∈ Σ −

α − β. In the most general construction, Ozsváth and Szabó associate a chain complex

CF∞(Σ,α,β, z) (CF∞ for short) over the module Z[U,U−1] where U is a formal variable.

The Heegaard diagram (Σ,α,β) gives rise to a pair of tori Tα and Tβ inside the symmetric

product Symg(Σ) via α1×α2 × · · · ×αg and β1 ×β2 × · · · βg, respectfully. Since the α– and

β–curves are assumed to intersect transversely, the tori Tα and Tβ intersect transversely in

a finite number of points. CF∞ is, at the level of generators, the free Z[U,U−1]–module on

these intersection points. Generators are either written [x, i] or U i · x. The differential on

CF∞ is more difficult to describe. It involves the choice of a generic path of almost complex

structures Jt on Symg(Σ) and counts certain disks between generators. More specifically, a

Whitney disk is a map ϕ : D2 → Symg(Σ) where D2 is the unit disk in C which “connects”

a pair of generators x to y in the sense that

1. ϕ(i) = x and ϕ(−i) = y
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2. ϕ(eiθ) ∈ Tα if cos θ ≤ 0

3. ϕ(eiθ) ∈ Tβ if cos θ ≥ 0

For g > 2, let π2(x,y) denote the set of homotopy classes of Whitney disks connecting x

to y. For g = 2 one takes a further quotient of the Whitney disks as in Ozsváth–Szabó

[OS04e] to form π2(x,y).

The basepoint z gives us two things: a map nz : π2(x,y) → Z and a map sz : Tα∩Tβ →

Spinc(Y ). The first map takes a Whitney disk ϕ ∈ π2(x,y) to its algebraic intersection num-

ber with the subvariety {z} × Symg−1(Σ) ⊂ Symg(Σ). The map sz works as follows. Let

f be a Morse function on Y compatible with the Heegaard decomposition (Σ,α,β). The

coordinates of x determine g trajectories for ∇f1 which, collectively, connect the index one

critical points to the index two critical points. Similarly, z gives a trajectory connecting the

index zero critical point with the index three critical point. By removing regular neighbor-

hood of these g+1 trajectories, we obtain the complement of a disjoint union of three-balls

in Y on which ∇f does not vanish. Further, ∇f has index zero on all the corresponding

boundary spheres since the trajectories connect critical points of opposite parity. It follows

that ∇f can be extended to a non-vanishing vector field on Y which, by the correspondence

of Turaev [Tur97], gives us a Spinc structure on Y . It is a simple fact that if sz(x) 6= sz(y)

then π2(x,y) is empty.

Finally, we may define the differential ∂∞ on CF∞. It is given by:

∂∞[x, i] =
∑

y∈Tα∩Tβ
sz(y)=sz(x)

∑

φ∈π2(x,y)
µ(φ)=1

#M̂(φ) · [y, i − nz(φ)]

Where here µ(φ) denotes the Maslov index of φ, the “formal dimension” of the space M(φ)

of pseudo-holomorphic representatives of the homotopy class of φ ∈ π2(x,y), and M̂(φ)

denotes the quotient of M(φ) under the natural action of R by re-parametrization. Finally,

#M̂(φ) denotes the signed number of points in M̂(φ). Clearly CF∞ splits according to

Spinc structures. To ensure that the sums appearing in the differential are finite, one must

restrict to s–admissible Heegaard diagrams, as defined in Ozsváth and Szabó [OS04e]. In

1To form ∇f we can either choose a metric on Y or work with a gradient-like vector field (see Milnor

[Mil65].
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order to orient the moduli spaces M̂(φ) one needs additional data which we do not get into

here. However, if we take Floer homology with Z/2–coefficients, no such data are needed.

There is a natural subcomplex CF− generated by the [x, i] with i < 0. This gives a

quotient complex CF+ := CF∞/CF−. Finally there is the “hat version,” ĈF , given by

the kernel of the induced map U : CF+ → CF+. By definition, we get a pair of short exact

sequences of Z[U ]–complexes:

0 // CF− ι // CF∞ π // CF+ // 0 (2.1)

and

0 //
ĈF

ι // CF+ U // CF+ // 0 (2.2)

each of which split according to Spinc structures on Y .

Through a careful study of how the complexes CF ◦ change under isotopies, handleslides,

and stabilizations, Ozsváth and Szabó proved:

Theorem 2.1.1 (Ozsváth and Szabó [OS04e]). Let Y be a closed oriented three-manifold.

Then the homology of the chain complexes HF ◦(Y, s) := H(CF ◦) are topological invariants

of the Spinc three-manifold (Y, s).

Here ◦ denotes any one of ,̂ +, or −. Of course, the short exact sequences 2.1 and 2.2

give rise to a pair of Z[U ]–equivariant long exact sequences

· · · // HF−(Y, s)
ι // HF∞(Y, s)

π // HF+(Y, s) // · · · (2.3)

and

· · · // ĤF (Y, s) // HF+(Y, s)
U // HF+(Y, s) // · · · (2.4)

2.1.2 Knot Floer homology

Given a null-homologous knot K in a Spinc three-manifold, the Heegaard Floer complex

CF∞(Y, s) can be endowed with extra structure, as was discovered by Ozsváth and Szabó

[OS04c] and independently by Rasmussen [Ras03].

A genus g marked Heegaard diagram for a knot K in a three-manifold Y is a Heegaard

diagram (Σ,α,β,m) such that α1, · · · , αg and β1, · · · , βg−1 specify the knot complement,

βg is a meridian for K, together with the choice of a point m on βg ∪ (Σ−∪iαi −∪j 6=gβj).
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A genus g marked Heegaard diagram leads to a doubly-pointed Heegaard (Σ,α,β, w, z)

(ie a Heegaard diagram with the choice of two distinct basepoints w, z ∈ Σ− ∪iαi − ∪jβj)

as follows: place the basepoints w and z close-by on the two sides of βg in such a way that

a short arc joining w and z meets βg exactly once at m. Finally order the points w and z

so that riding the arc from w to z gives the orientation of K.

Given a null-homologous knot K ⊂ Y inside a three-manifold with Seifert surface F ,

one may always find a doubly-pointed Heegaard diagram (Σ,α,β, w, z). Similar to previous

constructions, the marked point m gives rise to a map

sm : Tα ∩ Tβ → Spinc(Y0(K))

as defined by Ozsváth and Szabó. Here, Y0(K) denotes the three-manifold obtained by

0–surgery on K with respect to the surface framing, F . This map is defined as follows:

replace the meridian βg with a longitude λ (from the Seifert surface framing) chosen to

wind once along the meridian, never crossing m so that each intersection point x ∈ Tα∩Tβ

has a pair of “closest points” x′ and x′′. Letting (Σ,α,γ, w) denote the induced Heegaard

diagram for Y0(K), define sm(x) := s
′
w(x

′) = s
′
w(x

′′), where s
′
w : Tα ∩ Tβ → Spinc(Y0(K))

denotes the usual map from intersection points to Spinc structures on Y0(K).

The set Spinc(Y0(K)) is also denoted Spinc(Y ) and is referred to as the set of relative

Spinc structures on Y . There is an identification Spinc(Y ) ∼= Spinc(Y ) ⊕ Z. Under this

identification, the map to the first factor is given by restricting a relative Spinc structure to

Y −K and then extending (uniquely) to Y . The map to the second factor is given by the

evaluation 1
2 〈c1(t), [F̂ ]〉, half of the evaluation of the first Chern class of the relative Spinc

structure on the fundamental class of the capped off surface F̂ in the 0–surgery.

Given the above data, Ozsváth and Szabó define the knot complex CF∞(Σ,α,β, w, z).

It is the free Abelian group on triples [x, i, j] with x ∈ Tα ∩ Tβ, and i, j ∈ Z. This is

endowed with the differential

∂∞[x, i, j] =
∑

y∈Tα∩Tβ

∑

φ∈π2(x,y)
µ(φ)=1

#M̂(φ) [y, i − nw(φ), j − nz(φ)].

This chain complex comes with an action by Z[U ] given by

U · [x, i, j] = [x, i − 1, j − 1].
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This complex is also Z ⊕ Z–filtered by the map [x, i, j] 7→ (i, j). As in the definition

of the three-manifold invariants, admissibility conditions must be met to ensure that the

sums appearing in the differential are finite. Again, in order to orient the moduli spaces

appearing, one needs additional data. The complex CF∞(Σ,α,β, w, z) naturally splits into

subcomplexes, denoted CFK∞(Y, F,K, s). These chain complexes are generated by triples

[x, i, j] satisfying the constraint that

s(x) + (i− j)PD(µ) = s0

where here PD(µ) ∈ H2(Y0(K);Z) is the Poincaré dual to the meridian of K and s0 is the

unique Spinc structure on Y0(K) satisfying 〈c1(s0), [F̂ ]〉 = 0. When F is clear from context

it is usually omitted from the notation CFK∞(Y, F,K, s). Ozsváth and Szabó proved in

[OS04c] that the Z ⊕ Z–filtered chain homotopy type of CFK∞(Y, F,K, s) is an invariant

of (Y, F,K, s). The complex depends on the Seifert surface F but only up to a shift in the

bifiltration. When H1(Y ;Z) = 0, there is no such dependence.

The bifiltered complex CFK∞(Y, F,K, s) may be viewed as a the ordinary Heegaard

Floer complex CF∞(Y, s) along with a new Z–filtration. This is given as follows. Given

s ∈ Spinc(Y ), and an extension s ∈ Spinc(Y,K), we have an isomorphism

Π1 : CFK
∞(Y,K, s) → CF∞(Y, s)

given by

Π1[x, i, j] = [x, i].

The new Z–filtration is defined to the projection of [x, i, j] to j. Through similar construc-

tions, Ozsváth and Szabó showed how the choice of knot K in a Spinc three-manifold Y

gives rise natural filtrations on all versions of Heegaard Floer homology, HF ◦(Y, s).

The chain complex CFK∞(Y,K, s) contains a lot of topological information of the knot

K. Just to name a few, it determines the Alexander polynomial [OS04c], the knot genus

[OS04b], tells if a knot is fibered [Ni09b], and can be used to give restrictions on the four-

genera of knots [OS03b]. Finally, the Heegaard Floer homology of any surgery on K can

be determined from CFK∞(Y,K, s) by the so-called “integer surgery formula” of Ozsváth

and Szabó [OS08]. We use this constuction in Chapter 5.
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Chapter 3

Novikov coefficients and torus

bundles

3.1 Introduction

The Heegaard Floer homology groups reflect many interesting geometric properties of three-

manifolds. For instance, Ozsváth and Szabó showed that they detect the Thurston semi-

norm on a closed oriented three-manifold [OS04b]. As another example, work of Ghiggini

[Ghi08] and Ni [Ni09b] shows that knot Floer homology detects fiberedness in knots.

Turning to closed fibered three-manifolds, note that a three-manifold which admits a

fibration π : Y → S1 has a canonical Spinc structure, ℓ, obtained as the tangents to the

fibers of π.

Theorem 3.1.1 (Ozsváth–Szabó [OS04f]). Let Y be a closed three-manifold which fibers

over the circle, with fiber F of genus g > 1, and let t be a Spinc structure over Y with

〈c1(t), [F ]〉 = 2− 2g.

Then for t 6= ℓ, we have that

HF+(Y, t) = 0

while

HF+(Y, ℓ) ∼= Z.
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This is commonly referred to as the fact that the Floer homology of a surface bundle

(with fiber genus greater than one) is “monic” in its “top-most” Spinc structure. In fact,

Ni proved a converse to Theorem 3.1.1:

Theorem 3.1.2 (Ni [Ni09a]). Suppose Y is a closed irreducible three-manifold, F ⊂ Y is

a closed connected surface of genus g > 1. Let HF+(Y, [F ], 1 − g) denote the group

⊕

s∈Spinc(Y )
〈c1(s),[F ]〉=2−2g

HF+(Y, s).

If HF+(Y, [F ], 1 − g) ∼= Z, then Y fibers over the circle with F as a fiber.

For a fiber bundle with torus fiber F , HF+(Y, [F ], 0) is always infinitely generated as

an abelian group1. However, as we shall show, if one works with Floer homology and an

appropriate version of Novikov coefficients, the Floer homology of a torus bundle is still

“monic” in a certain sense. Much is already known about the Floer homology of torus

bundles. For instance, Baldwin has computed the untwisted Heegaard Floer homologies of

torus bundles with b1(Y ) = 1 in [Bal08, Theorem 6.4].

In this chapter, which is based on joint work with Yinghua Ai [AP10], we use Heegaard

Floer homology with twisted coefficients in the universal Novikov ring, Λ, of all formal

power series with real coefficients of the form

f(t) =
∑

r∈R

ar t
r

such that

#{r ∈ R | ar 6= 0, r ≤ c} <∞

for all c ∈ R. Given a cohomology class [ω] ∈ H2(Y ;Z), Λ can be given a Z[H1(Y ;Z)]–

module structure, and this gives rise to a twisted Heegaard Floer homology HF+(Y ; Λω).

This version was first defined by Ozsváth and Szabó in [OS04e, Section 10] and can also

be derived from the definition of general twisted Heegaard Floer homology in [OS04d,

1This can be seen as follows. First of all, for the three-torus it is true by Ozsváth–Szabó [OS04a,

Proposition 8.4]. Torus bundles with b1 < 3 have standard HF∞ (see Section 5.3 of Chapter 5 for the

definition of standard HF∞, and Ozsváth–Szabó [OS04d, Theorem 10.1] for the proof of this statement)

and since HF+ ∼= HF∞ in high degrees, the statement follows.
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Section 8]. We will describe this group explicitly in Section 3.2.1. It is worth noting that

Heegaard Floer homology with twisted coefficients in a certain Novikov ring has already

been studied extensively by Jabuka and Mark [JM08a]. They referred to their construction

as “perturbed” Heegaard Floer invariants, by way of analogy with certain constructions in

Seiberg-Witten theory. The main theorem we prove in this chapter is the following:

Theorem 3.1.3. Suppose Y is a closed oriented three-manifold which fibers over the circle

with torus fiber F , [ω] ∈ H2(Y ;Z) is a cohomology class such that ω(F ) 6= 0. Then we have

an isomorphism of Λ–modules

HF+(Y ; Λω) ∼= Λ.

Remark 3.1.4. In the setting of Monopole Floer homology, a corresponding version of

this theorem was proved by Kronheimer and Mrowka in [KM07, Theorem 42.7.1]. Theorem

3.1.3 was also proved using different methods by Lekili [Lek, Theorem 12]. In fact, Lekili

actually proved the stronger statement that for a torus bundle Y , HF+(Y ; Λω) is supported

in the canonical Spinc structure, ℓ. Also, Ai and Ni proved in [AN09] that the converse of

the above theorem also holds, ie the twisted Heegaard Floer homology determines whether

an irreducible three-manifold is a torus bundle over the circle.

This chapter is organized as follows. We provide a review of Heegaard Floer homology

with twisted coefficients in Section 3.2, including the most pertinent example, S1 × S2. In

Section 3.3 we prove a relevant exact triangle for ω–twisted Heegaard Floer homology and

prove Theorem 3.1.3.

3.2 Review of twisted coefficients

We recall the construction of Heegaard Floer homology with twisted coefficients, referring

the reader to Ozsváth and Szabó [OS04d; OS04b] for more details. Given a closed, oriented

three-manifold Y we associate a pointed Heegaard diagram (Σ,α,β, z), where Σ is an

an oriented surface of genus g ≥ 1 and α = {α1, ..., αg} and β = {β1, ...βg} are sets

of attaching circles (assumed to intersect transversely) for the two handlebodies in the

Heegaard decomposition. These give a pair of transversely intersecting g–dimensional tori



CHAPTER 3. NOVIKOV COEFFICIENTS AND TORUS BUNDLES 12

Tα = α1 × · · · ×αg and Tβ = β1 × · · · × βg in the symmetric product Symg(Σ). Recall that

the basepoint z gives a map sz : Tα ∩ Tβ → Spinc(Y ). Given a Spinc structure s on Y , let

S ⊂ Tα ∩ Tβ be the set of intersection points x ∈ Tα ∩ Tβ such that sz(x) = s.

Given intersection points x and y in Tα ∩ Tβ, let π2(x,y) denote the set of homotopy

classes of Whitney disks from x to y. There is a natural map from π2(x,x) to H1(Y ;Z)

obtained as follows: each φ ∈ π2(x,x) naturally gives rise to an associated two-chain in

Σ whose boundary is a collection of circles among the α and β–curves. We then close

off this two-chain by gluing copies of the attaching disks for the handlebodies in the Hee-

gaard decomposition of Y . The Poincaré dual of this two-cycle is the associated element of

H1(Y ;Z).

Given a Spinc structure s on Y and a pointed Heegaard diagram (Σ,α,β, z) for Y , an

additive assignment is a collection of maps

A = {Ax,y : π2(x,y) → H1(Y ;Z)}x,y∈S

with the following properties:

• when x = y, Ax,x is the canonical map from π2(x,x) onto H
1(Y ;Z) defined above.

• A is compatible with splicing in the sense that if x,y,u ∈ S then for each φ1 ∈ π2(x,y)

and φ2 ∈ π2(y,u), we have that A(φ1 ∗ φ2) = A(φ1) +A(φ2).

• Ax,y(S ∗ φ) = Ax,y(φ) for S ∈ π2(Sym
g(Σg)).

Additive assignments may be constructed with the help of a complete system of paths as

described in Ozsváth–Szabó [OS04d].

We write elements in the group-ring Z[H1(Y ;Z)] as finite formal sums

∑

g∈H1(Y ;Z)

ng · e
g

for ng ∈ Z. The universally twisted Heegaard Floer complex,

CF∞(Y, s;Z[H1(Y ;Z)], A)
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is the free Z[H1(Y ;Z)]–module on generators [x, i] for x ∈ S and i ∈ Z. The differential,

∂∞, is given by:

∂∞[x, i] =
∑

y∈S

∑

φ∈π2(x,y)
µ(φ)=1

#M̂(φ) · eA(φ) ⊗ [y, i− nz(φ)]

Here µ(φ) denotes the Maslov index of φ, the formal dimension of the spaceM(φ) of pseudo-

holomorphic representatives in the homotopy class of φ, nz(φ) denotes the intersection

number of φ with the subvariety {z} × Symg−1(Σ) ⊂ Symg(Σ), and M̂(φ) denotes the

quotient of M(φ) under the natural action of R by reparametrization. To ensure that

the sums appearing in the definition of the differential are finite, one must restrict to s–

admissible Heegaard diagrams, as defined in Ozsváth–Szabó [OS04e, Section 4.2.2]. Just as

in the untwisted setting, this complex admits a Z[U ]–action via U : [x, i] 7→ [x, i− 1]. This

gives rise to variants CF+, CF−, and ĈF , denoted collectively as CF ◦. The homology

groups of these complexes are the universally twisted Heegaard Floer homology groups

HF ◦.

More generally, given any Z[H1(Y ;Z)]–module M , we may form Floer homology groups

with coefficients in M by taking HF ◦(Y, s;M) as the homology of the complex

CF ◦(Y, s;M,A) := CF ◦(Y, s;Z[H1(Y ;Z)], A) ⊗Z[H1(Y ;Z)] M.

For instance, by taking M = Z, thought of as being a trivial Z[H1(Y ;Z)]–module (ie, every

element acts as the identity), one recovers the ordinary untwisted Heegaard Floer homology,

CF ◦(Y, s).

In Ozsváth–Szabó [OS04e, Theorem 8.2], it is proved that the homologies defined above

are independent of the choice of additive assignment A and are topological invariants of the

pair (Y, s). As in the untwisted setting, these groups are related by long exact sequences:

· · · // ĤF (Y, s;M) // HF+(Y, s;M)
U // HF+(Y, s;M) // · · ·

and

· · · // HF−(Y, s;M)
ι // HF∞(Y, s;M)

π // HF+(Y, s;M) // · · ·
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Of course, the chain complex CF ◦(Y, s;M) is obtained from the chain complex in the

universally twisted case, CF ◦(Y, s;Z[H1(Y ;Z)]), by a change of coefficients and hence the

corresponding homology groups are related by a universal coefficients spectral sequence (see

for instance Cartan and Eilenberg [CE99]).

3.2.1 ω–twisted Heegaard Floer homology

In this section we briefly recall the notion of ω–twisted Heegaard Floer homology, following

Ozsváth and Szabó [OS04e; OS04b].

We define the universal Novikov ring to be the set of all formal power series with real

coefficients of the form

f(t) =
∑

r∈R

ar t
r

such that

#{r ∈ R | ar 6= 0, r ≤ c} <∞

for all c ∈ R. It is endowed with the following multiplication law, making it into a field:

(
∑

r∈R

ar t
r) · (

∑

r∈R

br t
r) =

∑

r∈R

(
∑

s∈R

asbr−s) t
r

Furthermore, by fixing a cohomology class [ω] ∈ H2(Y ;R) we can give Λ a

Z[H1(Y ;Z)]–module structure via the ring homomorphism:

Z[H1(Y ;Z)] → Λ
∑
ah · e

h 7→
∑
ah · t

〈h∪ω,[Y ]〉

When we have a fixed Z[H1(Y ;Z)]–module structure given by a two-form ω in mind, we

denote Λ by Λω. This Z[H
1(Y ;Z)]–module structure gives rise to a twisted Heegaard Floer

homology HF+(Y ; Λω), which we refer to as ω–twisted Heegaard Floer homology. More

concretely, it can be defined as follows (see Ozsváth–Szabó [OS04b, Section 3.1]). Choose

a weakly admissible pointed Heegaard diagram (Σ,α,β, z) for Y and fix a two-cocycle

representative ω ∈ [ω]. Every Whitney disk φ in Symg(Σ) (for Tα and Tβ) gives rise to a

two-chain [φ] in Y by coning off partial α and β–circles with gradient trajectories in the α

and β–handlebodies. The evaluation of ω on [φ] depends only on the homotopy class of φ

and is denoted
∫
[φ] ω (or sometimes ω([φ])). The ω–twisted chain complex CF+(Y ; Λω) is
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the free Λ–module generated by [x, i] with x ∈ Tα ∩ Tβ and integers i ≥ 0, endowed with

the following differential:

∂+[x, i] =
∑

y∈Tα∩Tβ

∑

φ∈π2(x,y)
µ(φ)=1

#M̂(φ) [y, i − nz(φ)] · t
∫
[φ]
ω

Its homology is the ω-twisted Heegaard Floer homology HF+(Y ; Λω). Notice that this

group is both a module for Z[H1(Y ;Z)] and a module for Λ. Notice also that although the

differential depends on the choice of two-cocycle representative ω ∈ [ω], the isomorphism

class of the chain complex only depends on the cohomology class. This may be seen as

follows: suppose we have cohomologous two-forms ω1 and ω2 on Y . Fixing an intersection

point x0 ∈ Tα∩Tβ, define Φ: CF∞(Y ; Λω1) → CF∞(Y ; Λω2) by Φ([x, i]) = [x, i] t(ω2−ω1)[φx]

where φx is any element in π2(x0,x) (the choice is irrelevant: the associated domains of

any two choices would differ by a periodic domain, which then caps off to a closed surface

on which the exact form ω2 − ω1 evaluates to zero). It is then an easy exercise to see that

Φ induces a chain isomorphism. An advantage of using this viewpoint is that we avoid

altogether the notion of an “additive assignment”. It is easy to see (using an argument

similar to the previous), that the complex defined above is isomorphic to one obtained by

choosing an additive assignment and then tensoring with the Z[H1(Y ;Z)]–module Λω.

Suppose W : Y1 → Y2 is a four-dimensional cobordism from Y1 to Y2 given by a single

two-handle addition and we have a cohomology class [ω] ∈ H2(W ;R). Then there is an

associated Heegaard triple (Σ,α,β,γ, z) and four-manifold Xαβγ representing W minus a

one-complex (see Ozsváth–Szabó [OS06, Proposition 4.3]). Similar to before, a Whitney

triangle ψ ∈ π2(x,y,w) determines a two-chain in Xαβγ on which we may evaluate a

representative, ω ∈ [ω]. As before, this evaluation depends only on the homotopy class of

ψ ∈ π2(x,y,w) and is denoted by
∫
[ψ] ω. This gives rise to a Λ–equivariant map

F+
W ;ω : HF

+(Y1; Λω|Y1 ) → HF+(Y2; Λω|Y2 )

(which is defined only up to multiplication by ±tc for some c ∈ R) defined on the chain

level by

f+
W ;ω

[x, i] =
∑

y∈Tα∩Tγ

∑

ψ∈π2(x,Θ,y)
µ(ψ)=0

#M(ψ) [y, i − nz(ψ)] · t
∫
[ψ] ω



CHAPTER 3. NOVIKOV COEFFICIENTS AND TORUS BUNDLES 16

where Θ ∈ Tβ ∩ Tγ represents a top-dimensional generator for the Floer homology

HF≤0(Yβγ) ∼= ∧∗H1(Yβγ ;Z)⊗ Z[U ]

of the three-manifold determined by the Heegaard diagram (Σ,β,γ, z), which is a connected

sum #g−1(S1 × S2) (g denotes the genus of Σ), and M(ψ) denotes the moduli space of

pseudo-holomorphic triangles in the homotopy class ψ. This definition may be extended to

arbitrary smooth, connected, and oriented cobordisms as in Ozsváth–Szabó [OS06]. These

maps may be decomposed as a sum of maps

F+
W ;ω =

∑

s∈Spinc(W )

F+
W,s;ω

which are summed according to Spinc equivalence classes of triangles, just as in the untwisted

setting. This can be extended to arbitrary (smooth, connected) cobordisms from Y1 to

Y2 as in Ozsváth–Szabó [OS06]. These maps also satisfy a composition law : if W1 is a

cobordism from Y1 to Y2 and W2 is a cobordism from Y2 to Y3, and we equip W1 and

W2 with Spinc structures s1 and s2 respectively (whose restrictions agree over Y2), then

puttingW =W1#Y2W2, for any [ω] ∈ H2(W ;R) there are choices of representatives for the

cobordism maps such that:

F+
W2,s2;ω|W2

◦ F+
W1,s1;ω|W1

=
∑

s∈Spinc(W )
s|Wi=si

F+
W,s;ω

3.2.2 Example: S1 × S2

In this section we calculate twisted Heegaard Floer homologies of S1 × S2. We start with

the universally twisted version ĤF (S1 × S2;Z[t, t−1]), where we have identified Z[H1(S1 ×

S2;Z)] ∼= Z[t, t−1], the ring of Laurent polynomials. S1 × S2 has a standard genus–one

Heegaard decomposition (Σ, α, β) where α is a homotopically nontrivial embedded curve

and β is an isotopic translate. For simplicity, we only compute ĤF . We make the diagram

weakly admissible for the unique torsion Spinc structure s0 by introducing canceling pairs

of intersection points between α and β. This gives a pair of intersection points x+ and x−.

We next need an additive assignment. Notice there is an obvious periodic domain consisting

of a pair of (non-homotopic) disks D1 and D2 connecting x+ and x−. When capped off, the
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periodic domain gives a sphere representing a generator ofH2(S
1×S2;Z) ∼= Z. By taking the

Poincaré dual we recover a generator of H1(S1×S2;Z) ∼= Z. IdentifyingH1(S1×S2;Z) ∼= Z,

an additive assignment must assign ±1 to this domain. One way this can be done is by

assigning 1 to D1 and 0 to D2. We place the basepoint z in the complement of the disks

D1 and D2. Finally, applying the Riemann mapping theorem, and the argument given in

Ozsváth–Szabó [OS04d, page 1169], we see that the complex ĈF (S1 × S2;Z[t, t−1]) is just:

0 // Z[t, t−1]
1−t // Z[t, t−1] // 0

Here, the first copy of Z[t, t−1] corresponds to x+ and the second corresponds to x−. This

complex has homology Z, with trivial Z[t, t−1]–action. This gives the universally twisted

Floer homology

ĤF (S1 × S2;Z[t, t−1]) ∼= Z,

which is supported only in the torsion Spinc structure s0.

Now let us turn to an ω–twisted example. We can view S1 × S2 as 0–surgery on the

unknot in S3. Put µ a meridian for the unknot. Then µ defines a curve, also denoted µ, in

S1 × S2. Put [ω] = d · PD[µ] for an integer d. The complex ĈF (S1 × S2; Λω) is:

0 // Λ
tc(1−td)

// Λ // 0

for some c ∈ R. Notice when d 6= 0, (1− td) is invertible in Λ. Hence:

ĤF (S1 × S2; Λω) =




0 when d 6= 0

Λ⊕ Λ when d = 0

As a final example, we prove a proposition regarding embedded two-spheres in three-

manifolds and ω–twisted coefficients.

Lemma 3.2.1. Let Y1 and Y2 be a pair of closed oriented three-manifolds and fix cohomology

classes [ωi] ∈ H2(Yi;Z). By the Mayer–Vietoris sequence we get a corresponding cohomology

class ω1#ω2 ∈ H2(Y1#Y2;Z) ∼= H2(Y1;Z) ⊕H2(Y2;Z). Then we have an isomorphism of

Λ–modules:

ĤF (Y1#Y2; Λω1#ω2)
∼= ĤF (Y1; Λω1)⊗Λ ĤF (Y2; Λω2)
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Proof. This follows readily from the methods of proof of Ozsváth–Szabó [OS04d, Proposi-

tion 6.1] and the fact that Λ is a field (so that the Künneth sequence simplifies).

This allows us to prove:

Proposition 3.2.2. Let S ⊂ Y 3 be an embedded non-separating two-sphere in a three-

manifold Y . Suppose [ω] ∈ H2(Y ;Z) is a cohomology class such that ω([S]) 6= 0. Then

HF+(Y ; Λω) = 0.

Proof. Just as in the untwisted theory, HF+(Y ;M) vanishes if and only if ĤF (Y ;M)

vanishes, so it suffices to show that ĤF (Y ; Λω) = 0. Notice that Y contains an S1 × S2

summand in its prime decomposition. Hence Y ∼= S1×S2 #Y ′ for some three-manifold Y ′.

Now ω ∈ H2(Y ;Z) ∼= H2(S1×S2;Z)⊕H2(Y ′;Z) corresponds to classes ω1 ∈ H
2(S1×S2;Z)

and ω2 ∈ H2(Y ′;Z) with ω1([S]) 6= 0. We already know that ĤF (S1 × S2; Λω1) = 0 from

the above calculation, so the proposition follows from Lemma 3.2.1.

3.3 An exact sequence for ω–twisted Floer homology

In this section we first prove a long exact sequence for the ω–twisted Heegaard Floer ho-

mologies and then use it to prove Theorem 3.1.3. It is interesting to notice that there is a

similar exact sequence in Monopole Floer homology with local coefficients; see Kronheimer,

Mrowka, Ozsváth, and Szabó [KMOS07, Section 5]. Our proof is a slight modification of the

proof of the usual surgery exact sequence in Heegaard Floer homology. A good exposition

of the original proof may be found in Ozsváth–Szabó [OS05a].

Let K ⊂ Y be framed knot in a three-manifold Y with framing λ and meridian µ.

Given an integer r, let Yr(K) denote the three-manifold obtained from Y by performing

Dehn surgery along the knot K with framing λ + rµ. Let ν(K) denote a small tubular

neighborhood of the knot K and η ⊂ Y − ν(K) be a closed (not necessarily connected)

curve in the knot complement. Then for any integer r, η ⊂ Y − ν(K) ⊂ Yr(K) is a closed

curve in the surgered manifold Yr(K). We denote its Poincaré dual by [ωr] ∈ H
2(Yr(K);Z).

Put I = [0, 1]. Note that η × I represents a relative homology class in the corbordisms

W0 : Y → Y0(K), W1 : Y0(K) → Y1(K) and W2 : Y1(K) → Y which are given by the
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natural two-handle additions. So as in Section 3.2.1 it gives rise to homomorphisms between

ω–twisted Floer homologies

F+
W0;PD(η×I) : HF

+(Y ; Λω) → HF+(Y0(K); Λω0),

F+
W1;PD(η×I) : HF

+(Y0(K); Λω0) → HF+(Y1(K); Λω1),

F+
W2;PD(η×I) : HF

+(Y1(K); Λω1) → HF+(Y ; Λω). and

Where here ω = PD(η) ∈ H2(Y ;Z). We denote the corresponding maps on the chain level

by f+
W0;PD(η×I)

, f+
W1;PD(η×I)

and f+
W2;PD(η×I)

respectively.

Theorem 3.3.1. The maps above form an exact sequence of Λ–modules:

HF+(Y ; Λω) // HF+(Y0(K); Λω0)

uukkkkkkkkkkkkkkk

HF+(Y1(K); Λω1)

iiRRRRRRRRRRRRR

(3.1)

Furthermore, analogous exact sequences hold for “hat” versions as well.

Proof. Find a Heegaard diagram (Σg, {α1, · · · , αg}, {β1, · · · , βg}, z) compatible with the

knot K. More precisely, K lies in the handlebody specified by the β–curves and β1 is a

meridian for K. For each i ≥ 2 let γi, δi be exact Hamiltonian isotopies of the βi. Let

γ1 = λ, δ1 = λ + µ be the 0–framed and 1–framed longitude of the knot K, respectively.

We assume the Heegaard quadruple (Σ,α,β,γ, δ, z) is weakly admissible in the sense of

Ozsváth–Szabó [OS04e]. It is easy to see that Yαβ = Y , Yαγ = Y0(K), Yαδ = Y1(K), and

Yβγ ∼= Yγδ ∼= Yβδ ∼= #g−1S2 × S1.

Following Ozsváth–Szabó [OS05c], we define a map

h1 : CF
+(Y ; Λω) → CF+(Y1(K); Λω1)

by counting holomorphic rectangles:

h1([x, i]) =
∑

w∈Tα∩Tδ

∑

ϕ∈π2(x,Θβγ ,Θγδ,w)
µ(ϕ)=0

#M(ϕ)[w, i − nz(ϕ)]t
∫
[ϕ] PD(η×I)

where here M(ϕ) denotes the moduli space of (maps of) pseudo-holomorphic rectangles

into Symg(Σ) allowing the conformal structure on the domain to vary. The notation
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∫
[ϕ]PD(η × I) in the above formula requires some explanation. The Heegaard quadruple

(Σ,α,β,γ, δ, z) gives rise to a four-manifold Xαβγδ (as defined in Ozsváth–Szabó [OS06])

which can be thought of as the complement of two one-complexes in the composite cobor-

dism Y → Y0 → Y1 and therefore we can consider PD(η × I) as a class in H2(Xαβγδ ;Z).

Similar to the definition of the cobordism maps, the Whitney rectangle ϕ determines a two-

chain in Xαβγδ on which we may evaluate the two-form PD(η × I), denoted
∫
[ϕ] PD(η × I).

Similarly we define h2 : CF
+(Y0(K); Λω0) → CF+(Y ; Λω) and h3 : CF

+(Y1(K); Λω1) →

CF+(Y0(K); Λω0).

We claim that h1 is a null homotopy of f+
W1;PD(η×I)

◦ f+
W0;PD(η×I)

. To see this, we

consider the moduli space of holomorphic rectangles of Maslov index one. This moduli

space can have 6 kinds of ends:

1. Splicing holomorphic discs at one the four corners of a holomorphic rectangle.

2. Splicing two holomorphic triangles. Triangles may be spliced in two ways: one triangle

for Xαβγ and one triangle for Xαγδ , or one triangle for Xαβδ and one triangle for Xβγδ

Notice PD(η×I) is 0 when restricted to the corners Yβγ and Yγδ: in fact, we can make η×I

disjoint from these manifolds since η may be pushed completely into the α–handlebody,

Uα, by cellular approximation (see Figure 3.1). Alternatively, since Xαβγδ is obtained from

the composite cobordism W0#W1 by removing a neighborhood of a one-complex, we can

choose this one-complex to be disjoint from the annuli η × I.

This implies that

CF+(Yβγ ; ΛPD(η×I)|Yβγ
) ∼= CF+(Yβγ)⊗Z Λ

and all differentials are trivial (informally, we are using an “untwisted” count). For the end

coming from splicing two holomorphic triangles, one for Xαβδ and one for Xβγδ , it is also

true that PD(η × I) is 0 when restricted to the four-manifold Xβγδ (again, since η may

be pushed completely into Uα). Therefore we are counting holomorphic triangles in Xβγδ

“without twisting”. In Ozsváth–Szabó [OS04d] it is shown that the untwisted counting of

holomorphic triangles in Xβγδ is zero. This leaves three terms remaining.

1. Splicing a disc at corner Yαβ counted with twisting by PD(η × I)|Yαβ = [ω], which

corresponds to h1 ◦ ∂.
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Xαβγδ

Yβγ Yγδ

Yαβ

η × I

Yαδ

Xβγδ

Yβδ

Xαβδ

η × I

Xαβγ Xαγδ

Yαγ

η × I

Figure 3.1: Schematics of the four-manifold Xαβγδ and its decompositions.

2. Splicing a disc at corner Yαδ counted with twisting by PD(η × I)|Yαδ = [ω1], which

corresponds to ∂ ◦ h1.

3. Splicing two holomorphic triangles from Xαβγ and Xαγδ counted with twisting by

PD(η × I), which corresponds to f+
W1;PD(η×I)

◦ f+
W0;PD(η×I)

.

From the fact that the moduli space must have total end zero, it is clear that the sum of the

above three terms is zero, ie h1 is a homotopy connecting f+
W1;PD(η×I)

◦ f+
W0;PD(η×I)

to the

zero map. This shows that F+
W1;PD(η×I) ◦F

+
W0;PD(η×I) = 0 on the homology level. The same

argument shows that F+
W2;PD(η×I) ◦ F

+
W1;PD(η×I) = 0 and F+

W0;PD(η×I) ◦ F
+
W2;PD(η×I) = 0 as

well.

At last we prove that the sequence, Equation 3.1, is exact. Using a homological algebra

argument as in Ozsváth–Szabó [OS05c] we need to show that h◦f++f+ ◦h is homotopic to

the identity map. This can be done by counting holomorphic pentagons and noticing that

we have a class PD(η× I) ∈ H2(Xαβγδβ′ ) similar to before (here Xαβγδβ′ is the complement
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of three one-complexes in the composite cobordism Y → Y0 → Y1 → Y ) and that PD(η×I)

is zero when restricted to Yβγ ,Yγδ,Yδβ′ ,Xβγδ , Xγδβ′ and Xβγδβ′ , similar to before. This

shows that the counts there are “untwisted”. From this observation one can easily see that

everything in the proof of exactness in [OS05c] can go through to our twisted version.

In the above theorem, the cohomology classes [ωr] are integral. In practice one may

need to use real cohomology class as well. In that situation, a given cohomology class

[ω] ∈ H2(Y ;R) can be expressed as a finite sum

[ω] =
∑

aiPD(ηi)

where the ηi are closed curves in the knot complement and ai ∈ R. Each ηi can be viewed

as a closed curve in Yr(K), so the expression
∑
aiPD(ηi) also gives a real cohomology class

in Yr(K), denoted by [ωr] ∈ H2(Yr(K);R). In the cobordism Wr,

∑
aiPD(ηi × I)

is a real cohomology class in H2(Wr;R), hence gives rise to homomorphism between ω–

twisted Floer homologies. With this understood, it is easy to see that an analogue of

Theorem 3.3.1 still holds.

Remark 3.3.2. The exact sequence in Theorem 3.3.1 depends on the actual curve η, not

just its Poincaré dual [ω] ∈ H2(Y ;Z). In fact if we take another closed curve η′ = η + k · µ

(where µ is a meridian of K), this doesn’t change [ω], but may change [ω0], [ω1] and the exact

sequence. For example, take K ⊂ S3 to be the unknot and η = k ·µ in the knot complement,

then [ω0] is k times the generator of H2(S2 × S1;Z). When k 6= 0, the corresponding exact

sequence for the hat version is

· · · → ĤF (S3
0(K); Λω0)

//

∼=

��

ĤF (S3
1(K); Λω1)

//

∼=

��

ĤF (S3; Λω) → · · ·

∼=

��
0 // Λ

1−tk // Λ

Clearly it depends on k. When k = 0, the exact sequence is obtained from the corresponding

exact sequence for untwisted Heegaard Floer homology by tensoring with Λ.
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In [OS04b], Ozsváth and Szabó used another version of twisted Floer homology,

HF+(Y ; [ω]),

which is defined by using the Z[H1(Y ;Z)]–module Z[R]. The ω–twisted Floer homology we

used in this chapter can be viewed as a completion of HF+(Y ; [ω]). It is easy to see that

there is a similar exact sequence in their context. More precisely, we have the following

exact sequence:

HF+(Y ; [ω]) // HF+(Y0(K); [ω0])

uukkkkkkkkkkkkkkk

HF+(Y1(K); [ω1])

iiRRRRRRRRRRRRR

(3.2)

With the above exact sequences in place, we can now prove Theorem 3.1.3. We merely

mimic Ozsváth and Szabó’s proof of [OS04f, Theorem 5.2].

Proof of Theorem 3.1.3. For a given cohomology class [ω] ∈ H2(Y ;Z) with ω(F ) = d 6= 0,

choose a closed curve η ⊂ Y such that its Poincaré dual PD(η) equals the image of [ω]

in H2(Y ;R). Since the mapping class group of a torus is generated as a monoid by right-

handed Dehn twists along non-separating curves (see Humphries [Hum77] or Ozsváth–Szabó

[OS04f, Theorem 2.2]), we can connect Y to the three-manifold S3
0(T ) which is obtained

from S3 by performing 0–surgery on the right-handed trefoil, by a sequence of torus bundles

πi : Y
i → S1

and cobordisms

Y = Y 0
W0 // Y 1

W1 // · · ·
Wn−1 // Y n = S3

0(T )

such that the monodromy of Y i+1 differs from that of Y i by a single right-handed Dehn

twist along a non separating knot Ki which lies in a fiber Fi of πi. The curve η ⊂ Y induces

curves ηi ⊂ Y i which can be assumed disjoint from the Ki. In this way, we get a sequence

of cohomology classes ωi = PD(ηi) ∈ H2(Y i;Z) such that ωi(Fi) = d 6= 0. The cobordism

Wi is obtained by attaching a single two-handle to Y i × I along the knot Ki with framing

−1 (with respect to the framing Ki inherits from the fiber Fi). Since ηi is disjoint from Ki,
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ηi × I defines a relative homology class [ηi × I] ∈ H2(Wi, ∂Wi;Z) and hence its Poincaré

dual gives rise to homomorphisms between ω–twisted Floer homologies:

F+
Wi;PD(ηi×I)

: HF+(Y i; Λωi) → HF+(Y i+1; Λωi+1)

We claim that these maps are all isomorphisms. Notice that Y i+1 = (Y i)−1(Ki) where

the 0–framing of Ki is defined to be the framing Ki inherits from the fiber, Fi. Now

consider (Y i)0(Ki). This manifold contains a two-sphere Si (which is obtained from Fi

by surgering along Ki) and also an induced curve ηi such that ηi · Si = d 6= 0, therefore

HF+((Y i)0(Ki); ΛPD(ηi)) = 0 by Proposition 3.2.2. The exact sequence, Equation 3.1, now

proves the claim.

This shows that

HF+(Y ; Λω) ∼= HF+(S3
0(T ); ΛPD(η))

where η is the induced curve in S3
0(T ). We now identify the latter group. For simplicity we

write ω = PD(η). Identifying Q[H1(S3
0(T );Z)] with Q[t, t−1], Ozsváth and Szabó show in

[OS04a] that there is an identification of Q[t, t−1]–modules:

HF+
k (S

3
0(T );Q[t, t−1]) ∼=





Q if k ≡ −1/2 (mod 2) and k ≥ −1/2

Q[t, t−1] if k = −3/2

0 otherwise

Where the left hand group is the universally twisted Heegaard Floer homology of S3
0(T ),

Q[H1(S3
0(T );Z)] acts on Q by the identity, and Q[t, t−1] is a module over itself in the natural

way. By definition:

CF+(S3
0(T ); Λω) = CF+(S3

0(T );Q[t, t−1])⊗Q[t,t−1] Λω

Notice Q[t, t−1] is a principal ideal domain, so by the universal coefficients theorem (see

for instance of Hilton and Stammbach [HS70, Theorem 2.5]) there is an exact sequence:

0 → HF+(S3
0(T );Q[t, t−1])⊗Q[t,t−1] Λω

→ HF+(S3
0(T ); Λω) → Tor

Q[t,t−1]
1 (HF+(S3

0(T ),Λ) → 0

We need only compute Tor
Q[t,t−1]
1 (Q,Λω). Start with the free Q[t, t−1]–resolution of Q:

0 // Q[t, t−1]
1−t // Q[t, t−1] // Q // 0
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Tensoring this complex over Q[t, t−1] with Λω and augmenting gives the complex

0 // Λ
1−td // Λ // 0

where here d = 〈PD(η), F 〉 for F the torus fiber. Since we are working over Λ and d 6= 0,

the middle map is an isomorphism and we see that Tor
Q[t,t−1]
q (Q,Λω) = 0 for all q. From

the above exact sequence, we obtain an isomorphism of Λ–modules HF+(S3
0(T ); Λω)

∼= Λ.

Therefore

HF+(Y ; Λω) ∼= Λ

It is worth noting that alternate proofs of this theorem as well as Proposition 3.2.2

are possible through the use of inadmissible diagrams, which have been explored by Wu in

[Wu09] as well as by Lekili in [Lek].
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Chapter 4

L-Spaces and left-orderings of the

fundamental group

4.1 Introduction

A three-manifold Y is called an L–space if it is a rational homology three-sphere and its hat

version of Heegaard Floer homology is “as simple as possible” in the sense that the rank of

ĤF (Y ) is equal to |H1(Y ;Z)|1. The class of L–spaces includes all lens spaces and is closed

under connected sum as well as orientation reversal. According to a theorem of Némethi,

a three-manifold obtained as a plumbing of disk bundles over spheres is an L–space if and

only if it is the link of a rational surface singularity [N 05]. In particular, any three-manifold

with spherical geometry is an L–space, a fact which was first established by Ozsváth and

Szabó [OS05b, Proposition 2.3]. According to a theorem of Ozsváth and Szabó, an L–space

cannot have a co-orientable taut foliation [OS04b]. This provides a nice bridge between the

world of pseudo-holomorphic curve invariants and the geometry of three-manifolds. Though

there is not yet a classification of L–spaces, there is a complete answer in the case of Seifert

fibered spaces with base orbifold S2(α1, · · · , αn), according to the following theorem of Lisca

and Stipsicz [LS07] which states

Theorem 4.1.1 (Lisca-Stipsicz [LS07]). Let M be an oriented Seifert fibered rational ho-

1For a rational homology three-sphere, we always have |H1(Y ;Z)| ≤ rank ĤF (Y )).
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mology three-sphere with base S2. Then the following statements are equivalent:

1. M is an L–space

2. Either M or −M carries no positive transverse contact structures

3. M carries no transverse foliations

4. M carries no taut foliations.

Moreover, the existence of transverse foliations is completely understood and has a

simple combinatorial answer given in terms of the Seifert invariants, as was shown by

work of Eisenbud, Hirsch, Jankins, Neumann, and Naimi (see [EHN81], [JN85a], [JN85b],

[Nai94]).

A group G is called left-orderable if it may be given a strict total ordering ≺ which is left-

invariant, ie g ≺ h if and only if fg ≺ fh for any f, g, h ∈ G. Orderability properties of the

fundamental group of have interesting consequences for the topology of three-manifolds.

For instance, Calegari and Dunfield showed that three-manifolds with non-left-orderable

fundamental group do not support co-orientable R–covered foliations2 [CD03]. Though

in general there is not a complete understanding of when a three-manifold group is left-

orderable, Boyer, Rolfsen, and Wiest provide the answer in the case of Seifert fibered spaces

[BRW05]:

Theorem 4.1.2 (Boyer-Rolfsen-Wiest [BRW05]). The fundamental group of a compact,

connected, Seifert fibered space M is left-orderable if and only if M ∼= S3 or one of the

following two sets of conditions holds:

1. rankZH1(M ;Z) > 0 and M ≇ RP 2 × S1;

2. M is orientable, the base orbifold of M is of the form S2(α1, α2, ..., αn), π1(M) is

infinite, and M admits a transverse foliation.

2By definition, an R–covered foliation of a three-manifold is a codimension one foliation such that the

pulled-back foliation on the universal cover is the product foliation of R3 by horizontal R2’s. For a closed

manifold, this implies tautness. See Calegari [Cal00a; Cal00b; Cal99] for a discussion of some of the properties

of R–covered foliations.
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Putting together Theorems 4.1.1 and 4.1.2, the remark that spherical manifolds are

L–spaces, and the fact that closed Seifert fibered three-manifolds with finite fundamental

group are spherical, we see that the class of Seifert fibered L–space is almost exactly the

class of Seifert fibered three-manifolds with non-left-orderable fundamental group (union

the three-sphere). The only place where they could presumably differ is the case of Seifert

fibered L–spaces with base RP 2. However, they were proved to agree in this case by Boyer

and Watson in [Wat09]. In another direction, Greene has informed me [Gre] of a quick proof

that the branched double cover of an alternating knot (which is always an L–space) has

non-left-orderable fundamental group. Given these facts, it is natural then to explore the

connection between L–spaces and non-left-orderable three-manifold groups further. Exam-

ples of infinite families of hyperbolic manifolds with non-left-orderable fundamental group

are provided by the work or Roberts, Shareshian, and Stein [RSS03]. These manifolds were

shown to be L–spaces by the work of Baldwin [Bal07]. In their paper [CD03], Calegari

and Dunfield determined that of the 128 closed hyperbolic manifolds of volume < 3 which

are Z/2–homology spheres, at least 44 of them have non-left-orderable fundamental group.

Dunfield later showed that all of these are in fact L–spaces [Dun]. Further examples of

non-left-orderable three-manifold groups are provided by a paper of Dabkowski, Przytycki,

and Togha [DPT05]. They prove

Theorem 4.1.3 (Dabkowski-Przytycki-Togha [DPT05]). Let Σn(L) denote the n–fold

branched cyclic cover of the oriented link L, where n > 1. Then the fundamental group,

π1(Σn(L)), is not left-orderable in the following cases:

1. L = T(2′,2k) is the torus link of type (2, 2k) with the anti-parallel orientation of strings,

and n is arbitrary.

2. L = P (n1, n2, ..., nk) is the pretzel link of the type (n1, n2, ..., nk), k > 2, where either

n1, n2, ..., nk > 0 or n1 = n2 = · · · = nk−1 = 2, nk = −1 and k > 3. The multiplicity

of the covering is n = 2.

3. L = L[2k,2m] is the two-bridge knot of type p/q = 2m+ 1
2k = [2k, 2m], where k,m > 0,
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and n is arbitrary.

4. L = L[n1,1,n3] is the two-bridge knot of type p/q = n3 +
1

1+ 1
n1

, where n1 and n3 are

odd, positive integers. The multiplicity of the covering is n ≤ 3.

In this chapter we show that

Theorem 4.1.4. All of the manifolds in Theorem 4.1.3 are Heegaard Floer homology L–

spaces.

The manifolds in Theorem 4.1.3, items (1) and (2), Σ3(41) from (4), and the covers

of the trefoil from (4) are Seifert fibered and are hence covered by our previous remarks.

For the other cases, which are hyperbolic, we realize them as branched double covers of of

quasi-alternating links in the three-sphere. This allows us to apply a theorem of Ozsváth

and Szabó which states that the branched double cover of a quasi-alternating link in S3 is

an L–space. We also give an independent proof for the manifolds in Theorem 4.1.3, item

(1) also by realizing them as branched double covers of alternating links.

4.1.1 Further questions

We provide a list of unanswered questions which the author finds fascinating.

1. We have a question of Ozsváth and Szabó: is it true in general that a closed, oriented,

and irreducible three-manifold is an L–space if and only if it has no co-orientable taut

foliation?

2. Need a three-manifold with non-left-orderable fundamental group be an L–space?

What about the converse?

3. Given a knot or link, when is its n–fold cyclic cover an L–space? For instance, it

follows from Baldwin’s classification of L–spaces among three-manifolds admitting

genus one, one boundary component open books [Bal08] that Σn(31) is an L–space if

and only if n ≤ 5 and Σn(42) is an L–space for every n.
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4. Which manifolds on the Hodgson-Weeks census are L–spaces? Dunfield informs me

that at least 3,000 of the 11,000 census manifolds are L–spaces [Dun].

5. Is every L–space the branched double cover of a link in S3?

6. Give some description of hyperbolic L–spaces.

7. Connections to contact geometry: Lisca and Stipsicz recently solved the existence

problem for tight contact structures on Seifert fibered three-manifolds [LS09]:

Theorem 4.1.5 (Lisca-Stipsicz [LS09]). A Seifert fibered three-manifold admits a

tight contact structure if and only if it is not orientation preserving diffeomorphic to

the result of (2n − 1)-surgery along the (2, 2n + 1)-torus knot T2,2n+1 ⊂ S3 for some

n ∈ N.

In proving this theorem, their classification of Seifert fibered L–spaces proved es-

sential. On the other hand, toroidal three-manifolds are known to admit infinitely

many different contact structures (see [CGH03], [HKM04]). Little is known, however,

about the existence of tight contact structures on hyperbolic three-manifolds. Some

information is provided by work of Baldwin [Bal07], and it is known that the Weeks

manifold admits tight contact structures [Sti08]. Futhermore, any co-orientable taut

foliation (of which there are many—see for instance Roberts, Shareshian and Stein

[RSS03]) may be perturbed to a tight contact structure by a theorem of Eliashberg and

Thurston [ET98]. What can one say about tight contact structures on the manifolds

from items (3) and (4) in Theorem 4.1.3?

4.2 Background

4.2.1 A surgery presentation of the branched double cover of a link in S3

We begin with a review an algorithm that takes a diagram for a knot or link and pro-

duces a surgery presentation for its branched double cover, which is described in Ozsváth–

Szabó [OS04b]. Given a diagram of a link D(K) pick an edge at random to mark. Then

checkerboard color the plane. This allows us to produce the black graph of D(K), denoted
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B(D(K)): it is a planar graph whose vertices are in one-to-one correspondence with the

black regions in our checkerboard coloring of the plane, and whose edges correspond to cross-

ings in the diagram. The edges are further decorated by an incidence number µ(e) = ±1

given by the rule of Figure 4.1. The vertices are then weighted by the sum of the incidences

of the incident edges w(v) = −
∑

e incident to v µ(e). We then form the reduced black graph

B̃(D(K)) by deleting the vertex which corresponds to the region touching the marked edge

and then deleting all edges which are incident to this vertex. We then draw a surgery

diagram as follows: for each vertex of B̃ we draw a planar unknot (such that all are un-

linked). For each edge between two vertices we add a right/left-handed clasp between the

corresponding unknots according to the incidence of the edge (see Figure 4.2) or, equiva-

lently, we perform ∓1 surgery, respectively, on an unknot which links the two components

as shown in Figure 4.2. If we chose to draw clasps, we frame each unknotted component

by the weight on its corresponding vertex. If we chose to draw linking ±1 curves, we then

0–frame each of the original unknots coming from the vertices of the reduced black graph

and add small linking unknots of framing ±1 in such a way that the sum of all the framings

of the linking unknots to this component is minus the vertex marking of the corresponding

vertex. This gives a surgery presentation for Σ2(K) (see Figure 4.3 for an example).

+1 −1

Figure 4.1: Incidence assignment rules.

Warning: in this chapter, we will occasionally work with decorated graphs such as the

graph labeled B̃(D(K)) in Figure 4.3. Though aesthetically similar, these diagrams are

generally not the same as plumbing graphs (in the sense of Neumann [Neu81], for instance).

There is one exception, however: when our graph is a tree and we delete the edge markings

(they are irrelevant) then we actually do have a plumbing description of our manifold.

One may visualize the involution on this manifold, giving rise to our link: line up the

0–framed circles on a line and then put in the ±1–framed unknots each intersecting the axis

of symmetry in two points in such a way that the whole diagram has a symmetry about
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=

=
−1

+1

−1

+1

Figure 4.2: Creating clasps out of incidences.

+1

0 0

+1

Z/2

+1
+1

Σ2(K)

D(K)

+1

+1
−3 −3

+1

B(D(K))
+1

−2

+1

−3 −3

+1 B̃(D(K))

−3−3

Z/2

Σ2(K)

Figure 4.3: Going from a diagram of the figure eight to a surgery presentation of its

branched double cover.



CHAPTER 4. L-SPACES AND LEFT-ORDERINGS OF THE FUNDAMENTAL
GROUP 33

an axis, as shown in the example, Figure 4.3. The complement of the surgered solid tori

has obvious branch locus: the axis drawn minus its intersections with the solid tori. The

involution of S3 about this axis may be extended to a hyperelliptic involution of the surgery

tori fixing longitudes and meridians set-wise (but reversing their orientation). It is easy to

see that the quotient of the complement of the surgery solid tori under the involution is a

ball minus a collection of disjoint sub-balls, one for each surgery torus (for instance, take

as fundamental domain the “upper half space” cut out by half solid tori). This shows that

the quotient orbifold is indeed topologically S3. We now determine its branch locus. The

branch locus in each of the solid tori is pair of arcs, each of which is isotopic (rel boundary)

to a “half” of the corresponding framing curve in the surgery diagram. For instance, if

we only had n − 1 0–framed curves (no ±1-surgeries), then the downstairs branch locus

coming from the “outside” (the complement of the solid tori) is a collection of n arcs in

the three–sphere. Isotoping the downstairs branch loci (rel boundary) of the solid tori

connects these arcs in such a way that we get a collection of n unknots. In a similar way,

we can analyze what happens with the introduction of ±1 surgeries, as above. By pushing

the branch loci into the “outside” we see that +1 surgeries correspond to the introduction

of right-handed “crossings” between the corresponding unknots from above and that −1

surgeries correspond to the introduction of left-handed crossings.

4.2.2 Quasi alternating knots.

In [OS05c] Ozsváth and Szabó defined the class of quasi-alternating links—it is the smallest

collection Q of links such that

• The unknot is in Q.

• If the link L has a diagram with a crossing c such that

1. both resolutions of c, L0 and L∞ as in Figure 4.4, are in Q,

2. det(L) = det(L0) + det(L∞),

then L is in Q.
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L

L∞

L0

Figure 4.4: Resolving a crossing.

As in Champanerkar and Kofman [CK09], we shall call such a crossing c as above a

quasi-alternating crossing of L and say that L is quasi-alternating at c.

The class of quasi-alternating links extends the class of alternating links in the sense that

if a link admits a connected alternating diagram then it is quasi-alternating. In [OS05c],

Ozsváth and Szabó show that if a link L is quasi-alternating, then its branched double cover

is an L–space3.

Quasi-alternating knots may be “generated” by the following construction of Kofman

and Champanerkar [CK09]. Consider a crossing c as above as a two-tangle with marked

endpoints. Let ǫ(c) = ±1 according to whether the over strand has positive or negative

slope. We say that a rational two-tangle τ = C(a1, ..., am) extends c if τ contains c and

ǫ(c) · ai ≥ 1 for i = 1, ...,m. They prove

Theorem 4.2.1 (Champanerkar–Kofman [CK09]). Let L be a quasi-alternating link with

quasi-alternating crossing c and L′ be obtained by replacing c with an alternating rational

tangle τ that extends c. Then L′ is quasi-alternating at any crossing of τ .

The reason that the branched double cover of a quasi-alternating link in S3 is an

L–spaces follows from the following construction of L–spaces due to Ozsváth and Szabó

[OS05b]. Fix a closed, oriented three-manifold Y and let K be a framed knot in Y . Then

we have manifolds Y0 and Y1, obtained by 0–surgery and +1–surgery on K, respectfully.

We call the ordered triple (Y, Y0, Y1) a triad of three-manifolds. Suppose that Y , Y0, Y1 are

3Not every L–space arises in such a way—the Brieskorn sphere Σ(2, 3, 5) is an example.
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all rational homology three–spheres and |H1(Y ;Z)| = |H1(Y0;Z)| + |H1(Y1;Z)|. It follows

from the surgery exact triangle in Heegaard Floer homology that if Y0 and Y1 are L–spaces,

then so is Y . The discussion in Section 4.2.1 shows that the branched double cover of a

link and the branched double covers of its two resolutions at a crossing fit into a triad. The

previously mentioned theorem leads then to the recursive definition of quasi-alternating

links. A further consequence of the exact triangle shows that if K ⊂ S3 is a knot in the

three–sphere such that S3
r (K) is an L–space for some rational number r > 0 (with respect

to the Seifert framing) then S3
s (K) is an L–space for any rational s > r.

4.3 Proof of Theorem 4.1.4

4.3.1 The manifolds in Theorem 4.1.3, item (1)

Here we consider the manifolds Σn(L) where L = T(2′,2k) is the torus link of type (2, 2k)

with the anti-parallel orientation of strings, and n is arbitrary.

Consider the standard genus 0, one-boundary component open book decomposition of

S3. Now consider an unlink L̃ of two components which meets each page of the open book

in two points. After performing − 1
k–surgery on the binding of this open book, the unlink

L̃ becomes the torus link L = T(2,2k). Now orient L so that L = T(2′,2k). Each page of this

open book meets L in exactly two points. With this orientation, the n–fold strongly cyclic

branched cover of the disk branched along two points is the n–times punctured sphere Sn.

The covering transformations consist of rotations through an axis which meets Sn in two

points through angles which are multiples of 2π/n and cyclically permute the boundary

components (see Figure 4.5).

Z/3

Figure 4.5: A three-fold branched covering of the disk branched over two points downstairs.
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The open book of S3 with disk pages lifts in the n–fold branched cover to an open

book with page Sn and trivial monodromy—an open book decomposition of #n−1S2 × S1.

This open book decomposition is visualized in Figure 4.6. Performing − 1
k–surgery on the

binding downstairs lifts to − 1
k–surgery on the binding upstairs (with respect to the page

framings). This gives us the plumbing graph in the left hand side of Figure 4.7 (this is

reached by beating one’s head on Figure 4.6). After a sequence of blow ups and blow

downs, we reach the final plumbing graph, the right hand side of Figure 4.7 which, by the

algorithm described in the Section 4.2, may be realized as a branched double cover of an

alternating, hence quasi-alternating knot (see Figure 4.8).

∞

0

0

Figure 4.6: An open book decomposition of #n−1S2×S1 (there are n−1 0–framed unknots).

0

k

k

k

−2 −2 −2

−2−2−2
−n n

−2−2−2

k − 1

Figure 4.7: Two plumbing trees representing the manifolds from (1). Both have n branches.
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length n

k
2

k
2

k
2

Σ2

Figure 4.8: Realizing as a branched double cover. A box marked with a half-integer

p/2 ∈ 1
2Z means we do p half twists in this region (the direction in which we twist should

be clear from context).

4.3.2 The manifolds in Theorem 4.1.3, item (3)

We consider Σn(L) for L = L[2k,2m] the two-bridge knot of type p/q = 2m+ 1
2k = [2k, 2m],

where k,m > 0, and n is arbitrary. Surgery presentations of these manifolds may obtained

by applying the “Montesinos trick” or by appealing to a construction of Mulazzani and

Vesnin [MV02].

Consider the three-manifold Tn,m(1/qj ; 1/sj) defined by the surgery diagram in Figure

4.9, with 2mn components, joined up to form a necklace. Mulazzani and Vesnin prove that

Tn,m(1/qj ; 1/sj) is the n–fold cyclic branched covering4 of the two-bridge knot corresponding

to the Conway parameters [−2q1, 2s1, ...,−2qm, 2sm].

1/q1

1/qm

1/qm−1

1/sm
1/sm−1

1/s1
1/s2

1/sm

1/sm−1

1/s1

1/s2

1/q1
1/q2

1/qm
1/qm−1

1/q2

Figure 4.9: The three-manifold Tn,m(1/qj ; 1/sj). The link is n–periodic.

4The covering transformations are generated by the n–fold rotational symmetry of the diagram.
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Thus our manifolds have surgery presentation in Figure 4.10 (a). Rolfsen twisting about

each of the 1
m–framed components give Figures 4.10 (b) and 4.10 (c). After some Kirby

calculus we get Figure 4.11 which we may realize as the branched double cover of the

alternating knot shown in Figure 4.12 (add a ghost vertex at the center of the necklace).

1/m 1/m

=

(a)

−m −m

(b)

−2m− 1

−m−m=

(c)

−1/k −1/k −1/k − 2m

− k
k−1

Figure 4.10: Three views of the three-manifold Σn(L[2k,2m]). Each diagram is joined up to

form a necklace of length 2n.

4.3.3 The manifolds in Theorem 4.1.3, item (4)

Finally, we consider the manifolds Σk(L) where L = L[n,1,m] is the two-bridge knot of type

p/q = m+ 1
1+ 1

n

, where n and m are odd, positive integers. The multiplicity of the covering

is n ≤ 3. For k = 2, these manifolds are lens spaces, and hence L–spaces, so we consider the

case of k = 3. To construct surgery diagrams for these manifolds, we could again appeal

to the work of Mulazzani and Vesnin. Instead, we use the “Montesinos trick” (see, for

instance, Rolfsen [Rol03]), as in Figures 4.13, 4.14, and 4.15.

After some blow ups and blow downs, we see that our surgery diagram can be represented



CHAPTER 4. L-SPACES AND LEFT-ORDERINGS OF THE FUNDAMENTAL
GROUP 39

+1

−2m− 1
+1

−2m− 1

+1
−2

+1

+1
−2

+1

−2

−2

−2

−2

m

k − 1

Figure 4.11: This is not a plumbing diagram! It describes a way of writing a Kirby diagram,

as described in Section 4.2.1.

−m
2

−m
2

k
2

k
2

Figure 4.12: A link over which the manifold Σn(L[2k,2m]) is a two-fold branched cover. This

link is n–periodic, closed up to form a necklace.

m

n

m

+1
+1

+1

=

n+1
2

Figure 4.13: The knots L[n,1,m].
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+1 +1 +1

n+1
2

=

+1

+1

m+ 1

n+1
2

−m+1
2

Figure 4.14: Another view of the knots L[n,1,m].

by the graph in Figure 4.16, which we claim is (usually) the reduced black graph of a quasi-

alternating knot. Indeed, consider the family of links K(p, q) (p, q ∈ N≥0) shown below.

Then our most recent diagram is the branched double cover of the link K(n+1
2 , m+1

2 ) (add a

ghost vertex at the center, connected to the closest 2’s by three −1–marked edges). K(1, 1)

is the three-braid (σ1σ2)
3 which, though not quasi-alternating, has an L–space as branched

double cover (see [Bal08]). This manifold can be realized as the triple branched cover of the

trefoil knot, which is the spherical space form S3/Q8 (Q8 denoting the quaternion group).

We claim that K(p, q) is quasi-alternating if pq > 1. By a symmetry of the diagram for

K(p, q), we may assume that p > 1. Using Champanerkar and Kofman’s Theorem 4.2.1, it

is enough to see that the link L (shown in Figure 4.18) is quasi-alternating at the circled

crossing. Figures 4.19 and 4.20 show that the two resolutions L0 and L∞ admit connected

alternating diagrams and hence are quasi-alternating.
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(b)

2
m+1

+1

+1

+1
+1

+1

+1 2
m+1

2
m+1

(a)

−m+1

2

−m

−m

−m

−m

−m

−m

n+1

2

=

−m+1
2−m+1

2

Figure 4.15: The manifold Σ3(L[n,1,m]). Notice in (a) how the +1–framed unknots became

−m–framed unknots.
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+1

+1−n −n

n+1
2

−1

−1 −1

+1
2

2

−1

m−1
2

+1

−n

+1

+1

2

−1
−1

2

−1

2
−1

−1

2

Figure 4.16: Another view of the manifold Σ3(L[n,1,m]).

p
2

q
2

p
2

q
2

q
2

p
2

Figure 4.17: The family of links K(p, q).
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p
2

q
2

p
2

q
2

p
2

Figure 4.18: The link L.

q−1
2

q−1
2

p−1
2

p
2

p
2

q
2

q
2

p
2

p−1
2

p
2

Figure 4.19: The 0–resolution, L0.
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p−1
2

p
2

p
2

q

p
2

p
2

p
2

2q−1
2

Figure 4.20: The ∞–resolution, L∞.

Let

A =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1− 2p p p

p 1− 2p p · · · −1

p p 1− 2p −1

−1 2 −1

−1 2

...
. . . −1

−1 2

−1 2 −1

−1 2

. . . −1

−1 2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Where both strings of 2’s have length q − 1. Then |A| = detL.
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Now let

B =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−2p p p

p 1− 2p p · · · −1

p p 1− 2p −1

−1 2 −1

−1 2

...
. . . −1

−1 2

−1 2 −1

−1 2

. . . −1

−1 2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Where again both strings of 2’s have length q − 1. Then |B| = detL∞. Finally let

C =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1− 2p p · · · −1

p 1− 2p −1

−1 2 −1

−1 2

...
. . . −1

−1 2

−1 2 −1

−1 2

. . . −1

−1 2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Where again the first string of 2’s is length s−1 and the second string is of length t−1. Then

|C| = detL0. Clearly we have A = B +C. We claim that B,C > 0 so that |A| = |B|+ |C|
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and L is quasi-alternating. We start with B. Consider the more general determinant

B(p, q, r) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−2p p p

p 1− 2p p · · · −1

p p 1− 2p −1

−1 2 −1

−1 2

...
. . . −1

−1 2

−1 2 −1

−1 2

. . . −1

−1 2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Where the first string of 2’s is of length q and the second of length r. Then B = B(p, q −

1, q − 1). We claim that B(p, q, r) > 0 whenever p > 1. A simple calculation shows that

B(p, q, r) satisfies the recurrences:

B(p, q, r) = 2B(p, q − 1, r)−B(p, q − 2, r), q > 1

B(p, q, r) = 2B(p, q, r − 1)−B(p, q, r − 2), r > 1

These lead to the solution:

B(p, q, r) = rq(B(p, 1, 1) −B(p, 0, 1) −B(p, 1, 0) +B(p, 0, 0))

+ r(B(p, 0, 1) −B(p, 0, 0)) + q(B(p, 1, 0) −B(p, 0, 0)) +B(p, 0, 0)

A little computer assistance then shows that:

B(p, q, r) = rq(0) + r(3p2) + q(3p2) + (−2p+ 6p2)
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which is positive if p > 1. Similarly consider the determinants

C(p, q, r) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1− 2p p · · · −1

p 1− 2p −1

−1 2 −1

−1 2

...
. . . −1

−1 2

−1 2 −1

−1 2

. . . −1

−1 2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Where the first string of 2’s is length q and the second of length r. Then C = C(p, q−1, q−1).

We claim that C(p, q, r) > 0 for any p > 1. Similar to before, we see that C(p, q, r) satisfies

the recurrences:

C(p, q, r) = 2C(p, q − 1, r)− Cc(p, q − 2, r), q > 1

C(p, q, r) = 2C(p, q, r − 1)− C(p, q, r − 2), r > 1

Which lead to the solution:

C(p, q, r) = rq(C(p, 1, 1) − C(p, 0, 1) − C(p, 1, 0) + C(p, 0, 0))

+ r(C(p, 0, 1) − C(p, 0, 0)) + q(C(p, 1, 0) − C(p, 0, 0)) + C(p, 0, 0)

Hence

C(p, q, r) = rq(3p2) + r(−2p+ 3p2) + q(−2p + 3p2) + (1− 4p+ 3p2)

which is clearly positive if p > 1.
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Chapter 5

Knot concordance and correction

terms

5.1 Introduction

Given a closed oriented three-manifold with torsion Spinc structure, the associated Heegaard

Floer homology groups come with absolute Q–gradings; see Ozsváth–Szabó [OS06]. This

allows one to define numerical invariants of Spinc three-manifolds, the so-called “correction

terms” or “d–invariants”. Specifically, suppose (Y, s) is a Spinc rational homology three-

sphere. Then Ozsváth and Szabó define d(Y, s) (the correction term) to be the minimal

degree of any non-torsion class in HF+(Y, s) coming from HF∞(Y, s)1. This invariant is

analogous to the monopole Floer homology h–invariant introduced by Frøyshov [Frø96]. If

Y only has a single Spinc structure s0 (ie if Y is an integer homology sphere), then we

denote d(Y, s0) by just d(Y ). The d–invariants satisfy some useful properties, according to

the following theorem of Ozsváth and Szabó:

Theorem 5.1.1 (Ozsváth–Szabó [OS04a]). Let Y be an oriented rational homology three-

sphere. Its correction terms satisfy:

1There are correction terms for three-manifolds with positive first Betti number, but we do not discuss

them at the moment.
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1. Conjugation invariance

d(Y, s) = d(Y, s̄).

2. If Y is an integral homology three-sphere and is the oriented boundary of a negative-

definite four-manifold W then d(Y ) ≥ 0.

In fact, item 2 follows from a more general statement, Proposition 5.3.2, and the follow-

ing theorem of Elkies.

Theorem 5.1.2 (Elkies [Elk95]). Let Q : V ⊗ V → Z be a negative-definite unimodular

bilinear form over Z. Denote by Ξ(Q) the set of characteristic vectors for Q, ie the set of

vectors ξ ∈ V satisfying

Q(ξ, v) ≡ Q(v, v) mod 2

for all v ∈ V . Then,

0 ≤ max
ξ∈Ξ(Q)

Q(ξ, ξ) + dim(V ),

with equality if and only if the bilinear form Q is diagonalizable over Z.

Also, Y can be a disjoint union of rational homology three-spheres, in which case The-

orem 5.1.1 (together with Theorem 5.1.2) implies:

Corollary 5.1.3 (Ozsváth–Szabó [OS04a]). Let Y1 and Y2 be oriented rational homology

three-spheres. Then

1. Let −Y1 denote the manifold Y1 with opposite orientation, then

d(Y1, s) = −d(−Y1, s)

2. If (Y1, s1) is Spinc rational homology cobordant to (Y2, s2), then

d(Y1, s1) = d(Y2, s2).

3. If Y1 and Y2 are integral homology three-spheres and W is a negative-definite Spinc

cobordism from (Y1, s1) to (Y2, s2), then

d(Y2, s2) ≥ d(Y1, s1).
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4. If (Y1, s1) bounds a rational homology four-ball, then d(Y, s) = 0.

Heegaard Floer homology d–invariants have been used to give restrictions on intersection

forms of four-manifolds which can bound a given three-manifold (for instance, Ozsváth and

Szabó reproved Donaldson’s diagonalization theorem using correction terms). They have

also been used to define concordance invariants of knots2. For instance, Manolescu and

Owens [MO07] used the d–invariants of the branched double cover of a knot to produce

concordance invariants (see also Grigsby, Ruberman, and Strle [GRS08], Jabuka [Jab], and

Jabuka and Naik [JN04]). In this chapter, given a knot K ⊂ S3 in the three-sphere, we

show that d(S3
+1(K)) is a concordance invariant of K and examine some of its properties.

Occasionally we denote this invariant by dS3
1 . Note that one could also study d(S3

−1(K)), but

these invariants are determined by the dS3
1 since d(S3

−1(K)) = d(−S3
1(mK)) = −d(S3

1(mK))

where mK denotes the mirror of K. We also establish a “skein inequality” reminiscent of

a property of the knot signature. Specifically,

Theorem 5.1.4. Given a diagram for a knot with distinguished crossing c, let D+ and D−

be the result of switching c to positive and negative crossings, respectively, as in Figure 5.2.

Then

d(S3
1(D−);F)− 2 ≤ d(S3

1(D+);F) ≤ d(S3
1(D−);F)

for any field F. Here, d(Y ;F) denotes the correction term of Y computed from Floer ho-

mology with coefficients in F.

The invariants d(S3
±1(K)) also give rise to four-ball genus bounds. Specifically, we have

the following:

Theorem 5.1.5. Let K be a knot in the three-sphere. Then

0 ≤ −d(S3
1(K);Z2) ≤ 2g4(K)

where g4(K) denotes the smooth four-ball genus of K.

This should be compared to the following theorem of Frøyshov:

2Heegaard Floer theory has led to other concordance invariants, most notably the τ invariant (see

Ozsváth–Szabó [OS03b] and Rasmussen [Ras03]).
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Theorem 5.1.6 (Frøyshov [Frø04]). Let Y be an oriented homology three-sphere and γ a

knot in Y of “slice genus” g̃. If Yγ,−1 is the result of −1–surgery on γ then

0 ≤ h(Yγ,−1)− h(Y ) ≤ ⌈g̃/2⌉.

Here h(Y ) is Frøyshov’s instanton Floer homology h–invariant and the “slice genus” is

defined to be the smallest non-negative integer g̃ for which there exists a smooth rational

homology cobordism W from Y to some rational homology sphere Y ′ and a genus g̃ surface

Σ ⊂ W such that ∂W = γ. It is not clear to the author whether this definition agrees

with the usual one for Y = S3. In light of the conjectural relationship h(Y ) = d(Y )/2 and

Theorem 5.1.6, we suspect that the inequality in Theorem 5.1.5 is in general weaker than

the h–invariant inequality.

Finally, using the theory of Ozsváth–Szabó [OS04c] and Rasmussen [Ras03], we observe

how one can algorithmically compute d(S3
±1(K)) if one knows the filtered chain homotopy

type of the knot complex CFK∞(K). A computer implementation of this algorithm is

discussed.

5.1.1 Further questions

What is the relationship between the correction terms of ±1–surgeries on a knot and the

Ozsváth–Szabó, Rasmussen τ invariant? From the discussion in Section 5.5, it seems likely

that |d(S3
±1(K)| ≤ 2|τ(K)|, but as of the time of this writing a proof remains elusive. Of

course if this were the case, then the genus bound, Theorem 5.1.5, would follow immediately

from the inequality |τ(K)| ≤ g4(K) (see Ozsváth and Szabó [OS03b] for a discussion).

5.1.2 Organization

This chapter is organized as follows. In Section 5.2, we discuss basic properties of d(S3
1(K)),

including its invariance under concordance. In Section 5.3 we give a proof of the skein

inequality, Theorem 5.1.4. In Section 5.4 we prove Theorem 5.1.5. Finally in Section 5.5

we discuss an algorithm to compute d(S3
1(K)) given the knot complex CFK∞(K) as well

as a computer implementation of this algorithm.
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5.2 The invariant

Proposition 5.2.1. d(S3
1(K)) is a concordance invariant.

Proof. It is simple to see that d(S3
1(K)) = 0 if K is smoothly slice: S3

1(K) bounds the

four-manifold obtained by attaching a +1–framed two-handle along K to the four-ball.

This four-manifold has second homology generated by a sphere of square +1. By blowing

this down, we see that S3
1(K) bounds a rational homology four-ball. By item 4 of Corollary

5.1.3, it follows that d(S3
1(K)) = 0. It is just slightly more work to see that if K1 and K2 are

smoothly concordant, then d(S3
1(K1)) = d(S3

1(K2)): the concordance gives us a smoothly

embedded annulus A ⊂ S3 × I (here I = [0, 1]) with ∂A = K1 ∪ K2 and K1 ⊂ S3 × {0},

K2 ⊂ S3 × {1}. Attach a two-handle to S3 × {1} with framing +1 along K2 to give a

four-manifold W (see Figure 5.1). Consider a small regular neighborhood of the core disk

of this two-handle union a regular neighborhood of the annulus A. This gives cobordisms

W0 : S3 → S3
1(K1) and W1 : S3

1(K1) → S3
1(K2) such that W = W0 ∪W1. Notice that W0

is just S3 × [0, ε] ∪ h2, a +1–framed two-handle attached along K1 to a thickened S3. It

follows that b2(W0) = b2(W ) = 1 and b2(W1) = 0 (this last fact can be seen from the Mayer–

Vietoris sequence applied to the decomposition W = W0 ∪W1: 0 = H2(W0 ∩W1;Z) →

H2(W0;Z) ⊕ H2(W1;Z) ∼= Z ⊕ H2(W1;Z) → H2(W ;Z) ∼= Z → H1(W0 ∩ W1;Z) = 0).

Applying item 2 of Corollary 5.1.3 to W1 shows that d(S3
1(K1)) = d(S3

1(K2)).

K1

A
K2

h2W

Figure 5.1: The cobordism W .

In general, calculating d–invariants is quite challenging. However, in certain cases ex-

plicit formulae exist. For instance, let K be an alternating knot. Then in [OS03a], Ozsváth
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and Szabó prove that

d(S3
+1(K)) = 2min

(
0,−⌈

−σ(K)

4
⌉

)
(5.1)

where ⌈x⌉ is the ceiling function and σ(K) denotes the knot signature (see also Rasmussen

[Ras02]). This formula shows that the concordance invariants d(S3
±1(K)) do not give group

homomorphisms from the smooth concordance group to Z: take the knot RHT #LHT

where RHT denotes the right-handed trefoil and LHT denotes the left-handed trefoil. This

knot is slice and hence has vanishing dS3
1 but d(S3

+1(RHT )) = −2 and d(S3
+1(LHT )) = 0.

Explicit formulae for d–invariants also exist in the case of certain plumbed three-manifolds;

see Ozsváth–Szabó [OS03c]. In another direction, since torus knots admit lens space surg-

eries, one may use Ozsváth–Szabó [OS05b, Theorem 1.2] to calculate dS3
1 for torus knots.

It may be worth noting that Equation 5.1 does not hold for all knots. For instance, the

(3, 4)–torus knot has signature −6 and dS3
1 = −2.

The non-additivity of dS3
+1 can be used to detect relations or establish linear inde-

pendence in the smooth concordance group, C. For example, recall that σ(LHT ) = 2,

τ(LHT ) = −1, and s(LHT ) = 2 (here, s(K) denotes the Rasmussen s concordance invari-

ant of [Ras]). It is also the case that σ(T3,4) = −6, τ(T3,4) = 3, s(T3,4) = −6 where here T3,4

denotes the (3, 4)–torus knot. It follows that f(LHT #LHT #LHT #T3,4) = 0 for any f

among s, τ , or σ. However, this knot is not slice, since d(S3
−1(LHT #LHT #LHT #T3,4)) =

2, a fact which can be verified with our program dCalc.

Finally, note that d(S3
1(K)) is always even. This follows immediately from the long

exact sequence

· · · → HF+(S3) → HF+(S3
0(K)) → HF+(S3

1(K)) → · · · (5.2)

of Ozsváth and Szabó [OS04d], and the fact thatHF∞(S3
0(K)) is standard (see, for instance,

Section 5.3 for a discussion).

5.3 Skein relations

Recall the axiomatic characterization of the knot signature σ found by Giller (see also

Murasugi [Mur96]).
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Theorem 5.3.1 (Giller [Gil89]). Suppose that K is a knot (but not a link) and D is a

diagram for K. Then σ(K) can be determined from the following three axioms:

1. If K is the unknot then σ(K) = 0.

2. If D+ and D− are as in Figure 5.2, then

σ(D−)− 2 ≤ σ(D+) ≤ σ(D−)

(recall that σ is always even).

3. If ∆K(t) is the Conway-normalized Alexander polynomial of K, then

sign(∆K(−1)) = (−1)σ(K)/2.

D+ D−

Figure 5.2: Positive and negative crossings, respectfully.

These axioms of course cannot hold for the invariant dS3
1 , but Theorem 5.1.4 does give

us an analogue of Theorem 5.3.1, item (2).

In light of the the axiomatic description of σ, it is an interesting question to calculate

dS3
1/2 modulo 2. If one could achieve this, it might then be possible to give a completely

algorithmic description of dS3
1 .

〈1〉

−1

W1

〈1〉

+1

W0

Figure 5.3: A pair of relative handlebodies, representing the cobordisms W0 and W1.

We now return to the proof of Theorem 5.1.4.
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−1

〈1〉

Figure 5.4: The torus T is represented by the shaded region, which is then capped off by

the core of the −1–framed two-handle.

Proof of Theorem 5.1.4. Step 1: d(S3
1(D−)) ≥ d(S3

1(D+)):

Given a knot K with diagram D(K) and a distinguished crossing, we have cobordisms

W0 : S
3
1(D−) → S3

1(D+) and W1 : S
3
1(D+) → S3

1(D−) given by the Kirby diagrams in

Figure 5.3. We claim that b2(Wi) = 1 for i = 0, 1. We argue this for W1, the argument for

W0 being analogous. W1 fits into a four-manifold W = X ∪W1 where X is obtained by

attaching a +1–framed two-handle along K ⊂ S3 = ∂B4 to the four-ball. Clearly b2(W ) =

2 and b2(X) = 1. Consider the Mayer–Vietoris sequence applied to the decomposition

W = X ∪W1. In this case, X ∩W1
∼= S3

1(D+), an integral homology three-sphere. So we

have 0 = H2(X ∩W1;Z) → H2(X;Z) ⊕ H2(W1;Z) ∼= Z ⊕ H2(W1;Z) → H2(W ) ∼= Z2 →

H1(X ∩ W1;Z) = 0, showing that H2(W1;Z) ∼= Z. We may even find a torus T in W1

which generates H2(W1;Z) ∼= Z as in Figure 5.4. We claim that [T ]2 = −1 (likewise, for

W0 we have can find a torus of square +1 generating H2(W1;Z)). T of course sits inside

the larger cobordism W . Let {α, β} be an ordered basis of H2(W ;Z) coming from the two

two-handles (more specifically, α is the homology class of the core disk of the two-handle

attached to D+ capped off by a Seifert surface, and β is the homology class of the core

disk of the two-handle attached to the −1–framed knot in Figure 5.4 capped off with a

Seifert surface pushed slightly into the four-ball). With respect to this basis, we see that

the intersection form of W is given by the matrix

QW =


+1 0

0 −1


 .

By Figure 5.4, it is clear that [T ] ·α = 0 and [T ] ·β = −1. Therefore [T ] = β and [T ]2 = −1.
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By item 3 of Corollary 5.1.3 it follows that

d(S3
1(D−)) ≥ d(S3

1(D+)).

Step 2: d(S3
1 (D+)) ≥ d(S3

1(D−))− 2:

By a similar argument to the previous, we see that the cobordism W0 : S
3
1(D−) → S3

1(D+)

has second homology generated by a torus T of square +1. Taking an internal connected

sum of S3
1(D−) with a regular neighborhood of T , ν(T ), we get cobordisms V0 : S

3
1(D−) →

S3
1(D−)# ∂ν(T ) and V1 : S

3
1(D−)# ∂ν(T ) → S3

1(D+) such that W0 = V0 ∪ V1. Here ∂ν(T )

denotes the boundary of a regular neighborhood of the surface T in W0. This is of course

a circle bundle over the two-torus with Euler number +1 (it is also a torus bundle over the

circle with reducible monodromy). It may be realized as (0, 0, 1)–surgery on the Borromean

rings, which we denote by M{0, 0, 1}. Clearly b+2 (V1) = 0 for otherwise we would have a

surface F with positive square in W0 which does not intersect the generating torus [T ] ∈

H2(W0;Z). Similarly, we have that b−2 (V1) = 0. Notice that V0 deformation retracts onto

the wedge S3
1(D−) ∨ T 2 and hence has euler characteristic χ(V0) = −1. Since χ(W1) =

χ(V0) + χ(V1) − χ(V0 ∩ V1) and χ(V0 ∩ V1) = 0 (V0 ∩ V1 is a three-manifold) we see that

χ(V1) = 2. Therefore the cobordism V1 : S
3
1(D−)# ∂ν(T ) → S3

1(D+) has χ = 2, σ = 0

(here σ denotes the signature of the intersection form of V1), and c1(s)
2 = 0 for all Spinc

structures s ∈ Spinc V1. By the formula for grading shifts in Heegaard Floer homology (see

Ozsváth and Szabó [OS06]), it follows that the maps on Floer homology associated with

this cobordism have grading shift

c1(s)
2 − 2χ(V1)− 3σ(V1)

4
= −1.

Before continuing with d–invariant calculations, we pause to recall some constructions

in Heegaard Floer theory for manifolds with b1 > 0. In this case, there is a natural action

of the exterior algebra Λ∗H1(Y ;Z)/Tors on all versions of Floer homology HF ◦. Under

this action, elements of H1(Y ;Z) drop relative gradings by one. As an example, let Z(k)

denote the graded abelian group Z supported in grading k. Under the graded isomorphism

ĤF (S2 × S1) ∼= Z(1/2)〈a〉 ⊕ Z(−1/2)〈b〉, the action of the circle factor γ := [∗ × S1] ∈

H1(S
2 × S1;Z) is given by γ · a = b and γ · b = 0.
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A Spinc three-manifold (Y, s) with torsion Spinc structure s is said to have standard

HF∞ if there is a graded isomorphism of Λ∗H1(Y ;Z)/Tors⊗Z Z[U,U−1]–modules

HF∞(Y, s) ∼= Λ∗H1(Y ;Z)⊗Z Z[U,U−1] (5.3)

where the action of H1(Y ;Z)/Tors on the right hand side is given by contraction on

Λ∗H1(Y ;Z). Here Λ∗H1(Y ;Z) is graded by the requirement that gr
(
Λb1YH1(Y ;Z)

)
=

b1(Y )/2 and the fact that H1(Y ;Z) drops gradings by 1. For example, #kS2 × S1 has

standard HF∞ for any k as does any three-manifold with b1 < 3 by a theorem of Ozsváth

and Szabó [OS04d, Theorem 10.1]. For Spinc three-manifolds (Y, s) with standard HF∞

there is a “bottom-most” correction term, denoted db(Y, s), which is defined to be the

smallest grading of any non-torsion element x ∈ HF+(Y, s) coming from an element x′ ∈

HF∞(Y, s) which lies in the kernel of the action by H1(Y ;Z)/Tors. Notice that, in contrast

to “ordinary” correction terms, it is not true in general that db(Y, s) = −db(−Y, s) (for

instance, take Y = S2×S1). The correction terms db give restrictions on intersection forms

of negative semi-definite four-manifolds bounding a given three-manifold according to:

Proposition 5.3.2 (Ozsváth–Szabó [OS04a]). Let Y be a closed oriented three-manifold

(not necessarily connected) with torsion Spinc structure t and standard HF∞. Then for

each negative semi-definite four-manifold W which bounds Y so that the restriction map

H1(W ;Z) → H1(Y ;Z) is trivial, we have the inequality

c1(s)
2 + b−2 (W ) ≤ 4db(Y, t) + 2b1(Y )

for all Spinc structures s over W whose restriction to Y is t.

Returning to the proof of Theorem 5.1.4, recall that we have a cobordism

V1 : S
3
1(D−)#M{0, 0, 1} → S3

1(D+)

with b±2 (V1) = 0. Therefore c1(s)
2 = 0 for all Spinc structures s on V1. Note also that

H1(V1;Z) = 0: consider the Mayer–Vietoris sequence applied to W0 = V0 ∪ V1:

H1(V0 ∩ V1;Z) ∼= Z2 → H1(V0;Z)⊕H1(V1;Z) ∼= Z2 ⊕H1(V1;Z) → H1(W0;Z) = 0
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(recall that V0 ∩ V1 = S3
1(D−)#M{0, 0, 1} and that V0 ≃ S3

1(D−) ∨ T 2; ≃ denoting

homotopy equivalence). Applying Proposition 5.3.2 to V1 we see that:

0 ≤ 4d(S3
1 (D+)) + 4db(−

(
S3
1(D−)#M{0, 0, 1}

)
) + 2 · 2 (5.4)

Claim 5.3.3. db(−
(
S3
1(D−)#M{0, 0, 1}

)
) = −d(S3

1(D−)) + 1.

Notice that this would imply Theorem 5.1.4. To prove the claim, recall that in [OS04a],

Ozsváth and Szabó calculated that ĤF (M{0, 0, 1}) = Z2
(0) ⊕ Z2

(−1), supported completely

in the unique torsion Spinc structure. This implies that ĤF (−M{0, 0, 1}) = Z2
(0) ⊕ Z2

(1),

and by the long exact sequence

· · · // ĤF i(Y, s)
// HF+

i (Y, s)
U // HF+

i−2(Y, s)
// · · ·

it follows that HF+(−M{0, 0, 1}) = (T +
(0))

2 ⊕ (T +
(1))

2 where T(k) denotes the graded Z[U ]-

module Z[U,U−1]/U · Z[U ] graded so that multiplication by U is degree −2 and 1 ∈ T(k)

lies in grading k. Writing HF+(S3
+(D−)) = T +

(d(S3
1 (D−)))

⊕Q for some torsion Z[U ] module

Q (Q is called the reduced Floer homology of Y , and is also written HF+
red(Y )), we get

that HF+(−S3
1(D−)) = T +

(−d(S3
1 (D−)))

⊕Q′, by item 1 of Corollary 5.1.3. By the long exact

sequence

· · · // HF−
i (Y, s) // HF∞

i (Y, s) // HF+
i (Y, s) // HF−

i−1(Y, s)
// · · ·

we get that HF−(−S3
1(D−)) = T −

(−d(S3
1 (D−))−2)

⊕ Q′′ for some torsion Z[U ]-module Q′′

where here T −
(k) denotes the graded Z[U ]–module U · Z[U ] graded so that multiplication by

U is degree −2 and U lies in grading k. Using the formula

HF−(Y1 #Y2, s1 # s2) ∼= H∗

(
CF−(Y1, s1)⊗Z[U ] CF

−(Y2, s2)
)

from Ozsváth–Szabó [OS04d], if we use Floer homology with field coefficients F, we have:

HF−(Y1 #Y2, s1 # s2) ∼= HF−(Y1, s1)⊗F[U ] HF
−(Y2, s2)

⊕
TorF[U ]

(
HF−(Y1, s1),HF

−(Y2, s2)
)

(since F[U ] is a principal ideal domain). It follows that

HF−
(
(−S3

1(D−))# (−M{0, 0, 1})
)
∼=

(
T −

(−d(S3
1(D−))−2)

)2

⊕

(
T −

(−d(S3
1 (D−))−1)

)2

⊕Q′′′
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for some torsion F[U ] module Q′′′. Therefore

HF+
(
(−S3

1(D−))# (−M{0, 0, 1})
)
∼=

(
T +

(−d(S3
1 (D−)))

)2

⊕

(
T +

(−d(S3
1 (D−))+1)

)2

⊕Q′′′′

and we have shown that

db
(
−(S3

1(D−)#M{0, 0, 1})
)
= db

(
(−S3

1(D−))# (−M{0, 0, 1})
)
= −d(S3

1(D−)) + 1

proving Claim 5.3.3 and hence Theorem 5.1.4

5.4 Genus bounds

Proof of Theorem 5.1.5. Step 1: d(S3
1(K)) ≤ 0:

Let g = g4(K), the smooth four-ball genus of K, ie the minimum genus of any smooth

surface smoothly embedded in the four-ball with boundary K. Now attach a −1–framed

two-handle to the four-ball along the mirror ofK, denotedmK. Now delete a small ball from

the four-ball. This gives a negative definite cobordism S3 → S3
−1(mK) whose second ho-

mology is generated by a surface of genus g and square −1. By item 3 of Corollary 5.1.3 and

the fact that d(S3) = 0 we get that d(S3
−1(mK)) ≥ 0. Since d(S3

1 (K)) = −d(−S3
−1(mK)),

we are done.

Step 2: −d(S3
1(K)) ≤ 2g:

Similar to the previous paragraph, by removing a small ball from the four-ball and

then attaching a +1–framed two-handle to the boundary three-sphere along K, we obtain

a cobordism

W : S3 → S3
1(K)

which contains a genus g surface of square +1, Σg. Let Yg(±1) denote an euler number ±1

circle bundle over a surface of genus g. In the notation of the previous section, we have

Y1(±1) = M{0, 0,±1}. Yg(+1) is of course homeomorphic to the boundary of a regular

neighborhood of Σg ⊂W . Similar to previous discussions, by taking an internal connected

sum we get a pair of cobordisms

W1 : S
3 → Yg(+1)
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and

W2 : Yg(+1) → S3
1(K)

with b±2 (W2) = b1(W2) = 0. Notice that the oriented manifold −Yg(+1) = Yg(−1) has

standard HF∞ by Ozsváth–Szabó [OS04a, Propositions 9.3 and 9.4] since we may connect

it via a negative-definite cobordism to #2gS2 × S1, which has standard HF∞. Applying

Proposition 5.3.2, we see that

0 ≤ 4d
(
S3
1(K)

)
+ 4db (−Yg(+1)) + 2 · 2g. (5.5)

Theorem 5.1.5 would follow if we could show that db (−Yg(+1)) = g. Indeed, we show this

in Lemma 5.4.2. The calculation of db (−Yg(+1)) follows quickly from the machinery of

[OS08], which we recall in Section 5.4.1.

5.4.1 Review of the integer surgery formula

In this section we review the essential details needed to state Ozsváth and Szabó’s “in-

teger surgery formula,” referring the reader to [OS08] for more details. Suppose (Y, t)

is a Spinc three-manifold with t torsion and suppose that K ⊂ Y is a null-homologous

knot. Fixing a Seifert surface F ⊂ Y for K, we can assign to K its knot Floer ho-

mology C := CFK∞(Y,K,F, t), a Z ⊕ Z–bifiltered chain complex well-defined up to fil-

tered chain homotopy type as described in Section 2.1.2 and Ozsváth–Szabó [OS04c]. This

is an abelian group generated by tuples [x, i, j] for integers i, j and intersection points

x coming from a particular Heegaard diagram for K (see Ozsváth–Szabó [OS04c] for a

proper discussion). This group comes with an absolute Q–grading as well as an action by

Λ∗H1(Y ;Z)/Tors ⊗Z Z[U,U−1]. There is an identification of Spinc structures over Yn(K)

which are Spinc–cobordant to t over a certain cobordism Wn(K) with Z/nZ. For i ∈ Z/nZ,

let CF+(Yn(K), i, t) denote the corresponding summand of CF+(Yn(K)).

Let A+
s,t = C{i ≥ 0 or j ≥ s} and B+

s,t = C{i ≥ 0}, the latter being identified with

CF+(Y, t). There are maps

v+s,t : A
+
s,t → B+

s,t

and

h+n,s,t : A
+
s,t → B+

s+n,t
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defined as follows: vs,t is just the projection C{i ≥ 0 or j ≥ s} → C{i ≥ 0} while h+s,t is

the projection C{i ≥ 0 or j ≥ s} → C{j ≥ s} followed by an identification C{j ≥ s} ∼=

C{j ≥ 0} (induced by multiplication by U s) followed by a “natural” homotopy equivalence

h : C{j ≥ 0} → C{i ≥ 0}. The map h is obtained by the handleslide invariance of Heegaard

Floer homology and is natural in the sense that the induced map on homology is independent

(up to a sign) of a chosen sequence of handleslides. Set

A+
i,t =

⊕

{s∈Z | s≡i mod n}

A+
s,t

and:

B+
i,t =

⊕

{s∈Z | s≡i mod n}

B+
s,t

Define

D+
i,t,n : A+

i,t → B+
i,t

by

D+
i,t,n{as}s∈Z = {v+s,t(as) + h+s−n,t(as−n)}s∈Z.

Assign gradings to A+
i,t, B

+
i,t as follows. Under the identification B+

s,t
∼= CF+(Y, t), we map

homogeneous elements of degree d in CF+(Y, t) to homogeneous elements of B+
s,t of degree

d+ 2σl + nℓ(ℓ− 1)− 1, where 0 ≤ σ < n and s = σ + nℓ if n > 0, (5.6)

or

d− 2σℓ+ nℓ(ℓ− 1) where 0 ≤ σ < −n and s = −(σ − nℓ) if n < 0. (5.7)

It is then possible to assign gradings to the A+
s,t which are consistent with their natural

relative Z–gradings in such a way that the maps v+s,t and h+s,t are homogeneous of degree

−1. With this all in place, we may now state the “integer surgery formula” of [OS04a]:

Theorem 5.4.1 (Ozsváth–Szabó [OS04a]). Fix a Spinc structure t over Y whose first

Chern class is torsion, K ⊂ Y a null-homologous knot, and n a non-zero integer. For each

i ∈ Z/nZ, the mapping cone X+
i,t(n) of

D+
n,i,t : A+

i,t → B+
i,t
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is isomorphic, as a relatively graded Λ∗H1(Y ;Z)/Tors⊗ZZ[U ]–module, to CF+(Yn(K), i, t).

In fact, this isomorphism X+
i,t(n) → CF+(Yn(K), i, t) is homogeneous of degree d(n, i) where

d(n, i) = − max
{s∈Z | s≡i mod n}

1

4

(
1−

(
n+ 2s

n

)2
)

for n > 0 and d(n, i) = −d(−n, i) for n < 0.

Recall that the mapping cone of the map D+
n,i,t : A+

i,t → B+
i,t has underlying group

X+
i,t(n) = A+

i,t ⊕ B+
i,t and differential

∂X+
i,t(n)

=


 ∂A+

i,t
0

D+
n,i,t ∂B+

i,t


 .

Also, when n = ±1, Spinc(Yn(K)) ∼= Spinc(Y ) and there is no additional choice of i ∈ Z/nZ.

When this is satisfied, we write simply X+
t
(n) instead of X+

i,t(n).

5.4.2 A useful computation

Lemma 5.4.2. For Yg(±1) as before, we have

db(Yg(±1);Z2) = ∓g

where d(Y, s;Z2) denotes the d–invariant of (Y, s) as computed from Floer homology with

coefficients in Z2.

Proof. The oriented manifold −Yg(+1) = Yg(−1) may be obtained as −1–surgery on the

knot K (the “Borromean knot”) shown in Figure 5.5.

We start with the calculation for Yg(−1). Since the second homology of Yg(−1) is

generated by embedded tori, the adjunction inequality (Ozsváth–Szabó [OS04d, Theorem

7.1]) implies that HF+(Yg(+1), t) is non-zero only in the unique torsion Spinc structure

t0 ∈ Spinc(Yg(−1)). The knot Floer complex for the Borromean knot K is calculated in

Ozsváth–Szabó [OS04c] to be

C := CFK∞(#2gS2 × S1,K) ∼= Λ∗H1(Σg;Z)⊗Z Z[U,U−1]

with Z⊕ Z–bifiltration given by:

C{i, j} = Λg−i+jH1(Σg;Z)⊗Z U
−i (5.8)
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0 0

0

g

K

0

Figure 5.5: The Borromean knot K.

Furthermore, the group C{i, j} is supported in grading i + j and all differentials vanish

(including all “higher” differentials coming from the spectral sequence HFK∞ ⇒ HF∞).

Under the above identification, and the identification H1(Σg;Z) ∼= H1(#
2gS2 × S1;Z),

the action of γ ∈ H1(Σg;Z) on C ∼= Λ∗H1(Σg;Z)⊗Z Z[U,U−1] is given explicitly by

γ · (ω ⊗ U j) = ιγω ⊗ U j + PD(γ) ∧ ω ⊗ U j+1 (5.9)

where ιγ denotes contraction. Since HF∞(#2gS2 × S1) ∼= C, this action may be viewed as

a reflection of the fact that HF∞(#2gS2 × S1) is standard.

The only presumably non-combinatorial ingredient in the integer surgery formula (once

the complex C = CFK∞(Y,K, i) is at hand) is the necessary explicit identification of

the natural homotopy equivalence h : C{j ≥ 0} → C{i ≥ 0}. The homotopy h takes a

particularly simple form for Floer homology with coefficients in Z2, with which we work for

the remainder of this section. The description of h is as follows:

Proposition 5.4.3 (Ozsváth–Szabó [OS04a]). For the Borromean knot K, the natural

homotopy equivalence h : C{j ≥ 0} → C{i ≥ 0} sends C{j, i} to C{i, j}.

Interestingly, the above proposition does not hold for Floer homology with coefficients

in Z (see Jabuka–Mark [JM08b] for a description).



CHAPTER 5. KNOT CONCORDANCE AND CORRECTION TERMS 64

We picture the complex X+(−1) as below:

A+
−1

··· v+
−1

��

A+
0

h+0

~~}}
}
}
}
}
}
}
}
}
}
}
}
}
}

v+0

��

A+
1

h+1

~~~~
~
~
~
~
~
~
~
~
~
~
~
~
~

v+1 ···

��

B+
−1 B+

0 B+
1

For simplicity of discussion, we currently restrict to the case of g = 1. In this case, a piece

of X+(−1) looks like Figure 5.6.

B+

−1

Λ2

Λ1

Λ0

Λ2

Λ1

Λ0

. .
. B+

0

Λ2

Λ1

Λ0

Λ2

Λ1

Λ0

. .
. B+

1

Λ2

Λ1

Λ0

Λ2

Λ1

Λ0

. .
.

A+

−1

Λ2 Λ1

Λ2

Λ2

Λ1

Λ0

Λ2

Λ1

Λ0

. .
. A+

0

Λ2

Λ2

Λ1

Λ0

Λ2

Λ1

Λ0

. .
. A+

1

Λ2

Λ1

Λ0

Λ2

Λ1

Λ0

. .
.

Figure 5.6: A portion of the complex X(−1). We suppress the U ’s from the notation, since

they can be determined from the position in the plane, according to Equation 5.8.

We claim that the correction terms of Y1(−1) can be read off from Figure 5.6. Indeed,

writing H1(Σ1;Z) = Z〈a, b〉 and Λ∗H1(Σ1;Z) = Z〈1, a, b, a ∧ b〉, consider the element 1 ⊗

U−1 ∈ B+
0 {1, 0}. Since

∂X+(−1) =


∂A+ 0

D+ ∂B+


 =


 0 0

D+ 0


 ,

it follows that 1 ⊗ U−1 ∈ B+
0 is a cycle. We claim that 1 ⊗ U−1 ∈ B+

0 is also not a

boundary. Indeed, suppose that ∂X+(−1)(x) = 1⊗U−1 ∈ B+
0 for some x ∈ X+(−1). Then x

would necessarily have either a non-zero component in A+
0 {1, 0} or a non-zero component

in A+
1 {1, 2}. In either case, a simple diagram chase shows that x cannot be extended to a
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cycle in X+(−1) (ride the zig-zag and notice that x would have infinitely many non-zero

components in A+).

It is, however, the case that U · (1 ⊗ U−1) = 1 ⊗ U0 ∈ B+
0 {0,−1} is a boundary: the

element 1⊗ U0 ∈ A+
0 {0,−1} maps to it under ∂X+(−1).

Using similar reasoning, one can show that the elements

1⊗ U−1 ∈ B+
0 {1, 0}, a⊗ U0 ∈ B+

0 {0, 0}, b⊗ U0 ∈ B+
0 {0, 0}, and (a ∧ b)⊗ U0 ∈ B+

0 {0, 1}

all represent generators for the four “towers” of HF+(Y1(−1)). According to the grading

formula, Equation 5.7, these elements have grading 1,0,0, and 1, respectfully. It follows

that:

HF+(Y1(−1)) =
(
T +
(0)

)2
⊕
(
T +
(+1)

)2
⊕HF+

red(Y1(−1))

where here we are using a slight abuse of notation: T + now denotes T + ⊗ Z2 (for the

previous definition of T +) and Floer homology with Z2–coefficients is understood. Further,

according to the action, Equation 5.9, it follows that db(Y1(−1);Z2) = 1 (alternatively this

follows since Y1(−1) has standard HF∞ via Equation 5.3). Although we already knew

how to compute this, the advantage of this calculation is that the reasoning generalizes to

arbitrary g. Indeed, for general g one can check that the intersection

B+
0 {(i ≥ 0 and j = 0) or (i = 0 and j ≥ 0)}

gives representatives for generators of the 22g “towers” of HF+(Yg(−1)). Using the grading

formula, Equation 5.7, it follows that:

HF+(Yg(−1)) ∼=
(
T +
(0)

)( 2g
g

)
⊕
(
T +
(1)

)2
(

2g
g−1

)
⊕
(
T +
(2)

)2
(

2g
g−2

)
⊕ · · ·

· · · ⊕
(
T +
(g−1)

)2
(
2g
1

)
⊕
(
T +
(g)

)2
⊕HF+

red(Yg(−1))

By the action formula, Equation 5.9, (or the fact that HF∞(Yg(−1)) is standard) it follows

that

db(Yg(−1);Z2) = g.

Calculating db(Yg(−1);Z2) is similar. In that case, the generators of the intersection

A+
0 {(i ≤ 0 and j = 0) or (i = 0 and j ≤ 0)}
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may be extended (in one step) to representative cycles for the homology HF+(Yg(+1)).

Using Equation 5.6 one calculates that:

HF+(Yg(+1)) ∼=
(
T +
(0)

)( 2g
g

)
⊕
(
T +
(−1)

)2
(

2g
g−1

)
⊕
(
T +
(−2)

)2
(

2g
g−2

)
⊕ · · ·

· · · ⊕
(
T +
(−g+1)

)2
(
2g
1

)
⊕
(
T +
(−g)

)2
⊕HF+

red(Yg(+1))

The action formula, Equation 5.9, gives

db(Yg(+1);Z2) = −g (5.10)

proving Lemma 5.4.2

An alternative approach to the calculation of the correction terms of ±1–surgery on the

Borromean knot of genus g is the integer surgery exact sequence, together with Jabuka-

Mark’s calculation of the Floer homology of S1 ×Σg [JM08c]. It is interesting to note that

HF+
red(Yg(−1)) has been calculated in Ozsváth–Szabó [OS04c].

In fact, the methods in this section give the following:

Theorem 5.4.4. Let X be a smooth, simply-connected, compact, oriented four-manifold

with a homology sphere Y as boundary with b+2 (X) = 1 and b−2 (X) = 0. Let Σ ⊂ X be a

closed surface of genus g and self-intersection Σ · Σ = 1. Then 0 ≤ d(Y ;Z/2) + 2g.

5.5 Computations

In this section we discuss an algorithm to compute the invariants d(S3
±1(K)) assuming we

know the filtered chain homotopy type of the knot complex CFK∞(K) of Ozsváth–Szabó

[OS04c]. We also discuss a computer implementation of this algorithm. The algorithm we

use is based on the theory of Ozsváth–Szabó [OS04c; OS04a], and Rasmussen [Ras03] and

has three steps:

1. Use the theory of Ozsváth–Szabó [OS04c] or Rasmussen [Ras03] to compute the graded

F[U ]-module

HF+(S3
−p(K), s0)

where −p is “sufficiently negative” and s0 is a suitable Spinc structure on S3
−p(K)

(and similarly for S3
p(K) for p “sufficiently positive”).
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2. Use exact sequences to compute the correction terms of S3
0(K).

3. Use a simple relation between the correction terms of S3
0(K) and the correction terms

of S3
±1(K).

We describe the steps in reverse order. Recall from [OS04a] that for a closed oriented

three-manifold Y0 with H1(Y0;Z) ∼= Z, there are two correction terms d±1/2(Y0), where

d±1/2(Y0) is the minimal grading of any non-torsion element in the image of HF∞(Y0, t0)

in HF±(Y0, t0) with grading ±1/2 modulo 2. Then step 3 follows from Ozsváth–Szabó

[OS04a, Proposition 4.12 ] which states that

d1/2(S
3
0(K))− 1/2 = d(S3

1(K)) (5.11)

and

d−1/2(S
3
0(K)) + 1/2 = d(S3

−1(K)). (5.12)

This proposition is an easy consequence of the fact that HF∞(S3
0(K)) is standard and the

exact sequence, Equation 5.2.

For step 2, recall the integral surgeries long exact sequence (see Ozsváth–Szabó [OS04d,

Theorem 9.19]; [OS04a] for the graded version). Let K ⊂ Y be a knot in an integral

homology three-sphere and p a positive integer. Then we get a map

Q : Spinc(Y0) → Spinc(Yp)

and a long exact sequence of the form

· · ·
F1 // HF+(Y0, [t])

F2 // HF+(Yp, t)
F3 // HF+(Y ) // · · · (5.13)

where

HF+(Y0, [t]) =
⊕

t′∈Q−1(t)

HF+(Y0, t
′).

Moreover, the component of F1 in the above exact sequence which takes HF+(Y ) into

the t0-component of HF+(Y0, [Q(t0)]) has degree −1/2, while the restriction of F2 to the

HF+(Y0, t0)–summand of HF+(Y0, [Q(t0)]) has degree
(
p−3
4

)
. It follows from this exact

sequence that d1/2(S
3
0(K)) +

(
p−3
4

)
= d(S3

+p(K), s0). To get d−1/2(S
3
0(K)), we may use a

similar exact sequence for negative surgeries.
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CFK∞(K) is finitely generated as a complex over Z[U,U−1]. It comes with an absolute

Z–grading and a Z ⊕ Z–bifiltration. Generators are written [x, i, j] for integers i, j and

intersection points x in a Heegaard diagram for K. The U–action is given by U · [x, i, j] =

[x, i − 1, j − 1]. We picture these complexes as graphs in the plane, as in Figure 5.7 (1).

Dots represent generating Z’s while arrows represent differentials. The absolute grading

is (basically) pinned down by the fact that if we consider the “y–slice” quotient complex

CFK∞{i = 0}, then its homology (which is guaranteed to be a single copy of Z—the

generator of ĤF (S3) ∼= Z(0)) is supported in grading 0, the fact that the U–action drops

absolute grading by 2, and the fact that differentials drop grading by 13.

In order to accomplish step 1, we use the following theorem of Ozsváth–Szabó, Ras-

mussen (see, for instance, Ozsváth–Szabó [OS04c, Corollary 4.3])

Proposition 5.5.1 (Ozsváth–Szabó [OS04c], Rasmussen [Ras03]). Let K be a knot in the

three-sphere. Then there exists a positive integer N with the property that for all p ≥ N we

have that

HF+
ℓ (S3

−p(K), [0]) ∼= Hk(CFK
∞(K){i ≥ 0 and j ≥ 0}

where

ℓ = k +

(
1− p

4

)
.

Similarly,

HF+
ℓ (S3

p(K), [0]) ∼= Hk(CFK
∞(K){i ≥ 0 or j ≥ 0})

where

ℓ = k +

(
p− 1

4

)
.

In fact, we can take N = 2g − 1 where g = g(K) is the knot genus.

We can pick off the correction terms d(S3
±p(K), 0) from this theorem: we know that

H∗(CFK
∞(K)) ∼= Z[U,U−1]

3This is actually not quite true: not all vertices appearing in the complex CFK∞ are related to the

generator of ĤF (S3) by a sequence of U–maps and differentials. To grade these remaining vertices, we have

to go back to the Heegaard diagram. However, for the purpose of computing d–invariants, we do not need

to look at these at all.
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so choose a class a ∈ CFK∞(K) which generates this homology as a Z[U,U−1]–module.

Look at a sufficiently negative U–power of this generator. This generates the “tower” of

H∗(CFK
∞(K){i ≥ 0 or j ≥ 0}. All one has to do is start taking U–powers of [a] ∈

Hk(CFK
∞(K){i ≥ 0 or j ≥ 0} and see when they vanish in homology. The grading of

the last-surviving U–power of [a] is d(S3
+p(K), [0]) (after the grading shift). A similar story

allows one to compute d(S3
−p(K), 0).

Write d̃(S3
p(K), [0]) = d(S3

p(K), [0])− p−1
4 , the “unshifted” correction term of the group

Hk(CFK
∞(K){i ≥ 0 or j ≥ 0}). Putting together the previous discussion, by the exact

sequence, Equation 5.13 we have:

d 1
2
(S3

0(K)) +
p− 3

4
= d(S3

p(K), [0]) = d̃(S3
p(K), 0) +

p− 1

4

Using Equation 5.11 we get:

1

2
+ d(S3

1(K)) +
p− 3

4
= d̃(S3

p(K), 0) +
p− 1

4

ie

d(S3
1(K)) = d̃(S3

p(K), [0]). (5.14)

We now discuss how to teach a computer to do step 1. In fact, we implemented this in

C++ in a program called dCalc (beta). The source code is available at

http://www.math.columbia.edu/~tpeters.

As previously mentioned, CFK∞(K) is finitely generated as a complex over Z[U,U−1]. By

a symmetry property of the knot Floer homology, we may assume that the corresponding

graph is symmetric about the line i = j. With such a graph at hand, we choose a generating

set which is

1. Minimal: no smaller subset of it generates CFK∞(Y ).

2. In the first quadrant, i ≥ 0 and j ≥ 0.

3. As close to the origin as possible.

(See Figure 5.7 for an example). We started with a digraph data structure to represent the

complexes. Vertices were marked with Z ⊕ Z–bifiltration levels and could be marked with
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gradings. Vertices are also marked to keep track of bases. The first step was to fill in the

gradings. For this we needed to compute the “y–slice” described before. This is determined

by a finite number of U–translates of our chosen generating set. Once we find the generator

of ĤF (S3), it is a problem in graph traversal to fill in (most of—see footnote 3) the other

gradings. Our chosen generating set will necessarily have 1–dimensional homology (over Z2)

and its generator x will have a grading computed from the graph traversal. This generator

maps to a generator of HF+(S3) ∼= T +
(0). To compute d(S3

+1(K)), we start by taking a

finite piece of the complex CFK∞(K){i ≥ 0 or j ≥ 0} (more specifically, take our chosen

generating set and start hitting it by U—at some point it will disappear out of the “hook”

region {i ≥ 0 or j ≥ 0}. Take only those images which appear in the hook). In the graph

implementation, this just involves shifting filtration levels and throwing away some vertices

as they exit the hook. Now take the generator x and start pushing it down by U until it dies

in homology. Its grading just before it dies is d(S3
+1(K)), by Equation 5.14. To compute

d(S3
−1(K)), one runs a similar story, but instead of using the “hook region” {i ≥ 0 or j ≥ 0},

one uses the first quadrant {i ≥ 0 and j ≥ 0}.

Since one knows how knot complexes behave under connected sum of knots (tensor prod-

uct over Z[U,U−1]; see Ozsváth–Szabó [OS04c, Theorem 7.1] for the precise formulation),

we implemented this as well, allowing users to compute correction terms of surgeries on

connected sums of knots.

5.5.1 A few examples

In this section, Floer homology with mod-2 coefficients is understood. Figure 5.7 shows an

example of the algorithm described in Section 5.5. Here, we are given the knot complex

CFK∞(T3,4) for the (3, 4)–torus knot, which was computed in Ozsváth–Szabó [OS04a,

Section 5.1] or by [OS05b, Theorem 1.2].

As another example, consider the right-handed trefoil RHT . This knot has knot Floer
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i

graph (shown in bold).
1. Find minimal generating

1

3. Fill in gradings.

5. Start pushing generator down

by U until it dies in the
“hook” region i, j ≥ 0.

1
0

0

0

Here it is!

4. Find a generator of
homology.

RIP

6. Grading before death was

−2 so d(S3
1(T3,4)) = −2.

2. Find generator of “y-slice.”

This will do.

j

Not quite

dead yet...

Figure 5.7: An example of the algorithm used, applied to the (3, 4)–torus knot, T3,4.

homology given by

ĤFKj(RHT, i) =





Z2 if (i, j) = (1, 0)

Z2 if (i, j) = (0,−1)

Z2 if (i, j) = (−1,−2)

0 otherwise
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Here, i, j denote the Alexander and Maslov gradings, respectfully. Since we know there is a

spectral sequence, induced by the Alexander filtration on ĈF (S3), converging to ĤF (S3) ∼=

Z (supported in grading 0), it follows that the E1 page of this spectral sequence is given in

Figure 5.8.

Z2

Z2

Z2

Alexander

Maslov

Figure 5.8: The E1 page of the spectral sequence ĤFK(RHT ) ⇒ ĤF (S3).

By the symmetry of CFK∞, it follows that CFK∞(RHT ) is generated as a Z[U,U−1]–

module by the complex in Figure 5.9.

Z2

Z2Z2

i

j

Figure 5.9: A generating complex for the knot complex of the right-handed trefoil.

which shows that d(S3
1(RHT )) = −2, a fact which more readily follows from Equation

5.1.

Next, consider the figure eight knot, 41. This knot has knot Floer homology

ĤFKj(41, i) =





Z2 if (i, j) = (1, 1)

Z3
2 if (i, j) = (0, 0)

Z2 if (i, j) = (−1,−1)

0 otherwise

Again, by considering the spectral sequence ĤFK(41) ⇒ ĤF (S3), it follows that the E1

page of this spectral sequence is given Figure 5.10.

It follows that CFK∞(41) is generated as a Z[U,U−1]–module by the complex shown

in Figure 5.11.
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Alexander

Maslov

Z3
2

Z2

Z2

1

1

Figure 5.10: The E1 page of the spectral sequence ĤFK(41) ⇒ ĤF (S3). The markings

on the arrows signify the ranks of the maps.

Z2

Z2

Z2

Z2

Z2
i

j

Figure 5.11: A generating complex for the figure eight knot, 41. Here we have two Z2’s at

the origin—one is isolated while the other is part of a null-homologous “box”.

Z3
2

Z3
2

Z3
2

Z3
2

Z3
2

Z2
2

Z3
2

Z3
2

Z3
2

2

2

1

1

1

2

Z2

Z2

1

1

Z3
2

Z2

Z2

2

1

1

Alexander

Maslov

2

Figure 5.12: The E1 term of the spectral sequence ĤFK(C2,1) ⇒ ĤF (S3).

Here, we see a single isolated Z2 at the origin plus a null-homologous “box”. It is then

easy to see that d(S3
±1(41)) = 0 (again, this follows more quickly from Equation 5.1).
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Recall that while the Kinoshita–Terasaka knot K2,1 is smoothly slice, it is currently

unknown if its Conway mutant C2,1 is smoothly slice (though it is topologically slice since

it has trivial Alexander polynomial, by a result of Freedman [FQ90; Fre83]). Indeed, we

currently show that d(S3
1(C2,1)) = 0, showing that our invariant gives no information. In

[BG], Baldwin and Gillam calculated the knot Floer homology polynomial4 of C2,1 to be:

(q−3+q−2)t−3+3(q−2+q−1)t−2+3(q−1+1)t−1+3+2q+3(q+q2)t+3(q2+q3)t2+(q3+q4)t3

(5.15)

Similar to previous computations, it follows that the E1 term of the spectral sequence

ĤFK(C2,1) ⇒ ĤF (S3) is forced to be as in Figure 5.12. From this, it follows that

CFK∞(C2,1) can be computed by a complex generated as a Z[U,U−1]–module with a

single isolated Z2 at the origin plus a collection of null-homologous “boxes”. As in the

computation for the figure eight, it follows that d(S3
±1(C2,1)) = 0.

5.5.2 An example session

In this section we show an example session of our program dCalc. We first input a gen-

erating complex for CFK∞ of the right-handed trefoil, as in Figure 5.9. We then form

the complex for the connect-sum RHT#RHT . Finally we compute the correction terms of

S3
±1(RHT#RHT ).

*****************************************************************

Welcome to the d invariant calculator!

This program computes the d invariants of +/-1 surgery on a knot

Copyright (C) 2009 Thomas Peters

4The knot Floer homology polynomial of a knot K is defined to be

Σi,j dimZ2
ĤFKj(S

3
,K, i) qjti

.
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This program is free software; you can redistribute it and/or

modify it under the terms of the GNU General Public License

as published by the Free Software Foundation; either version 2

of the license, or (at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program; if not, write to the Free Software

Foundation, INC., 51 Franklin Street, Fifth Floor, Boston,

MA 02110-1301, USA

email tpeters@math.columbia.edu with problems, bugs, etc

*****************************************************************

---------------------------------

Main menu.

(1) Enter a new knot

(2) View current knots

(3) Select a knot

(4) Connect-sum two knots

(0) Quit

----------------------------------

1

Enter the name of your knot

trefoil

Enter the knot vertex keys (non-neg integers). input -1 to stop

0
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1

2

-1

entered vertices 0,1,2,

enter the adjacency lists (type a vertex key, press enter,

continue. input -1 to stop)

successors of 0:

1

2

-1

successors of 1:

-1

successors of 2:

-1

enter the bifiltration levels

(type i value, press enter, then type j value, then press enter)

(input -1 to stop)

F_i[0] = 1

F_j[0] = 1

F_i[1] = 0

F_j[1] = 1

F_i[2] = 1

F_j[2] = 0

added knot trefoil with adjacency list

[0]1,2,

[1]

[2]
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and bifiltration levels

F(0) = (1,1)

F(1) = (0,1)

F(2) = (1,0)

---------------------------------

Main menu.

(1) Enter a new knot

(2) View current knots

(3) Select a knot

(4) Connect-sum two knots

(0) Quit

----------------------------------

4

Current knots are:

(index, name)

------------

(0, trefoil)

Enter the indices of the two knots to add

0

0

Computing tensor product...

Computation took 0min0sec.

Created knot trefoil#trefoil having adjacency list

[12]

[8]

[5]8,12,

[7]
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[4]

[2]4,7,

[3]7,12,

[1]4,8,

[0]2,5,1,3,

and bifiltrations

F(12) = (2,0)

F(8) = (1,1)

F(5) = (2,1)

F(7) = (1,1)

F(4) = (0,2)

F(2) = (1,2)

F(3) = (2,1)

F(1) = (1,2)

F(0) = (2,2)

---------------------------------

Main menu.

(1) Enter a new knot

(2) View current knots

(3) Select a knot

(4) Connect-sum two knots

(0) Quit

----------------------------------

3

Current knots are:

(index, name)

------------

(0, trefoil)

(1, trefoil#trefoil)

input an index



CHAPTER 5. KNOT CONCORDANCE AND CORRECTION TERMS 79

1

What would you like to do with your knot complex?

(1) Print its adjacency list

(2) Show its bifiltration levels

(3) Check if it defines a complex

(4) Check if it is filtered

(5) Compute its homology

(6) Compute d invariants!

(7) Nothing--bring me back to the main menu

6

d(S^3_{+1}(K)) = -2

d(S^3_{-1}(K)) = 0

---------------------------------

Main menu.

(1) Enter a new knot

(2) View current knots

(3) Select a knot

(4) Connect-sum two knots

(0) Quit

----------------------------------

0

Really quit d calculator? (y/n) y

5.5.3 Issues with the implementation

dCalc does not do any checking on inputted complexes. If one inputs a complex which

does not come from a knot, dCalc may return garbage or have undefined behavior. dCalc

does, however, come with a few basic functions useful in determining the feasibility of a

given complex. For instance, it can check if the user’s graph actually represents a complex.

It is also worth mentioning that our implementation was for Floer homology with coef-

ficients in Z2, so we are really computing correction terms for mod-2 coefficients. It is an
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interesting question to determine whether or not d–invariants for Floer homology with Z2

coefficients can ever differ from d–invariants calculated with Z coefficients.

More seriously, by default dCalc uniquely identifies vertices by int keys. One is therefore

limited by the maximum value of int, INT MAX (this is defined in the header file <limits.h>

and varies from platform to platform, though is guaranteed to be at least 32,767). This

is only realistically a problem after taking tensor products, where we rely on an explicit

bijection Z×Z → Z to assign vertex keys for the tensor product. This function is quadratic in

its two arguments so it can grow quite quickly. Surpassing INT MAX can result in undefined

behavior (including segmentation faults). If one were limited by this feature, one could

change the underlying data structure of the vertex keys to a more flexible structure, for

instance something like the tuple structure found in python, or to a larger integer structure,

such as a long unsigned int. The latter can be done by changing the line “typedef int

KEYTYPE;” of vertex.h to, for instance, “typedef long KEYTYPE;” and them recompiling.

Of course, such operations increase run time. One way to check if INT MAX has been

exceeded (assuming KEYTYPE is not unsigned) is by printing out the adjacency matrix (or

filtration levels) for a particular knot complex. If negatives appear as keys, INT MAX has

been surpassed (though, in principle, this need not be a necessary condition).

One place in which this program is inefficient memory-wise is in checking whether or

not a given element in a complex is a boundary. We do this by row-reduction. If a complex

has n generators, the row-reduction requires a char array of roughly size n2 to be allocated

from the heap. Of course, one should not need to create these matrices considering the

homology itself can be checked just by performing an algorithm on the graph (see Baldwin

and Gillam [BG] for a discussion).

We stress that in order to compute d(S3
±1(K)) for a given knot, one must have at hand

the filtered chain homotopy type of the Z[U,U−1]–module CFK∞(K). Computing these

complexes is quite challenging, in general. In the case that K is alternating or is a torus

knot, then one may recover CFK∞(K) from the usually weaker invariant ĤFK(K). In

the former case we have Equation 5.1 and in the latter we have Ozsváth–Szabó [OS05b,

Theorem 1.2], so we do not need to use a computer at all. Depending on one’s proficiency

in Heegaard Floer homology, it is sometimes possible (though one should not expect in
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general) to calculate CFK∞(K) from ĤFK(K) (for instance, see the examples in Section

5.5.1).
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