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Abstract

The Hilbert-Chow Morphism and the Incidence Divisor

Joseph Ari Ross

In this thesis, we study the locus of intersecting cycles inside a product of Chow

varieties of a smooth projective variety X. The main case considered is that of

pairs of 1-cycles on a threefold. In this situation we construct a Cartier divisor

supported on the incidence locus I ↪→ C1(X) × C1(X). We also study the case

I ↪→ C0(X) × Cdim(X)−1(X), and here we make use of explicit descriptions of both

Chow varieties.

In both cases we proceed by defining an incidence line bundle L on a product of

Hilbert schemes mapping to the corresponding Chow varieties. The essential ingredi-

ents of the incidence bundle are the universal families over the Hilbert schemes and

the determinant line bundle of a perfect complex. We are thus led to problems of

descent: to define an isomorphism between two pullbacks of L, satisfying the cocycle

condition; and then to show the effectiveness of the descent datum thus obtained.

The first step towards defining the descent datum is a characterization of func-

tions on a seminormal scheme as pointwise functions compatible with specialization.

Along with a straightforward K-theoretic interpretation of the Hilbert-Chow mor-

phism, this characterization converts the problem of defining the descent datum to

understanding how K-theory behaves under specialization. As for the effectiveness,

the seminormality of the Chow variety produces a criterion for effective descent, and

the explicitness of the descent datum allows us to verify it in our situation.
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Chapter 1 1

Chapter 1

Introduction

1.1 Sketch of the problem

Let (X,OX(1)) be a smooth projective variety over an algebraically closed field k.

The Chow variety Cd,d′(X) parameterizes algebraic cycles on X. In particular, set-

theoretically,

Cd,d′(X)(k) = {effective algebraic cycles on X of dimension d and degree d′}.

An element of this set is an expression
∑

i niZi, with ni ∈ Z≥0 and Zi ⊂ X d-

dimensional integral closed subschemes such that
∑

i nidegO(1)Zi = d′. We use

the definition(s) of a family of cycles from [

24]. Cycles in positive characteristic

have pathological tendencies, but in all characteristics one has a seminormal scheme

Cd,d′(X) which coarsely represents a reasonable Chow functor. A general line of in-

quiry is to understand how the geometry of X is reflected in the geometry of its

associated moduli spaces. More specifically, the following question has been asked by

Mazur [

26] and studied directly in [

33] and [

3].
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Question. Let a, b be nonnegative integers such that a + b + 1 = dim(X). What is

the structure of the incidence locus {(A,B)|A ∩B 6= ∅} ↪→ Ca × Cb?

Over C, Mazur constructs a Weil divisor supported on the incidence locus as follows.

Consider the diagram of schemes:

X × Ca(X)× Cb(X) ∆ //

pr23
��

X ×X × Ca(X)× Cb(X)

Ca(X)× Cb(X)

Let Ua, Ub denote the universal cycles on X × Ca(X), X × Cb(X) respectively (these

exist in characteristic zero). Then since ∆ is a local complete intersection morphism,

via intersection theory [

11] one has D := pr23∗∆
!(Ua � Ub), a cycle of codimension 1

on Ca(X)×Cb(X). Among other things, Mazur [

26] asks whether D is Cartier. This

thesis gives an affirmative answer in some cases.

1.2 Wang’s result on the Archimedean height pair-

ing

In an attempt to answer Mazur’s question, Wang [

33] embarks on a study of the

geometry of Chow varieties (over C) using the Archimedean height pairing 〈A,B〉

on algebraic cycles. Given disjoint cycles A,B on X as above, one has the pairing

〈A,B〉 :=
∫
A
[GB] defined by integrating a normalized Green’s current for B over A.

Wang views 〈A,B〉 as a function on the open set U in Ca(X) × Cb(X) consisting of

disjoint cycles, then studies the behavior of the function as the cycles collide. He

obtains the following result [

33, Thm. 1.1.2].

Theorem. There exist a metrized line bundle L on U ⊂ Ca(X)×Cb(X) and a rational

section s that is regular and nowhere zero on U , such that:

log ||s(A,B)||2 = (dim(X)− 1)!〈A,B〉.
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We explain briefly some of the geometric ideas behind Wang’s construction. Since the

height pairing is well-behaved under products and correspondences, this approach is

amenable to reduction to the diagonal ∆ ↪→ X ×X. In particular, one is led to seek

a correspondence:

Γ ⊂ X ×X × Y
pr1

vvmmmmmmmmmmmm
pr2

''OOOOOOOOOOOOO

X ×X Y

with the following properties:
(1) there is a point y∆ ∈ Y such that tΓ∗y∆ = ∆ as cycles on X ×X,

(2) Γ∗(A×B) is a divisor in Y , and
(3) the height pairings satisfy

〈A×B, tΓ∗y∆〉 = 〈Γ∗(A×B), y∆〉+ c(y∆, A×B)

with c a continuous function in both variables.

Suppose such a Γ exists. Then letting L be the line bundle on Y corresponding to

the divisor Γ∗(A × B), one obtains a section s of the canonical O(1) on P(Γ(Y, L))

(the linear system containing Γ∗(A×B)) by evaluating a section defining Γ∗(A×B)

at y∆. Then using the Poincaré-Lelong formula and multiplying s by exp(−c), one

obtains

〈A,B〉 = log ||s(Γ∗(A×B))||2.

So the correspondence Γ induces a morphism Ca(X) × Cb(X) → P(Γ(Y, L)) via

(A,B) 7→ Γ∗(A × B). The desired line bundle and section are then the pullback

of O(1) and s.

A natural way to find such a Γ is to realize ∆ as the intersection cycle of X ×X and

some subvariety of projective space (for example, as a proper intersection), in some

projective embedding. Unfortunately, such an embedding does not generally exist,
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and Wang is unable to find a suitable Γ by other means. His solution is to use a twisted

embedding of X ×X into some Grassmannian. Then one can move (dim(X)− 1)!∆

within its rational equivalence class to a cycle of the form (X×X∩σ)−r(X×X∩L)

with r ∈ Z, σ a special Schubert cycle in the Grassmannian, and L ⊂ Pn a linear

space. The technical heart of [

33] is the identity analogous to the one in (

3) for the

cycle σ; the (presumably easier) cycle L is analyzed in [

34].

1.3 Barlet-Kaddar via Deligne cohomology

Using rather different techniques, Barlet and Kaddar [

3] associate to a family of cycles

over a base S a Cartier (incidence) divisor on S (again over C). Specifically, suppose

we are given:
(1) X a complex manifold of dimension n = a+ b+ 1,

(2) (As)s∈S an analytic family of a-cycles on X over a reduced complex base space

S, and
(3) B ⊂ X a b-cycle,

such that the incidence has expected codimension and is generically finite over the

base. More specifically, we require:
(1) the analytic set (Supp(B)× S) ∩ Supp(A) has codimension n+ 1 = codim(A) +

codim(B) in X × S; and
(2) the analytic set (Supp(B)×S)∩Supp(A) ⊂ X×S is proper over S and generically

finite onto its image Supp(ΣB), which is nowhere dense in S.

To such data they associate an effective Cartier divisor ΣB in S with support equal

to Supp(ΣB). Their construction enjoys the following properties:
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(1) in case of the universal family 0-cycles of degree k on C (so S = Symk(C)) andB =

1{0}, we have ΣB = {zero locus of the k-th elementary symmetric function};
(2) compatibility with base change S ′ → S preserving the hypotheses;

(3) localization on X (in which case the hypotheses are automatically preserved);
(4) direct and inverse images of cycles via holomorphic maps X ′ → X preserving

the hypotheses (in particular, the maps are such that pushforward or pullback

families are defined); and
(5) moving B in a family of cycles (over a reduced base) preserving the hypotheses

fiberwise.

In fact, their construction is characterized by these properties. Their strategy is

to study properties of relative fundamental classes in Deligne cohomology, then use

special cohomology classes to “build” the Cartier divisor.

1.4 Statement of results and techniques

In this thesis, we will pursue a new approach to Mazur’s question. The main idea is

to define the incidence line bundle L on a product of Hilbert schemes mapping to the

corresponding Chow varieties; construct a descent datum (identification of pullbacks

satisfying the cocycle condition) on L; and demonstrate its effectiveness, i.e. that L

is induced by a line bundle on the Chow varieties.

The main case of interest in which we are able to carry out this program is a = b = 1,

so X is a smooth projective threefold and C1 := Ca(X) = Cb(X) is the Chow variety

of 1-cycles on X. Let H1 denote the seminormalization of the Hilbert scheme of

1-dimensional subschemes of X (i.e. the disjoint union of H P (X)
sn

as P ranges over

numerical polynomials of degree one). Then we have the Hilbert-Chow morphism

π : Y0 := H1 ×H1 → C1 × C1 =: C.
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The structure sheaf of the universal flat family U ↪→ X ×H1 is a perfect complex on

X ×H1, and the projection morphism pr23 : X ×H1 ×H1 → H1 ×H1 is smooth

and proper. Hence we can define the line bundle L := detRpr23∗(OU⊗LOU ) on Y0.

Of course, we may define L on any pair of Hilbert schemes, and we will use this fact.

The morphism π gives rise to a proper hypercovering Y• augmented over C whose i-th

term Yi is the seminormalization of Y0×C . . .×C Y0 (i+1 factors), with the canonical

morphisms. Now we can make precise our result regarding the existence of a descent

datum.

Theorem 1 (

5.3.13). The sheaf L lifts to an invertible sheaf on Y•, i.e. there is an

isomorphism φ : p1
∗L ∼= p2

∗L on Y1 satisfying the cocycle condition on Y2.

The effectiveness of (L, φ) is a subtle question. To state the result we need slightly

more notation. Let H ′
1 ↪→ H1 denote the seminormalization of the subscheme

consisting of subschemes T ⊂ X such that all irreducible components of T are 1-

dimensional. Set Y ′
0 := H ′

1 ×H ′
1 . We may form Y ′

• with i-th term the seminormal-

ization of Y ′
0 ×C . . . ×C Y ′

0 (i + 1 factors), also augmented over C. On Y ′
• we have

the restriction of (L, φ). We expect L descends via π, but in any event we prove the

following result.

Theorem 2 (

5.4.12). The restriction of L to Y ′
• descends to an invertible sheaf M

on C.

This work is done in Chapter

5, relying on a result proved in Chapter

3. We outline

the argument momentarily.

We begin Chapter

2 with background material on determinants and perfect com-

plexes. Then we discuss in detail how to obtain the incidence divisor I ↪→ Cd(Pn)×G

directly from the construction of Cd(Pn) when restricting to the Grassmannian G of

(n − d − 1)-planes in one factor. In this situation, we show in Proposition

2.4.3

that the line bundle corresponding to I pulls back via the Hilbert-Chow morphism
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to the incidence bundle L defined above. Additionally, we show how the ruled join

construction, together with the divisor I , solves the problem for Pn.

Chapter

3 is devoted to the following result, which characterizes functions on a semi-

normal scheme.

Theorem 3 (

3.1.5; see also Definition

3.1.1). A Noetherian ring A is seminormal

if and only if every pointwise function on Spec A which varies algebraically along

complete DVRs is induced by an element f ∈ A.

We deduce consequences tailored for our descent problem, as described below. We

phrase certain aspects of the descent problem as questions about morphisms of Picard

schemes, so this chapter also collects needed facts about Picard schemes.

We discuss the case of zero-cycles and divisors in Chapter

4; in particular the incidence

line bundle L on H m(X) × H q(X), where m ∈ Z≥1 and deg(q) = dim(X) − 1,

descends to C0,m(X) × Cdim(X)−1(X). The problem of defining the descent datum

is essentially algebraic, and we use [

21] for an explicit algebraic description of the

Hilbert-Chow morphism H m(X) → C0,m(X) for zero-cycles. To show effectiveness,

we use descent criteria as described below in the a = b = 1 case, though the argument

here is considerably simpler. Certain calculations done in this chapter (summarized

in Proposition

4.2.3) play a role in the definition of the descent datum for the case

a = b = 1. That the determinant formula and the algebraic description of H m(X)→

C0,m(X) mesh so well can be seen as motivation for pursuing the determinant formula

in general.

As a consequence of Theorem 3, it suffices to define the descent datum φ of Theorem

1 on field and DVR points, compatibly. In Chapter

5 we complete the proof of

Theorem 1 by constructing such a compatible system of isomorphisms. The main

advantage of having to work over at worst a DVR R is that given R-flat subschemes

C1, C2, D1, D2 ⊂ XR of relative dimension 1 such that [C1] = [C2] =
∑
niCi and

[D1] = [D2] =
∑
mjDj, one can define detRπ∗(OC1⊗LOD1)

∼= detRπ∗(OC2⊗LOD2)
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by defining detRπ∗(OC1⊗LOD1)
∼= ⊗i,j(detRπ∗(OCi

⊗LODj
))
nimj (and similarly for

C2, D2). Over an arbitrary base, the components of a flat family do not in general

vary flatly, so the “determinant of the cycle” is not generally defined.

We construct the isomorphism detRπ∗(OC1⊗LOD1)
∼= ⊗i,j(detRπ∗(OCi

⊗LODj
))
nimj

by expressing OC1 =
∑
niOCi

+ Z and OD1 =
∑
mjODj

+W in K0(XR) with Z,W

supported in dimension zero over the generic point. Then, using properties of the

determinant functor, we are left to trivialize (in some sufficiently canonical manner)

the factors of the form detRπ∗(Z⊗L•) and detRπ∗(•⊗LW ).

As for Theorem 2, i.e. the effectiveness of (L, φ), an outgrowth of Theorem 3 is

a criterion for effective descent (Corollary

3.2.4): L ∈ Pic(Y•) descends to M ∈

Pic(C) if it can be trivialized locally on C, compatibly with the descent datum φ.

Compatibility with φ is delicate, so we work pointwise on one factor C1 of C. A moving

lemma is the main tool needed to show L|y×H ′
1

admits such a trivialization for every

y ∈H ′
1 , and as a consequence we obtain pointwise descent. Another consequence of

Theorem 3 is a criterion for pointwise lifts of a morphism to glue (Proposition

3.1.14),

and the pointwise descents are shown to glue by showing the corresponding morphism

of Picard schemes satisfies the criterion. This gives us line bundles on C1 ×H ′
1 and

H ′
1 × C1. To finish the argument, we show they each extend to line bundles on the

proper hypercovering formed in the H ′
1 variable. Then faithfully flat descent and

another application of Proposition

3.1.14 produce for us the desired line bundle on

C.
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Chapter 2

Background

2.1 Determinant functor: definition and proper-

ties

The main reference for this section is [

23]. See also [

10] and [

22]. All schemes in this

chapter are assumed locally Noetherian.

Let D(X) denote the derived category of the abelian category Mod(X) of OX-

modules. We denote by D+(X) ⊂ D(X) the full subcategory of bounded below com-

plexes of OX-modules, and similarly we have D−(X) and Db(X) = D+(X)∩D−(X).Definition 2.1.1. A complex F of OX-modules is said to be pseudo-(quasi)coherent

if its cohomology sheaves Hq(F) are (quasi)coherent. A complex F is said to be of

finite Tor-amplitude if locally on X, F is quasi-isomorphic to a bounded complex of

flat sheaves E such that Eq = 0 for q /∈ [a, b], some a ≤ b ∈ Z; if we wish to be more

precise we say F is of Tor-amplitude in [a, b]. A complex F is said to be perfect if

it is both pseudo-coherent and of finite Tor-amplitude, and is said to be of perfect

amplitude in [a, b] if it is pseudo-coherent and of Tor-amplitude in [a, b].

We denote by D(q)coh(X) the full triangulated subcategory of D(X) consisting of

pseudo-(quasi)coherent complexes, and by D∗
(q)coh(X) the corresponding bounded cat-
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egory for ∗ = +,−, b. We denote by Parf(X) ⊂ Db(X) the full triangulated subcat-

egory consisting of perfect complexes, and by Parf0(X) ⊂ Parf(X) those perfect

complexes with perfect cohomology sheaves.

Let Parf-is(X) denote the category whose objects are perfect complexes on X, with

morphisms isomorphisms in D(X). Let Pic(X) denote the (Picard) category whose

objects are invertible sheaves on X, and whose morphisms are isomorphisms.

Given an abelian category A , we recall the definition of the category V T (A ) of true

triangles of D(A ) [

23, Defn. 2]. First form the abelian category A3 whose objects

are A -sequences A′′
α−→ A

β−→ A′ such that β ◦α = 0, and whose morphisms are triples

of A -maps making the resulting diagram commute. Then V T (A ) is the subcategory

of D(A3) whose objects are short exact sequences of complexes.

For convenience we now record the main result of [

23, Thm. 2].Definition-Theorem 2.1.2. There exists (up to canonical isomorphism) a unique

determinant functor detX : Parf-is(X)→ Pic(X) satisfying the following axioms.
I. detX(0) = 1 = OX ; we call ν : detX(0) ∼= OX the normalization isomorphism.

II. For every true triangle of complexes 0→ F1
α−→ F2

β−→ F3 → 0 in Parf-is(X), we

have an isomorphism iX(α, β) : det(F1)⊗det(F3)
∼−→ det(F2). The isomorphisms

i are required to satisfy some axioms.
A. On true triangles of the form 0 → F α−→ F → 0 → 0, we have iX(α, 0) =

mult ◦ (1 ⊗ ν) : detX(F) ⊗ detX(0) ∼= detX(F); same for those of the form

0→ 0→ F α−→ F → 0.B. For every isomorphism of true triangles (all squares commute asOX-modules,

not just up to homotopy):

0 // F1
α //

f1
��

F2
β //

f2
��

F3
//

f3
��

0

0 // F1
′ α′ // F2

′ β′ // F3
′ // 0
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the following diagram commutes:

det(F1)⊗ det(F3)
i(α,β) //

det(f1)⊗det(f3)

��

det(F2)

det(f2)

��
det(F1

′)⊗ det(F3
′)
i(α′,β′)// det(F2

′)

C. Given a true triangle of true triangles (an exact square commuting on the

nose; we omit the rows and columns of zeroes):

F1
α //

f1
��

F2
β //

f2
��

F3

f3
��

F1
′ α′ //

g1
��

F2
′ β′ //

g2
��

F3
′

g3
��

F1
′′ α′′ // F2

′′ β′′ // F3
′′

the following diagram commutes (here s(a⊗ b⊗ c⊗ d) = a⊗ c⊗ b⊗ d):

det(F1)⊗ det(F3)⊗ det(F1
′′)⊗ det(F3

′′)
i(α,β)⊗i(α′′,β′′)//

(i(f1,g1)⊗i(f3,g3))◦s
��

det(F2)⊗ det(F2
′′)

i(f2,g2)

��
det(F1

′)⊗ det(F3
′)

i(α′,β′) // det(F2
′)

III. The functor detX and the isomorphisms i agree with the usual determinant (top

exterior power) and usual i on the complexes consisting of a single locally free

sheaf of finite rank (in degree zero) and the short exact sequences of such.
IV. The collection of such functors is compatible with base change. If f : X → Y

is a morphism of schemes, we have an isomorphism of functors (from Parf-is(Y )

to Pic(X)) ηf : f ∗ ◦ detY
∼−→ detX Lf ∗. If 0 → F1 → F2 → F3 → 0 is a true

triangle on Y , then the following diagram commutes:

f ∗(detY (F1))⊗ f ∗(detY (F3))
f∗(i) //

η⊗η
��

f ∗(detY (F2))

η

��
detX(Lf ∗F1)⊗ detX(Lf ∗F3)

i(Lf∗)// detX(Lf ∗F2)
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Note our η is η−1 in [

23].

Additionally if X
f−→ Y

g−→ Z are morphisms of schemes, and θ : Lf ∗ ◦ Lg∗ ∼=

L(gf)∗ denotes the canonical isomorphism, then the following diagram com-

mutes:

f ∗(g∗ detZ) can //

f∗(ηg)

��

(gf)∗ detZ

ηgf

��
f ∗(detY Lg∗)

ηf // detX Lf ∗Lg∗
detX(θ)// detX L(gf)∗

Remark 2.1.3. When X is reduced, i extends to distinguished triangles, and com-

mutativity in D(X) suffices. We then have Axiom II.B. for any isomorphism of

distinguished triangles (in Parf(X)), and Axiom II.C. for any distinguished triangle

of distinguished triangles [

23, Prop. 7].Lemma 2.1.4. Let X be a normal (in particular, reduced) Noetherian scheme. Sup-

pose G ∈ Parf(X) satisfies Supp(Hq(G)) has depth ≥ 2 for all q. (In particular, G|ξ
is exact for any ξ of depth 0.) Then:

• There is a unique isomorphism γ : detX(G) ∼= OX such that γ|ξ = det(0) :

detξ(G|ξ) ∼= detξ(0) = OX,ξ for any ξ of depth 0.

• If q : G1 → G2 is a quasi-isomorphism of complexes satisfying the hypotheses on

G above, the following diagram commutes:

detX(G1)

det(q)
��

γ1 // OX
=

��
detX(G2)

γ2 // OX

• If G1 → G2 → G3 →+1 is a distinguished triangle in Parf(X) such that each Gi
satisfies the hypotheses on G above, the following diagram commutes:

detX G1 ⊗ detX G3

γ1⊗γ3
��

// detX G2

γ2
��

OX ⊗OX mult // OX
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• If G ∈ Coh(X) has finite Tor-dimension, γ agrees with 5G in [

10, Thm. 2.2].

Proof. The isomorphism detξ(G|ξ) ∼= ⊗q(detξ(Hq(G|ξ)))(−1)q

= detξ(0) at the depth 0

points extends away from a set of depth ≥ 2 by hypothesis, hence it extends to all of

X by normality. Since an isomorphism of line bundles is determined by its restriction

to points of depth 0, the uniqueness is clear.

Similarly the second item follows from det(q|ξ) = det(0) : detX(G1|ξ) ∼= detX(G2|ξ).

To see the third item, it suffices to show the diagram commutes at each ξ of depth 0.

Since the trivializations of acyclic complexes are additive on triangles [

23, p.32], the

commutativity follows.

The property of agreeing with the identity at points of depth 0 characterizes the

homomorphism 5G, which is an isomorphism in our case.

We call the isomorphism detX(G) ∼= OX of the preceding lemma the canonical γ.

In the application, X will also be Cohen-Macaulay, so there will be no distinction

between depth and codimension.

Cartier divisors associated to sheaves, complexes of sheaves, and mor-

phisms. Here we review the definition of the Div of a morphism following [

28, Ch.

5 S. 3].

First we define the Div of a sheaf. Let X be a Noetherian scheme and suppose

F ∈ Coh(X) satisfies:

• F is of finite cohomological dimension, i.e. F is perfect; and

• Supp(F) does not contain any points of depth 0.

Then we can define Div(F), a Cartier divisor on X. Given x ∈ X, a local equation for

Div(F) on a neighborhood U of x is obtained as follows. Possibly after shrinking U ,

choose a resolution of F by coherent free OU -modules: 0→ En → . . .→ E0 → F → 0.

Since 0→ En → . . .→ E0 → 0 is exact on U − Supp(F), this sequence determines a

canonical isomorphism σ : OU−Supp(F) → ⊗idet(Ei)(−1)i

. Since the Ei are free on U ,



CHAPTER 2. BACKGROUND 14

there is an isomorphism τ : ⊗idet(Ei)(−1)i

→ OU unique up to unit. The composition

τσ gives a nonzero section f of Γ(U − Supp(F),O), and f defines Div(F) on U .

One checks f is not a zero divisor, independence of choice of resolution, and that

the equations agree on overlaps. We have Supp(Div(F)) ⊆ Supp(F). In [

23] the

construction is extended to perfect complexes supported at points of depth ≥ 1, and

morphisms between perfect complexes which are quasi-isomorphisms at every point

of depth 0.

The construction can also be extended to define the Div of certain morphisms of

schemes. For now suppose f : X → Y is a projective morphism of Noetherian

schemes of finite Tor-dimension satisfying:

• f−1(y) is empty for y ∈ Y of depth 0, and

• f−1(y) is finite for y ∈ Y of depth 1.

Then we define Div(f) to be Div(f∗M) for any invertible sheaf M on X such that

Rif∗(M) = 0 for i > 0. Such an M exists because f is projective, and one checks

f∗M has finite Tor-dimension and is not supported on any depth 0 points, and that

the divisor thus obtained is independent of the choice ofM. We have Supp(Div(f)) ⊆

f(X).

More generally, [

23, Prop. 9] proves that if f : X → Y is a proper morphism of finite

Tor-dimension, and F is a perfect complex on X satisfying the support conditions

above (there conditions on OX), then for anyM∈ Pic(X), we have

Div(Rf∗(F)) = Div(Rf∗(F ⊗M)).

Therefore in the situation above, Div(f) = DivRf∗OX .
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2.2 Perfect complexes: operations and invariants

We begin with some very general facts about the behavior of perfect complexes under

various operations. The standard reference is [

14, Exp. I,II,III]; for a translation of

some parts see [

20].Proposition 2.2.1. Let f : X → Y be a smooth morphism of schemes. Suppose

F ∈ Coh(X) has finite Tor-dimension (e.g. is flat) over Y . Then F is perfect on X,

i.e F ∈ Parf(X).

Proof. See [

14, Exp. III. Prop. 3.6].
Lemma 2.2.2. Let f : X → Y be a morphism of schemes. Suppose F ∈ Parf(Y ).

Then Lf ∗F ∈ Parf(X).

Proof. See [

14, Exp. I. Cor. 4.19.1(a)].
Proposition 2.2.3. Let X be a scheme, and suppose F ,G ∈ Parf(X). Then F⊗LG ∈

Parf(X).

Proof. See [

14, Exp. I. Cor. 4.19.1(b)].
Proposition 2.2.4. Let f : X → Y be a proper morphism of schemes such that

f∗(OX) ∈ Parf(Y ) (e.g. f is smooth). Suppose Y is Noetherian. Then for F ∈

Parf(X), we have Rf∗F ∈ Parf(Y ).

Proof. See [

14, Exp. III. Cor. 4.8.1].
Lemma 2.2.5. Let i : Z → X be a closed immersion of schemes such that i∗(OZ) ∈

Parf(X), let f : X → Y be a morphism of schemes as in Proposition

2.2.4, and

p = f ◦ i : Z → Y the composition. Then there is a canonical isomorphism of

functors

Rf∗(i∗(OZ)⊗L−) ∼= Rp∗(Li
∗−)

from Parf(X) to Parf(Y ).
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Proof. For any F ∈ Parf(X), we have i∗(OZ)⊗LF = i∗(Li
∗F). Since i∗ is exact, we

have Rp∗ ∼= Rf∗ ◦Ri∗ = Rf∗ ◦ i∗. The claim follows.
Lemma 2.2.6. Let f : X → Y be a morphism of schemes and F• ∈ D+(X) such

that Rif∗F j = 0 for all j, all i > 0.

Then Rf∗F• is quasi-isomorphic to the complex f∗F• (with the induced differential).

Proof. This is the Leray acyclicity lemma.
Lemma 2.2.7. Let f : X → Y be an affine morphism of schemes. Then there is a

canonical isomorphism of functors

Rf∗(−) ∼= f∗(−)

from D+
qcoh(X) to D+

qcoh(Y ). (The right hand side means apply f∗ termwise.)

If f is finite locally free and Y is Noetherian, the isomorphism is also as functors

from Parf(X) to Parf(Y ).

Proof. This is a consequence of the cohomological characterization of affine mor-

phisms [

13, II. Cor. 5.2.2] together with Lemma

2.2.6. That D+
qcoh(X) lands in

D+
qcoh(Y ) is a special case of [

17, Ch. II Prop. 2.1]. For the final statement, we use

Proposition

2.2.4 and finite ⇒ proper.
Definition 2.2.8. Let π : X → T be a morphism of schemes. The relative dimension

of π is the maximal dimension of any fiber. If F ∈ Coh(X), the relative dimension of

Supp(F) is the maximal dimension of the support of any fiber F ⊗T κ(t) ∈ Coh(Xt).

We denote this number by dim(Supp(F)). If F ∈ Parf(X), the relative dimension of

Supp(F) is the maximal dimension of the support of any (derived) fiber F⊗L
Tκ(t) ∈

Parf(Xt).
Remark 2.2.9. By [

19, 3.29] we have Supp(F)∩Xt = Supp(F⊗Lκ(t)), so Supp(F) =

maxq,tdim(Supp(Hq(F)t)). Furthermore, given a base change f : T ′ → T , let

f ′ : X ×T T ′ → X denote the canonical morphism. For F ∈ Parf(X) such that
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dim(Supp(F)) ≤ d, we have dim(Supp(Lf ′∗(F))) ≤ d. (Write Lf ′∗(F)⊗L
T ′κ(t

′) =

F⊗L
Tκ(f(t′))⊗ κ(t′) and use the flatness of κ(f(t′))→ κ(t′).)

Let X be a variety (an integral separated scheme of finite type over a field, not

necessarily geometrically integral) of dimension d, and let V,W ⊂ X be subvarieties

of dimensions a, b respectively. If a+ b < d, then V and W are not expected to meet.

The next result is a cohomological interpretation of this idea. First we recall that if X

is a proper scheme over a field and F ∈ Coh(X), χ(F) :=
∑

i (−1)ihi(X,F). If T is

an integral scheme with generic point η, and X is a proper T -scheme, for F ∈ Coh(X)

we define χT (F) := χ(Fη). We will often abuse notation and write χ(F) for χT (F)

if no confusion seems likely to result.Lemma 2.2.10. Let T be an integral scheme, and let π : X → T be a smooth

and proper morphism of relative dimension d. Suppose also X is irreducible. Let

F ,G ∈ Parf(X) satisfy:

dim(Supp(F)) + dim(Supp(G)) < d.

Then χ(F⊗LG) = 0.

Proof. Since the Euler characteristic is calculated at the generic point of T , we reduce

to the case: X is irreducible, and smooth and proper over a field. Since the Euler

characteristic is defined on K-theory, and because the group generated by coherent

sheaves supported in dimension ≤ a is generated by [OV ], V ⊂ X a subvariety

of dimension ≤ a [

11, Ex. 15.1.5], we may assume F ,G are structure sheaves of

subvarieties of dimensions a, b respectively, with a+ b < d.

Now since X is smooth, any coherent sheaf has a finite length resolution by finite

rank locally free sheaves, so we may apply [

11, 18.3.1 (c)] to the closed immersion

i : V → X with β = OV . This gives, in the Chow group A∗(X):

i∗(ch(OV ) ∩ Td(V )) = ch(i∗OV ) ∩ Td(X).
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As ch(OV ) = 1 and Td(V ) = [V ] + rV with rV ∈ A<a(V ), the left hand side lies in

A≤a(X).

Since X is smooth, Ap(X)∩Aq(X) ⊂ Aq−p(X) by [

11, 8.3 (b)]. As Td(X) = [X]+rX

with rX ∈ A<d(X), by equating terms in each degree, we find ch(i∗OV ) ∈ A≥d−a(X).

In summary:

dim(Supp(F)) ≤ a⇒ chi(F) = 0 for i < d− a.

By Grothendieck-Riemann-Roch (for the smooth X, as in [

11, 15.2.1]) and the action

of ch on ⊗, χ(F⊗LG) =
∫
X

ch(F) · ch(G) · TdX . Here · means intersection product

of cycle classes. The first possible nonzero term in ch(F) · ch(G) would come from

chd−a(F) · chd−b(G), but this term is zero for degree reasons.
Lemma 2.2.11. With π : X → T as in Lemma

2.2.10, suppose in addition d = 3.

Let F ,G ∈ Parf(X) satisfy:

• dim(Supp(F)) ≤ 1;

• rk(G) = 0; and

• det(G) ∼= OX .

Then χ(F⊗LG) = 0.

Proof. The hypotheses on G imply ch0(G) = ch1(G) = 0, so we apply Grothendieck-

Riemann-Roch as in the proof of Lemma

2.2.10.
Corollary 2.2.12. Let π : X → T be as in Lemma

2.2.10. Suppose F ∈ Coh(X)

is perfect and dim(Supp(F)) ≤ a. Suppose G ∈ Parf(X) satisfies dim(Supp(G)) <

d− a. Let u : F → F be an automorphism. Then detT Rπ∗(u⊗L1) is the identity on

detT Rπ∗(F⊗LG).
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Proof. It suffices to show detT Rπ∗(u⊗L1) is the identity at the generic point of T ,

so we reduce to the case T is the spectrum of a field K. We can base change to an

algebraic closure K and check the result there, so assume K = K. Now EndOX
(F) is

a finite K-algebra. Therefore u satisfies a monic equation P with coefficients in K,

and since K is algebraically closed, the equation splits: P (X) =
∏

i (X − λi)
ei .

We proceed by induction on deg(P ). If deg(P ) = 1, u is multiplication by some

element (also called u) in K. Then detT Rπ∗(u⊗L1) acts by uχ(F⊗LG) = 1.

For the induction step, we use the following isomorphism of short exact sequences (u′

denotes the restriction).

0 // (u− λi)F //

u′

��

F //

u

��

F //

u=λi

��

0

0 // (u− λi)F // F // F // 0

Now detT Rπ∗(u⊗L1) = detT Rπ∗(u
′⊗L1) detT Rπ∗(u⊗L1) follows from Axiom II.B. of

Definition-Theorem

2.1.2. By the induction hypothesis and the case deg(P ) = 1, each

of the factors on the right hand side is the identity.

We conclude this section with two consequences of the moving lemma. We use the

notation TR := T ×Spec k Spec R for a k-scheme T and a k-algebra R. We use the

subscript 0 to denote the closed fiber of an object over a DVR.Lemma 2.2.13. Let X be a smooth projective variety over a field k, and let R ⊃ k

be a DVR. Let Z ⊂ XR be a subscheme which is finite over R. Let L ∈ Pic(X). Then

(π1
∗L)|Z ∼= OZ.

Proof. Write L = OX(D) for a Cartier divisor D ⊂ X. By the moving lemma [

31,

Thm.], we can find a divisor D′ on X such that D ∼ D′ and (D′
R)0 ∩ Z0 = ∅. The

set D′
R ∩ Z is closed in Z; since (D′

R ∩ Z)0 = ∅, we have D′
R ∩ Z = ∅. The bundle

OD′R has a (canonical) trivialization on XR−Supp(D′
R), in particular on Z. We have

a global isomorphism O(DR) ∼= O(D′
R) on XR, so the result follows.
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Now we state a K-theoretic consequence of the moving lemma.Lemma 2.2.14. Let X be a smooth projective variety of dimension n ≥ a + b + 1

over a (not necessarily algebraically closed) field. Let C ⊂ X be a closed subset of

dimension ≤ a, and let Y ⊂ X be a subscheme of dimension ≤ b. Then there exist

Ti ∈ Coh(X) and ni ∈ Z such that:
(1) [OY ] =

∑
ni[Ti] in K(X),

(2) dim(Supp(Ti)) ≤ b for all i, and
(3) C ∩ Supp(Ti) = ∅ for all i.

Proof. We use the classical moving lemma (which is valid over any field, see [

31,

Thm.]) and the surjective homomorphism of groups [

11, Ex. 15.1.5]:

Ak(X)→ GrkK(X) := Fk(K(X))/Fk−1(K(X)).

Move [Y ] to a b-cycle Y ′ such that C ∩ Supp(Y ′) = ∅. This gives, in K(X), [OY ] =∑
niTi+

∑
jmjZj where the Ti satisfy the second and third conditions of the lemma,

and dim(Supp(Zj)) ≤ b − 1 for all j. Now move the Zj away from C to obtain∑
jmjZj =

∑
k nkTk where the Tk also satisfy the second and third conditions of

the lemma and are supported in dimension ≤ b − 2. This process terminates with

Ti ∈ Coh(X) with the stated properties.

2.3 The Chow variety and incidence divisor for Pn

In this section we define the Chow variety and the Hilbert-Chow morphism, and

construct the incidence divisor for Pn.Definition-Theorem 2.3.1 (Existence of the Chow variety). Let P be a smooth

projective variety over a field k. The Chow variety Cd,d′ of P is a k-scheme with the

following properties.
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(1) It is projective over k.
(2) It is seminormal.

(3) For every point w ∈ Cd,d′ there exist purely inseparable field extensions κ(w) ⊂ Li

and cycles Zi on PLi
such that:

(a) Zi and Zj are essentially equivalent [

24, I.3.8]: they agree as cycles over the

perfection κ(w)perf of κ(w);(b) the intersection of the fields Li is κ(w), which is the Chow field (field of

definition of the Chow form in any projective embedding of P ; see

2.3.6) of

any of the Zi [

24, I.3.24.1]; and(c) for any cycle Z on PM defined over a subfield k ⊂ M ⊂ κ(w)perf which

agrees with the Zi over κ(w)perf (equivalently, agrees with one Zi), we have

κ(w) ⊂ M (the Chow field is the intersection of all fields of definition of the

cycle).
(4) Points w of Cd,d′ are in bijective correspondence with systems (k ⊂ κ(w), {κ(w) ⊂

Li, Zi}i∈I) up to an obvious equivalence relation.
(5) For any DVR R ⊃ k and any cycle Z on PR of relative dimension d and degree

d′ in the generic fiber, we obtain a morphism g : Spec R → Cd,d′ such that the

generic fiber Zη and the special fiber Zs agree with the systems of cycles of the

previous property at g(η) and g(s).
(6) For any numerical polynomial q of degree d and with leading coefficient d′/(d!),

we obtain a morphism (the Hilbert-Chow morphism)

FC : (H q)snred → Cd,d′

by taking the fundamental cycle of the components of maximal relative dimension

(= d)[

24, I.6.3.1]. A finite number of (H q)snred’s surject onto Cd,d′ .
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(7) Let η ∈ Cd,d′ be a generic point. Then either dim{η} = 0 or there exists a cycle

Zη on Pη defined over κ(η). In particular, if k is perfect then there exists a Zη

for every generic point η of Cd,d′ [

24, I.4.14].
Remark 2.3.2. Properties (1)-(4) and (6) characterize Cd,d′ . Suppose given two so-

lutions C 1 and C 2. Now consider T ⊂ C 1 ×k C 2, the image of FC1 × FC2 :

(H )snred ×k (H )snred → C 1 ×k C 2. Then T → C i is a proper bijection inducing an

isomorphism on all residue fields, hence is an isomorphism by the seminormality of

C i.Remark 2.3.3. Properties (1)-(5) characterize Cd,d′ . This follows from the character-

ization of seminormal schemes (Theorem

3.1.5).
Remark 2.3.4. If k → k′ is a field extension, then the Chow variety of Pk′ over k′

is the seminormalization of the reduction of Cd,d′ ×k k′. If k is perfect, since Cd,d′ is

finite type, Cd,d′ ×k k′ is already reduced and seminormal [

12, 5.9].
Definition 2.3.5. Let P be a smooth projective variety of dimension n over a field

k. Then the incidence locus I ⊂ Cd ×k Cn−d−1 is defined (set-theoretically) as

{(Z,W )|Z ∩W 6= ∅}. This is a closed subscheme.

The main point of this thesis is to construct a Cartier divisor supported on the

incidence locus. Now we explain how one obtains the incidence divisor from the

construction of the Chow variety for Pnk , k an algebraically closed field.Construction 2.3.6. Let G denote the Grassmannian of (n−d−1)-planes in Pn. Let

D ↪→ CDiv(G )×G denote the universal Cartier divisor (consisting of pairs (D,L) such

that L ∈ D). Identify a d-cycle V in Pn with its “Chow point” FV , the codimension

1 set of linear spaces of dimension (n− d− 1) which meet V . (The defining equation

of FV is called the Chow form of V ; see e.g. [

24, I.3.23.4].) The assignment V 7→ FV

is injective [

24, I.3.24.5] and works in families [

24, I.3.23.1.1]. Classically the Chow

variety was defined as the reduced closed subset C ′ ⊂ CDiv(G ) of forms arising as the
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Chow form of some cycle. For us the Chow variety Cd(Pn) is the seminormalization

of C ′.
Proposition 2.3.7. The incidence locus I ↪→ Cd(Pn) × G of Definition

2.3.5 has

the structure of an effective Cartier divisor.

Proof. For this discussion we can use the classical construction (the subscheme C ′ ⊂

CDiv(G )) and seminormalize at the end. Taking the product with G yields a closed

immersion:

C ′ × G
i−→ CDiv(G )× G .

Note that in every component C ⊂ C ′, we can find (n−d−1)-planes missing a general

member of C. Hence the pullback Cartier divisor i∗D is defined. Now i∗D consists

of pairs (V, L) such that L ∈ FV , which means exactly that L∩V 6= ∅. Therefore the

incidence locus I ↪→ Cd(Pn) × G consisting of pairs (V, L) such that L ∩ V 6= ∅, is

the Cartier divisor (i∗D)sn.
Corollary 2.3.8. For any fixed linear subspace L0 ∈ G , the set of d-cycles meeting

L0 has the structure of an effective Cartier divisor in Cd(Pn).
Construction 2.3.9 (Ruled join). [

11, 8.4.5] Let V and W be subvarieties of Pn of

dimensions k and l respectively. We construct a variety J(V,W ), the ruled join of V

and W , of dimension k + l + 1, inside P2n+1.

Define embeddings i1, i2: Pn → P2n+1 as follows:

i1([X0 : X1 : . . . : Xn]) = [X0 : X1 : . . . : Xn : 0 : 0 : . . . : 0]

i2([X0 : X1 : . . . : Xn]) = [0 : 0 : . . . : 0 : X0 : X1 : . . . : Xn]

The join J(V,W ) consists of all lines in P2n+1 connecting a point of i1(V ) to a point

of i2(W ); J(V,W ) is a subvariety of dimension k + l + 1 and degree = (deg V )(deg

W ). In coordinates, J(V,W ) = {[aX0 : aX1 : . . . : aXn : bY0 : . . . : bYn] | X ∈ V ;Y ∈

W ; [a : b] ∈ P1}. Algebraically, if [X0 : . . . : Xn : Y0 : . . . : Yn] are coordinates on
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P2n+1, and {Fi} generate the ideal of V and {Gj} generate the ideal of W , then the

ideal of J(V,W ) is generated by {Fi(X);Gj(Y )}.

Now let Pn ∼= L ⊂ P2n+1 be the subvariety cut out by the equations {Xi = Yi}. We

have an isomorphism of schemes: V ∩W ∼= L ∩ J(V,W ). In particular, V ∩W 6=

∅ ⇐⇒ L ∩ J(V,W ) 6= ∅.

We omit the proof of the following result, which is straightforward. Anyway we only

use it to show the ruled join induces a morphism of Chow varieties, which is already

known over C (see the proof of Theorem

2.3.11 below).Lemma 2.3.10. The ruled join is compatible with specialization. In other words, if

R is a DVR with residue field k0, and V,W ∈ Z∗(PnR) are cycles on PnR with cycle-

theoretic fibers ([

24, I.3.9]) V0,W0 ∈ Z∗(Pnk0), then we have an equality of cycles:

J(V0,W0) = (J(V,W ))0 ∈ Z∗(P
2n+1
k0

).

Theorem 2.3.11. The incidence locus I ↪→ Cd(Pn)× Cn−d−1(Pn) has the structure

of an effective Cartier divisor.

Proof. Consider the map RJ : Cd(Pn)× Cn−d−1(Pn)→ Cn(P2n+1) defined by

(
∑
i

diVi,
∑
j

ejWj) 7→
∑
i,j

diejJ(Vi,Wj).

This is a morphism of algebraic varieties: using seminormality (Corollary

3.1.13), this

follows from the compatibility of the ruled join with specialization (Lemma

2.3.10).

Over C, a direct algebraic proof using Chow forms is given in [

29, Thm. 2.3].

By Corollary

2.3.8 the set of n-cycles in P2n+1 meeting the (2n + 1) − n − 1 = n-

dimensional linear subspace L (defined above) is a Cartier divisor Dinc in Cn(P2n+1).

Since there exist pairs of nonintersecting cycles in every pair of irreducible compo-

nents, Cd(Pn) × Cn−d−1(Pn) 6⊂ (RJ)−1(Dinc). Therefore the pullback Cartier divisor

(RJ)∗(Dinc) is defined. As V ∩W 6= ∅ ⇐⇒ L ∩ J(V,W ) 6= ∅, (RJ)∗(Dinc) consists

exactly of those pairs (V,W ) such that V ∩W 6= ∅.
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2.4 The Hilbert-Chow morphism and the incidence

locus

In this section we define an invertible sheaf (the “incidence bundle”) on a product

of Hilbert schemes, and show the incidence bundle is pulled back from a product of

Chow varieties in the case of Pn.Construction 2.4.1. Let P be a smooth projective variety over any base scheme B

(over which we take all fiber products), and let H1,H2 denote the Hilbert schemes

corresponding to numerical polynomials q1, q2. Over each Hi we have a universal flat

family (a closed subscheme of P ×Hi); denote by Ui its pullback to P ×H1 ×H2.

Then the first four results from Section

2.2 imply Rpr23∗(OU1⊗LOU2) is a perfect

complex on H1 ×H2. The incidence bundle L is defined to be its determinant:

L := detH1×H2Rpr23∗(OU1⊗LOU2).
Remark 2.4.2. We are interested in the case B is the spectrum of a field and deg(q1)+

deg(q2) + 1 = dim(P ), but the definition presented here makes sense with no restric-

tions on the base B or the degrees of the qi.

Given a morphism f : S →H1 ×H2, we now describe the pullback line bundle f ∗L

on S. Consider the cartesian square:

P × S f ′ //

p

��

P ×H1 ×H2

pr23
��

S
f // H1 ×H2

Using the compatibility of detRp∗(−) with base change (this holds for p proper of

finite Tor-dimension [

23, p.46]) and the identification

Lf ′
∗
(OU1⊗LOU2)

∼= Lf ′
∗
(OU1)⊗LLf ′

∗
(OU2)

∼= f ′
∗
(OU1)⊗Lf ′

∗
(OU2),
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we obtain a canonical identification:

f ∗L ∼= detSRp∗(OU1S
⊗LOU2S

).

In particular, if S = s = Spec k and f corresponds to the pair of subschemes Z1, Z2,

then the fiber of L at s is L|s = detk H(OZ1⊗LOZ2).

Now we analyze the relationship between the determinant formula and the Hilbert-

Chow morphism as defined in [

24, I.6.3.1] and [

28, Ch. 5 S. 4] in case P = Pn. We

use the notation from Construction

2.3.6.

Let H denote the Hilbert scheme of Pn corresponding to a numerical polynomial of

degree d and with leading coefficient d′/(d!). Since seminormalization is a functor,

constructing H → CDiv(G ) which factors through C ′ will determine the morphism

FC : H sn
red → C of Definition-Theorem

2.3.1.

The Hilbert-Chow morphism (for Pn) is defined by producing (functorially) for every

S-point of H an S-point of CDiv(G ) which factors through C ′ ↪→ CDiv(G ). Let

U denote the universal hyperplane in Pn × G (and its pullbacks), and pr1, pr2 the

projections from U . Let i : V ↪→ Pn × S define an S-point of H . Consider the

diagram:

V ′ i′ //

��

U

pr1
��

pr2

%%KKKKKKKKKK

V
i // Pn × S G × S

(2.4.1)

where the square on the left is a fiber square. Then Div(pr2 ◦ i′) is an S-point of

CDiv(G ) which factors through C ′ [

28, Ch. 5 S. 4 5.10].

The next result is basically contained in [

9, Thms. 1.2, 1.4].Proposition 2.4.3. With the notation as in Construction

2.4.1, suppose in addition

P = Pn and H2 = G , a Grassmannian. Let F : H → C denote the Hilbert-Chow

morphism (and its pullbacks), and let I ↪→ C × G denote the incidence divisor of
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Proposition

2.3.7. Then there is a canonical isomorphism

L ∼= F ∗O(I )

of invertible sheaves on H × G .

Proof. The basic point is that the universal family of (n − d − 1)-planes is flat over

Pn, so the derived tensor product reduces to a usual tensor product. In the diagram

(

2.4.1) put S = H , so V is the universal flat family. Consider the diagram:

V ′′

r

��

i′′ // U

h
��

f

''PPPPPPPPPPPPP

V ′

s

��

i′ // Pn ×H × G
pr23 //

pr12
��

H × G

V
i // Pn ×H

in which the left squares are fiber squares. Then the procedure described above gives

a Cartier divisor in H × G , namely Div(f ◦ i′′) = DivR(fi′′)∗OV ′′ .

Since h is a closed immersion, by Lemma

2.2.5 we have an identification h∗Lh
∗i′∗OV ′ ∼=

i′∗OV ′⊗Lh∗OU . Note also that OV ′ = s∗OV . By considering the other ways of

traversing the square from V to U , we obtain canonical isomorphisms:

Lh∗i′∗OV ′ ∼= L(pr12 ◦ h)
∗i∗OV ∼= i′′∗L(sr)∗OV = i′′∗(sr)

∗OV = i′′∗OV ′′ .

From this we extract i′∗OV ′⊗Lh∗OU
∼= h∗i

′′
∗OV ′′ .

Therefore Rpr23∗(i
′
∗OV ′⊗Lh∗OU ) ∼= Rpr23∗(h∗i

′′
∗OV ′′) ∼= Rf∗(i

′′
∗OV ′′).

Hence L ∼= detRf∗(i
′′
∗OV ′′) ∼= O(Div(f ◦ i′′)), canonically.

The diagram of divisors on the left is obtained by pulling back along the diagram of

schemes on the right:

Div(f ◦ i′′) //

%%KKKKKKKKKK D H × G //

F

%%KKKKKKKKKK CDiv(G )× G

I

??��������
C × G

77ooooooooooo
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Therefore Div(f ◦ i′′) = F ∗I , and we obtain L ∼= F ∗O(I ) as desired.
Remark 2.4.4. We expect the ruled join to be compatible with the Hilbert-Chow

morphism, hence we expect the natural generalization of Proposition

2.4.3: the pull-

back of the line bundle constructed in Theorem

2.3.11 via the morphism H d(Pn) ×

H n−d−1(Pn)→ Cd(Pn)×Cn−d−1(Pn) is the incidence bundle defined in Construction

2.4.1.



Chapter 3 29

Chapter 3

Seminormal schemes

3.1 A characterization of seminormal schemes

Notation. If R is a ring and p ⊂ R is a prime ideal, let κ(p) denote Rp/pp, the

residue field of p. If f : R → S is a ring homomorphism and q ⊂ S is a prime ideal

with p := f−1q, let fp : κ(p) → κ(q) denote the induced map on residue fields (we

may write f where the prime is clear). If R is a discrete valuation ring, let K denote

its field of fractions and k0 its residue field; if r ∈ R, let r denote the class of r in k0.

We take the following definitions from [

12]: a ring R is a Mori ring if it is reduced

and its integral closure Rν (in its total quotient ring Q) is finite over it; if R is a Mori

ring, Rsn denotes its seminormalization, the largest subring R ⊂ Rsn ⊂ Rν such that

Spec Rsn → Spec R is bijective and all maps on residue fields are isomorphisms. The

seminormalization is described elementwise in [

24, I.7.2.3]. We say R is seminormal

if R = Rsn (so we only define seminormality for Mori rings). For a Mori ring R,

it is a theorem of Hamann [

16] that R is seminormal if and only if for all a ∈ Q,

a2, a3 ∈ R⇒ a ∈ R. Brewer and Nichols [

5] observe that R is seminormal if and only

if for all a ∈ Q, an, an+1, . . . ∈ R for some n > 0 implies a ∈ R.Definition 3.1.1. Let A be a ring, and let S = {fy ∈ κ(y)|y ∈ Spec A} be a

collection of elements, one in each residue field. Then we say S is a pointwise function
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on (Spec) A. We say the pointwise function S varies algebraically along (complete)

DVRs if it has the following property: for every specialization p1 ⊂ p2 in A and

every (complete) discrete valuation ring R covering that specialization via a ring

homomorphism g : A → R, there exists a (necessarily) unique fR ∈ R such that

gp1(fp1) = fR and gp2(fp2) = fR.
Remark 3.1.2. Any specialization is covered by a DVR by [

13, 7.1.4], in fact by a

complete DVR with algebraically closed residue field.

Now we show that a pointwise function which varies algebraically along DVRs pushes

forward (functorially) via a ring homomorphism.Lemma 3.1.3. Let ϕ : A→ B be a ring homomorphism, and let S = {fy ∈ κ(y)|y ∈

Spec A} be a pointwise function which varies algebraically along DVRs. Then B

naturally inherits a pointwise function Sϕ = {fz ∈ κ(z)|z ∈ Spec B} which varies

algebraically along DVRs.

Proof. For p ∈ Spec B, define fp = ϕ(fϕ−1p); this gives the collection Sϕ. Now

suppose given a specialization p1 ⊂ p2 in B and a DVR R covering this specialization

via g : B → R. Consider the diagram (whose vertical arrows are the canonical maps):

κ(ϕ−1p1)
ϕ // κ(p1)

g // K

A
ϕ //

OO

��

B

OO

��

g // R

OO

��
κ(ϕ−1p2)

ϕ // κ(p2)
g // k0

Since taking the preimage is functorial, g ◦ ϕ : A → R covers the specialization

ϕ−1p1 ⊂ ϕ−1p2. By the assumption that S varies algebraically along DVRs, we have

fR ∈ R which agrees with gϕ(fϕ−1p1
) in K and with gϕ(fϕ−1p2

) in k0. Since the map

on residue fields is functorial, and by the definition of the pointwise function Sϕ, the

same fR works for g : B → R. Thus Sϕ varies algebraically along DVRs.
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Remark 3.1.4. It is clear from the proof that the construction is functorial: if A
ϕ−→

B
ψ−→ C are ring homomorphisms, and S is a pointwise function on A, then Sψ◦ϕ =

(Sϕ)ψ as pointwise functions on C.
Theorem 3.1.5. Let A be a seminormal (in particular, Mori) ring which is Noethe-

rian. Let {fy ∈ κ(y)|y ∈ Spec A} be a pointwise function on A which varies alge-

braically along DVRs. Then there exists a unique f ∈ A whose image in κ(y) is fy

for all y ∈ Spec A.
Remark 3.1.6. Once we show existence, uniqueness follows from reducedness.

Our strategy is to first prove the theorem in the case A is an integrally closed Noethe-

rian domain, and use this to prove the theorem in the case A is any integrally closed

Noetherian ring. Next we apply the functoriality just described to the natural inclu-

sion A→ Aν . Finally we show the element f ∈ Aν obtained by applying the theorem

to the collection Sν for Aν actually lies in the seminormalization of A.

Having proved the main theorem, we show it suffices to have the condition only on

complete DVRs, and we prove also the converse.Lemma 3.1.7. Let A be an integrally closed Noetherian domain, and let S be a

pointwise function on A which varies algebraically along DVRs. Then there exists a

unique f ∈ A whose image in κ(y) is fy for all y ∈ Spec A.

Proof. Actually, we will only need to use certain DVRs. Let p ⊂ A be a height 1

prime. The ring Ap is a DVR, and the localization g : A→ Ap covers the specialization

(0) ⊂ p. By the hypothesis on S, there exists fAp ∈ Ap agreeing with fy for y = (0), p.

In the diagram (whose vertical arrows are the canonical maps):

A
g //

��

Ap

��
κ((0))

g(0) // K

all of the arrows are inclusions, and g(0) is the identity on the fraction field of A.

Therefore we know the element f(0) ∈ S is fAp . In particular, we see f(0) ∈ Ap for all
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p of height 1. But for an integrally closed Noetherian domain we have A = ∩p ht 1Ap,

so in fact f(0) ∈ A. The element f(0) is part of the data of S, so it is clearly unique.

To see f(0) has the correct value at every p ∈ Spec A, not necessarily of height 1, we

use the fact that any specialization in A can be covered by a DVR. So for arbitrary

p ∈ Spec A, consider g : A → R covering the specialization (0) ⊂ p. We use the

diagram whose vertical arrows are the canonical maps:

κ((0))
g(0) // K

A

OO

g //

��

R

OO

��
κ(p)

gp // k0

We have fR ∈ R agreeing with f(0) inK. Since we know f(0) ∈ A, we have g(f(0)) = fR.

Since the bottom square is commutative and gp is injective, g(f(0)) = fR = gp(fp)

implies the image of f(0) in κ(p) is fp.
Lemma 3.1.8. Let A be an integrally closed Noetherian ring, and let S be a pointwise

function on A which varies algebraically along DVRs. Then there exists a unique

f ∈ A whose image in κ(y) is fy for all y ∈ Spec A.

Proof. If p1, . . . , pr denote the minimal primes of A, then we have an identification

of rings A ∼= A/p1 × . . . × A/pr, where the A/pi are integrally closed Noetherian

domains. Next we observe that for any DVR R, any map g : A → R must factor

through one of the projections πi : A→ A/pi. For if we had ai ∈ A/pi and aj ∈ A/pj,

i 6= j, with g(ai) 6= 0 and g(aj) 6= 0, we would have g(ai)g(aj) = g(aiaj) = g(0) = 0,

which contradicts the fact that R is a domain. (Geometrically, this just says that

under a morphism of Noetherian topological spaces, the image of an irreducible set

is irreducible.) Finally we observe that any q ∈ Spec A has the form A/p1 × . . . ×

p × . . . × A/pr, where p ∈ Spec (A/pi), so that κ(q) ∼= κ(p). We conclude that a

pointwise function S on A which varies algebraically along DVRs is exactly the same



CHAPTER 3. SEMINORMAL SCHEMES 33

thing as pointwise functions S1 on A/p1, . . . , Sr on A/pr, each varying algebraically

along DVRs. Lemma

3.1.7 implies f = fp1 × . . .× fpr is the unique solution.

Proof of Theorem

3.1.5. Let S be a pointwise function on A = Asn varying alge-

braically along DVRs, and let ν : A → Aν denote the normalization. By Lemma

3.1.3, we obtain Sν varying algebraically along DVRs. Lemma

3.1.8 implies there is

a unique f ∈ Aν agreeing with all fy ∈ κ(y) in the collection Sν . By [

24, I.7.2.3], A

consists of those h ∈ Aν such that for all y ∈ Spec Aν , the image of h in κ(y) lies in

κ(ν−1y). By construction our f has this property, hence f ∈ A.

In fact it suffices to know the pointwise function varies algebraically along complete

DVRs.Theorem 3.1.9. Let A be a seminormal ring which is Noetherian. Let {fy ∈ κ(y)|y ∈

Spec A} be a pointwise function on A which varies algebraically along complete DVRs.

Then there exists a unique f ∈ A whose image in κ(y) is fy for all y ∈ Spec A.

Proof. We will show that a pointwise function S which varies algebraically along

complete DVRs automatically varies algebraically along arbitrary DVRs. So suppose

given a specialization p1 ⊂ p2 in A and a DVR R covering the specialization via

g : A→ R. Since R is a Noetherian local ring, the canonical map R→ R̂ is injective.

Now consider the composite map ĝ : A → R ↪→ R̂. Since ĝ also covers p1 ⊂ p2, by

the hypothesis we have f̂ ∈ R̂ agreeing with S. Consider the diagram:

A

��

g // R //

��

R̂

��
κ(p1) // K // K̂

Since f̂ agrees with fp1 , in fact f̂ ∈ K. Since R = R̂∩K (by comparing the valuations;

more generally see [

27, Ch. 3 S. 9 “III. ⇒ I.”]), we are done.

Additionally we have the converse, so a characterization of seminormal rings.
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Proposition 3.1.10. Let A be ring which is Mori and Noetherian. Suppose that any

pointwise function varying algebraically along (complete) DVRs comes from a unique

f ∈ A. Then A is seminormal.

Proof. Since A and Asn have the same spectra and residue fields, a pointwise function

on A is equivalent to one on Asn. That this bijection also identifies those pointwise

functions varying algebraically along DVRs follows from the universal property of the

seminormalization [

24, I.7.2.3.3]:

Homrings(A,B) = Homrings(A
sn, B)

for any seminormal ringB, for example a DVR. Of course Asn → R and A→ Asn → R

cover the same specialization.

Now any f ∈ Asn determines a pointwise function on A varying algebraically along

DVRs. By the hypothesis we have f ∈ A, whence A = Asn.

The following corollary translates the preceding commutative algebra into a global

result. A locally Noetherian scheme X is Mori if and only if it has an affine cover by

Noetherian Mori rings [

12, Def. 3.1].Corollary 3.1.11. Let X be a seminormal locally Noetherian (in particular, Mori)

scheme, and let L,M ∈ Pic(X). Then an isomorphism L ∼= M is equivalent to an

“identification of fibers varying algebraically along DVRs,” that is:

for any field or DVR R, any Spec R
f−→ X, an identification βf : f ∗L ∼=

f ∗M compatible with restriction to the closed and generic points: if s
i−→

Spec R, η
j−→ Spec R denote the inclusions, then βfi = i∗βf and βfj =

j∗βf .

Proof. Fix an open cover X = ∪iSpec Si with Si a seminormal (Noetherian and Mori)

ring which trivializes both L and M , and fix trivializations ϕi : Li := L|Spec Si
∼=

OSpec Si
, ψi : Mi := M |Spec Si

∼= OSpec Si
. Then defining L ∼= M is equivalent to
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identifying Γ(Spec Si, Li) ∼= Γ(Spec Si,Mi) as Si-modules (for all i), compatibly with

restrictions. Then considering the diagram:

Γ(Li)
∼= //

ϕi

��

Γ(Mi)

ψi

��
Si // Si

and its pullbacks to spectra of fields and DVRs, we see that relative to the fixed ϕi, ψi,

a family βf as in the statement is equivalent to an invertible pointwise function on

each Si varying algebraically along DVRs. By Theorem

3.1.5 this is equivalent to a

family of elements fi ∈ Si× = IsomSi
(Si, Si). The fi thus obtained agree on overlaps

by the uniqueness statement in Theorem

3.1.5. Then using the above diagram again

we see that relative to the fixed trivializations, the family fi is equivalent to a family

of isomorphisms Γ(Li) ∼= Γ(Mi) compatible with restrictions.
Remark 3.1.12. Theorem

3.1.9 implies the preceding result remains true if we replace

everywhere “DVR” with “complete DVR.”

Additionally we have a characterization of morphisms from a seminormal scheme.Corollary 3.1.13. Let X and Y be locally Noetherian and Mori schemes. Sup-

pose X is seminormal. Then to define a morphism X → Y is equivalent to spec-

ifying a compatible system of set maps between R-points, for R any field or DVR,

i.e. {X(R) → Y (R)|R field or DVR}, compatible with base change to the closed and

generic fibers.

Proof. Defining a morphism is local on the target, so we may assume Y is affine. Then

we may cover X by affines and define the morphism on each affine open (agreeing on

overlaps), so we assume X is affine as well. Then a morphism X → Y is the same as

a morphism X → An set-theoretically factoring through Y . Hence we may assume

Y = An. But a morphism X → An is simply a collection of n elements of Γ(X,OX),

and these are characterized pointwise by Theorem

3.1.5.
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Now we state a circumstance under which pointwise lifts of a morphism glue.Proposition 3.1.14. Let T be a seminormal scheme of finite type over a field, and

let f : X → Y be a proper radiciel morphism of locally finite type schemes over the

same field. Let g : T → Y be a morphism, and suppose for all field points of T , the

morphism g lifts to X, i.e. we have a commutative diagram:

t //

��

X

f

��
T

g // Y

(Here t means Spec κ(t).)

Then g lifts to a morphism T → X.

Proof. Let p2 : (X ×Y T )red → T be the natural morphism. Since all points of

T factor through X, the image of f set-theoretically contains the image of g. As a

radiciel morphism is univerally a bijection onto its image, we conclude p2 is a bijection.

We claim p2 induces an isomorphism on all residue fields. Any t ∈ T admits a lift to

X, so maps to X×Y T . By the universal property of the reduction, t (being a reduced

scheme) lifts to (X ×Y T )red. This means κ(t) contains κ(s), where s ∈ (X ×Y T )red

is the unique point lying over t. Whence κ(t) ∼= κ(s).

Finally we observe p2 is proper. Now since T is seminormal we conclude p2 is an

isomorphism. The composition p1 ◦ (p2)
−1 : T → X is the desired lift.

3.2 Proper hypercoverings and Picard schemes

Let X be a proper variety over a field k. Let π : X• → X be a proper hypercovering.

We want to study the map

π∗ : Pic(X)→ Pic(X•).

The goal is to show π∗ : PicX → PicX• is a proper radiciel morphism of schemes when

X is seminormal and k is perfect.
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For details on simplicial schemes and proper hypercoverings, see [

6].Proposition 3.2.1. Suppose π : Y → X is proper surjective with X seminormal of

finite type over a field. Then there is a canonical algebra homomorphism splitting the

injective map

OX → Ker(π∗OY → (π × π)∗OY×XY ).

The splitting is an isomorphism if Y is reduced.

Proof. Let Z be the normalization of the reduction of Y . Then there is a canonical

map

Ker(π∗OY → (π × π)∗OY×XY )→ Ker(π∗OZ → (π × π)∗OZ×XZ).

This map is injective when Y is reduced, so it suffices to show the map of the lemma

is an isomorphism in the case Y is normal.

Now assuming Y normal, we show how an element of the RHS gives rise to a pointwise

function on X. Then we show the function thus obtained varies algebraically along

DVRs. This suffices since both X and Y are locally Noetherian and Mori.

Since Y is normal, we may think of an element f of the RHS as a pointwise function

{fy} varying algebraically along DVRs. For any x ∈ X, choose some y ∈ π−1x ⊂ Y

such that κ(x) ↪→ κ(y) is finite (proper implies finite type). Then since fy ⊗ 1 =

1⊗ fy ∈ κ(y)⊗κ(x) κ(y), we have fy ∈ κ(x). To see this element is independent of the

choice of point in the fiber, note that for any other y′ ∈ π−1x, there exists z ∈ Y ×X Y

such that p1(z) = y and p2(z) = y′. In the diagram of field extensions:

κ(x) //

��

κ(y)

��
κ(y′) // κ(z)

we have fy = fy′ in κ(z), whence they agree in κ(x).

Now we show that {fy} varying algebraically along DVRs (as a function on Y ) implies

the same for X. So let x1  x0 be a specialization in X and Spec R→ X a covering
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DVR. Since π is surjective we can find a specialization y1  y0 in Y covering x1  x0.

There exists a DVR R′ covering y1  y0, a surjective morphism Spec R′ → Spec R,

and a commutative diagram [

32, 3.3.4]:

Spec R′

��

// Y

π

��
Spec R // X

By localizing we obtain a commutative diagram of ring homomorphisms:

A

π#

��

��?
??

??
??

?
// κ(x1)

��

""FFFFFFFF

R

��

//

��

K

��

B

��?
??

??
??

?
// κ(y1)

""EE
EE

EE
EE

R′ // K ′

We have gR′ ∈ R′ agreeing with fy1 and fy0 . Since gR′ agrees with fy1 in K ′ and

fy1 lies in k(x1), we can think of gR′ as an element of K. Now since vR′(gR′) ≥ 0,

vK(gR′) ≥ 0, we conclude gR′ ∈ R. Then by construction of the pointwise function

on X, gR′ agrees with fx1 and fx0 .
Remark 3.2.2. In the proof we may replace Y ×X Y with any Z admitting a proper

surjective morphism to Y ×X Y . Then we may interpret Proposition

3.2.1 as saying

for X seminormal of finite type over a field and X• → X a proper hypercovering,

OX = π∗(OX•). In this equality the units of each side are identified, and π∗ preserves

units, so we deduce O∗X = π∗(O∗X•).Lemma 3.2.3. Let X be a proper variety over a field. Let π : X• → X be a proper

hypercovering with all Xi reduced. If X is seminormal, then π∗ : Pic(X) → Pic(X•)

is injective.
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Proof. We use the Leray spectral sequence:

Hp(X,Rqπ∗O∗X•)⇒ Hp+q(X•,O∗X•).

If V denotes the kernel of d0,1
2 : E0,1

2 → E2,0
2 , we have an exact sequence:

0→ H1(X, π∗O∗X•)→ H1(X•,O∗X•)→ V → 0

Proposition

3.2.1 asserts O∗X = π∗(O∗X•), so we find Pic(X) ↪→ Pic(X•).

(The validity of this proof in this generality is presumably known, see [

1, Lemma 9

(v)].)
Corollary 3.2.4. Suppose π : Y → X is proper surjective with X seminormal of

finite type over a field and Y reduced. Suppose Z → Y ×X Y is proper surjective with

Z reduced, let p1, p2 : Z → Y denote the natural maps, and let π1 = π ◦ p1 = π ◦ p2 :

Z → X. Suppose L ∈ Pic(Y ), φ : p1
∗L ∼−→ p2

∗L satisfies the following property:

For every x ∈ X, there exists an open U ⊂ X containing x and a trivialization

Tx : L|π−1(U)
∼−→ Oπ−1(U) compatible with φ in the sense that the diagram

p1
∗(L|π−1(U))

p1∗T //

φ

��

O(p1)−1(π−1(U))

=

��
p2
∗(L|π−1(U))

p2∗T // O(p2)−1(π−1(U))

commutes.

Let ai : L → pi∗pi
∗L denote the canonical maps. Then M := Ker(π1∗(φ) ◦ π∗(a1) −

π∗(a2) : π∗L → π1∗p2
∗L) is the unique invertible sheaf on X satisfying (π∗M, can) ∼=

(L, φ).

Proof. The hypothesis guarantees that locally on X (!) the following diagram, in
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which the vertical isomorphisms are induced by T , commutes.

π1∗p1
∗L

π1∗φ

&&MMMMMMMMMM

��

π∗L

::ttttttttt
//

��

π1∗p2
∗L

��

π1∗p1
∗O

π1∗(1)

&&MMMMMMMMMM

π∗O

::ttttttttt
// π1∗p2

∗O

That is, locally on X, M ∼= Ker(π∗OY → π1∗OZ). Now apply Proposition

3.2.1.

Uniqueness follows from Lemma

3.2.3.

We endeavor to establish a scheme-theoretic version of Lemma

3.2.3.Definition 3.2.5. Let X• be a simplicial k-scheme. Then the simplicial Picard group

Pic(X•) is the group of invertible OX•-modules; for the definition of a simplicial sheaf

(of sets) see [

6, Def. 6.1]. The Picard functor of X• is the fppf-sheafification of the

functor which assigns to a k-scheme T the Picard group Pic(X•×T ) modulo pullbacks

of invertible sheaves on T .
Lemma 3.2.6. Let k be a perfect field, and let X• be a seminormal and proper

simplicial k-scheme. (This means all Xi are seminormal.) Then the Picard functor

Pic(X•) is representable by a group scheme PicX• which is locally of finite type over

k and separated.

Proof. The proof of representability in [

2, A.2] carries over to our setting. For exam-

ple, we can reduce to the case k is algebraically closed since Xi seminormal implies

Xi ×k k is seminormal by [

12, 5.9]. Let {X0,i} denote the connected components

of X0. If there are x0,1 ∈ X0,1, x0,2 ∈ X0,2 such that there exists no y ∈ X1 with

p1(y) = x0,1 and p2(y) = x0,2, then X• can be written as the direct sum of proper

simplicial subschemes. In this way, and using the properness of the components X0,i,

we reduce to the case Γ(X•,OX•) = k.
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Now we verify PicX• is separated. If S is locally Noetherian and X → S is locally

of finite type, then the diagonal ∆ : X → X ×S X is quasi-compact. A quasi-

compact monomorphism of locally finite type group schemes is automatically a closed

immersion by [

8, Exp. VIB Cor. 1.4.2], hence any locally finite type group scheme is

automatically separated.
Lemma 3.2.7. Let X be a proper variety over a perfect field k, and let π : X• → X

be a seminormal proper hypercovering. Then the morphism π∗ : PicX → PicX• is

affine.

Proof. The composition PicX → PicX• → PicX0
is affine by [

30, Cor. 1.5(b)]. The

scheme PicX• is separated, hence the morphism PicX• → PicX0
is separated. Now by

[

18, II. Ex. 4.8], we conclude PicX → PicX• is affine.
Lemma 3.2.8. Keep the notation and hypotheses as in Lemma

3.2.7. If X is semi-

normal and k is perfect, the morphism π∗ : PicX → PicX• is radiciel, i.e. for any field

K, PicX(K)→ PicX•(K) is injective.

Proof. The product of seminormal schemes (over a perfect field k) is again seminormal

if one factor is locally of finite type over k [

12, 5.9]. In particularXK is seminormal and

of finite type overK. It suffices to show injectivity for algebraically closed fieldsK [

15,

Ch. I 3.5.5], in which case we know PicX•K
exists by Lemma

3.2.6. Injectivity follows

from the equality Pic(XK) = PicXK
(K), the inclusion Pic(X•K) → PicX•K

(K), and

Lemma

3.2.3.
Lemma 3.2.9. Let G1, G2 be group schemes locally of finite type over a field, and let

f : G1 → G2 be a quasi-compact and radiciel morphism. Then f is finite.

Proof. Since f is radiciel, its kernel is discrete. Since f is quasi-compact, by [

8, Exp.

VIB 1.4.1(v)], having discrete kernel is equivalent to being finite.

For convenience we record a combination of the previous results.
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Theorem 3.2.10. Let X be a seminormal proper variety over a perfect field k, and

let π : X• → X be a proper hypercovering. Let T be a seminormal k-scheme of finite

type, and let g : T → PicX• be a morphism. Suppose that for all field points of T , the

morphism g lifts to PicX . Then g lifts to a morphism T → PicX .

Proof. By Proposition

3.1.14 it suffices to show π∗ : PicX → PicX• is proper and

radiciel. Since X is seminormal and k is perfect, Lemma

3.2.8 implies π∗ is radiciel.

Lemma

3.2.7 implies π∗ is quasi-compact. Then Lemma

3.2.9 implies π∗ is finite, in

particular proper.

We conclude this chapter with a general fact which will be used towards the end of

the argument in Chapter

5.Proposition 3.2.11. Let k be a perfect field. For i = 1, 2, let Y i
• be a seminormal

proper hypercovering of a seminormal k-scheme X i. Let L ∈ Pic(Y 1
• × Y 2

• ). Suppose

L descends to M ∈ Pic(Y 1
0 × X2) and N ∈ Pic(X1 × Y 2

0 ). Then M extends to an

element of Pic(Y 1
• ×X2) and N extends to an element of Pic(X1×Y 2

• ). Furthermore,

L and the pullbacks of M and N agree on Y 1
• × Y 2

• .

Proof. Consider the product simplicial object (we omit the arrows in the other direc-

tion):

Y 1
2 ×X2

���� ��

Y 1
2 × Y 2

0

h20oo

���� ��

...

Y 1
1 ×X2

a

��
b

��

Y 1
1 × Y 2

0

h10oo

v110
��
v210

��

Y 1
1 × Y 2

1
oo oo

�� ��
Y 1

0 ×X2

��

Y 1
0 × Y 2

0

h00oo

��

Y 1
0 × Y 2

1
oo oo

��
X1 ×X2 X1 × Y 2

0
oo X1 × Y 2

1
oooo X1 × Y 2

2

oo
oooo

We want to extend M along the leftmost column, i.e. define a∗M∼= b∗M satisfying

the cocycle condition. Lemma

3.2.3 implies h∗10 : Pic(Y 1
1 × X2) ↪→ Pic(Y 1

1 × Y 2
• ).

To show a∗M ∼= b∗M, then, it suffices to show they determine the same element of
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Pic(Y 1
1 × Y 2

• ). This means there is an isomorphism h∗10a
∗M ∼= h∗10b

∗M compatible

with the simplicial structure on Y 1
1 × Y 2

• . The commutativity of the squares in the

product simplicial object gives the isomorphism, and the hypothesis (h∗00M, can) =

L|Y 1
0 ×Y 2

• guarantees the isomorphism is compatible with Y 1
1 × Y 2

• .

Notice also we obtain a unique a∗M ∼= b∗M in this way: the one pulling back via

h10 “correctly,” as dictated by the other way of traversing the square. (Since h10 is

surjective, AutY 1
1 ×X2(b∗M)→ AutY 1

1 ×Y 2
0
(h∗10b

∗M) is injective.)

We may check a∗M ∼= b∗M satisfies the cocycle condition after pulling back by the

surjective morphism h20. By construction of a∗M ∼= b∗M, this follows from the

cocycle condition on v1
10
∗L ∼= v2

10
∗L.



Chapter 4 44

Chapter 4

Zero-cycles and Divisors

4.1 The Hilbert-Chow morphism for zero-cycles

Notation. Let X be a quasi-projective scheme over a field k. Let H m(X) denote

the Hilbert scheme of m points on X, and let Sm(X) denote the mth symmetric

product of X. If X is seminormal (e.g. smooth), C0,m(X) = Sm(X) [

24, I.3.22].

Let H ≤dim(X)−1(X) denote the disjoint union of the (reduced) Hilbert schemes H P (X)

as P ranges over polynomials of degree ≤ dim(X)−1. Let CDiv(X) denote the space

of relative effective Cartier divisors on X [

24, I.1.11, I.1.12]; this is likewise a disjoint

union indexed by discrete invariants. We work one discrete invariant at a time and

suppress it from the notation. If X is projective over k, CDiv(X) ⊂H ≤dim(X)−1(X)

is an open subscheme; if in addition X is smooth over k, CDiv(X) ⊂H ≤dim(X)−1(X)

is universally closed [

24, I.1.13]. We have also Cn−1(X) = CDiv(X)sn by [

24, I.3.4.2]

and [

24, I.3.23.2.2].

Let iZ : Z ↪→ X ×H m(X) the universal closed subscheme with (constant) Hilbert

polynomial m, and let iD : D ↪→ X × CDiv(X) denote the universal Cartier divisor.

By abuse of notation let Z,D also refer to the closed subschemes of X ×H m(X)×

CDiv(X) corresponding to the projection morphisms from H m(X)×CDiv(X); like-

wise the inclusions. Let p = pr2 ◦ iZ : Z → H m(X) denote the universal finite flat
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morphism of degree m (or its product with CDiv(X)), and let pr1 : Z → X denote

the projection.

We start with an algebraic fact which will allow us to “compute” the Hilbert-Chow

morphism at a point.Lemma 4.1.1. Let k be an algebraically closed field, and let A be an Artinian local k-

algebra with maximal ideal m. Let u ∈ A∗, and denote by mu : A→ A multiplication

by u. Then det(mu) = (u mod m)n, where n = dimk A.

Proof. Choose a k-basis for A as follows. Let 1 be a basis for A/m. Given a basis

{1, e2, . . . , el} for A/mq, choose a basis {1, e2, . . . , el, el+1, . . . es} for A/mq+1, in other

words, put the nonzero elements of mq/mq+1 at the end.

Since eventually mN = (0), we obtain a basis {1 = e1, e2, . . . , en} for A and a sequence

of integers 1 = r1 < r2 · · · < rN = n with the following property:

∑
aiei ∈ mq ⇐⇒ ai = 0 for all i ≤ rq.

Write u =
∑
biei. Suppose ej ∈ mq −mq+1. Then u · ej = b0ej +

∑
clel with l ≥ rq+1

for every l appearing in the sum. With respect to the basis {1 = e1, e2, . . . , en}, mu is

represented by a lower triangular matrix M with b0 in every diagonal entry. In fact,

setting r0 = 0, there are diagonal matrices of size (ri − ri−1) × (ri − ri−1) along the

diagonal of M . Therefore det(mu) = (b0)
n = (u mod m)n, as desired.

Lemma 4.1.2. If X → Y is a closed immersion of quasi-projective schemes, then

the morphism Sm(X)→ Sm(Y ) is a closed immersion as well.

Proof. This is a local question. Since X is quasi-projective, every finite set of points

is contained in an affine. Hence we may assume that X and Y are affine. Thus it

suffices to show that

(A⊗ . . .⊗ A)Sm −→ (B ⊗ . . .⊗B)Sm
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is surjective whenever the k-algebra map A → B is surjective. But this is just a

question about k-vector spaces. So suppose that m = n1 +n2 + . . .+nk is a partition

of m, and b1, . . . , bk are elements of B. To the data (ni, bi)i=1...k we will associate an

element b̄ = b̄({ni, bi}) ∈ (B ⊗ . . .⊗B)Sm as follows:

b̄({ni, bi}) :=
∑

φ
bφ(1) ⊗ bφ(2) ⊗ . . .⊗ bφ(m)

where the sum is over all surjective maps φ : {1, . . . ,m} → {1, . . . , k} such that

#{i | φ(i) = j} = nj for all j = 1, . . . , k. (In the extreme case where k = 1, and

m = n1 we have one term. In the extreme case where k = m, and m = 1+ . . .+1, we

have m! terms.) Now it is easy to see that these elements generate (B ⊗ . . .⊗ B)Sm

as a k-vector space. By lifting each bi to an element ai ∈ A we see that b̄({ni, bi}) is

the image of the corresponding element ā({ni, ai}).
Theorem 4.1.3. Let X be a quasi-projective scheme over a field k. There is a

canonical morphism

FCX : H m(X) −→ Sm(X)

with the following properties:

• If X is affine and k is infinite, FCX is described by (the unique) k-algebra

map Γ(Sm(X),O) → Γ(H m(X),O) with the following property: for any f ∈

Γ(X,O),

FC#
X : f⊗m 7→ detm,X(f).

• The morphism FCX is functorial for immersions and compatible with ground

field extensions.

• If k is algebraically closed and Z ⊂ X is a closed subscheme of length m (deter-

mining the point mZ ∈H m(X)(k)), then FCX(mZ) = [Z] :=
∑

p `(OZ,p)[p].
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Proof. We explain the notation in the first property. We denote Om,X := p∗OZ ; this

is a finite locally free sheaf of OH m(X)-algebras of rank m. For any global section

f ∈ Γ(X,OX), we get a global section (pr1)
#(f) of the structure sheaf of Z and hence

a global section of Om,X . We denote

detm,X(f) ∈ Γ(H m(X),OH m(X))

the determinant of multiplication by (pr1)
#(f) on the locally free sheaf Om,X .

Now we simply unpack the construction of the morphism in [

21]. Since X → Spec k

is quasi-projective, it is a flat morphism satisfying Condition 1.1 of [

21, II.1]: for all

s ∈ Spec k, any finite set of points of the fiber Xs is contained in an open affine

U ⊂ X whose image is contained in an open affine of Spec k. The functor of m-fold

sections Fm
X/Spec k is equal to the Hilbert functor H m

X . Then [

21, II.3.2] constructs a

natural transformation of functors:

FCX : H m
X → HomSch/k(−, Sm(X))

which we now describe. Let T be a k-scheme, and suppose iT : ZT ↪→ X × T belongs

to H m
X (T ). Then FCX maps ZT to the following composition.

T
θZ/T−−→ Sm(ZT×T . . .×TZT )

Sm(iT )−−−−→ Sm((X×T )×T . . .×T (X×T ))→ Sm(X) (4.1.1)

Note that the composition of the second and third arrows is Sm(pr1).

To see the transformation FCX has the first asserted property, let X be affine, and

let f ∈ Γ(X,O). Then we have

Sm(pr1)
# : Γ(Sm(X),O)→ Γ(Sm(×mT ZT ),O)

f⊗m 7→ (pr#
1 (f))

⊗m
.

Suppose ZT → T corresponds locally to the finite locally free map of k-algebras

A → B, so that B is rank m as A-module. Then θZ/T corresponds to the ring map
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(B ⊗A . . .⊗A B)Sm → A which sends b⊗m to detA(b : B → B) ∈ A, the determinant

of multiplication by b [

21, I.2.3, I.4.3].

Combining this with the formula for Sm(pr1)
#, we see FC#

X (f⊗m) = detm,X(f), as

claimed.

Uniqueness of FC#
X . To show uniqueness it suffices to show that the elements f⊗m

generate the k-vector space (A⊗ . . .⊗A)Sm . Let W ⊂ (A⊗ . . .⊗A)Sm be the k-sub

vector space spanned by the elements f⊗m. In the proof of Lemma

4.1.2 we showed

that the elements ā({ni, ai}) generate (A⊗ . . .⊗A)Sm . We will show ā({ni, ai}) ∈ W .

Given ai ∈ A, i = 1, . . . ,m, and ti ∈ k, i = 1, . . . ,m note that

(t1a1 + . . .+ tmam)⊗m =
∑

n1+...+nm=m, ni≥0
ā({ni, ai})

∏
tni
i .

Here the sum is over all ways of writing m as a sum of m nonnegative integers ni.

If some of the indices nj = 0, then, by abuse of notation, we denote ā({ni, ai}) the

expression where we drop these entries from the list {ni, ai}. Now, since the mono-

mials
∏
tni
i are linearly independent in the polynomial ring, and since k is infinite,

we see that the all the expressions ā({ni, ai}) can be written in terms of expressions

(t1a1 + . . .+ tmam)⊗m for suitable choices of ti ∈ k. In other words ā({ni, ai}) ∈ W .

Compatibility with immersions and field extensions. Let X ′ → X be an im-

mersion. Let f be a regular function onX, f ′ its restriction toX ′. Functoriality means

that detm,X(f) restricts to detm,X′(f
′) under the morphism H m(X ′) → H m(X).

Consider the following commutative diagram.

Z ′

��

// Z //

��

X

H m(X ′) // H m(X)

The left square is a fiber product, i.e. the universal family over H m(X ′) is obtained

by pulling back the universal family over H m(X). Therefore Om,X′ is the pullback of

Om,X . Via this isomorphism, (pr1 ◦ iZ′)
#(f ′) comes from (pr1 ◦ iZ)#(f). Hence the

pullback of detm,X(f) agrees with detm,X′(f
′).
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The invariance under base field extension is similar: in the above argument use X ′ =

Xk′ := X ×k k′. Note that when k is finite, there is a map which is characterized by

doing the correct thing after base change to any infinite extension of k. Consider a

field extension k ⊂ k′. We have

Γ(Sm(Xk′),O) = Γ(Sm(X),O)⊗k k′

and similarly for H . Let R = Γ(Sm(X),O) and let S = Γ(H m(X),O). By the

above we have k′-algebra maps R ⊗k k′ → S ⊗k k′ functorially for all infinite field

extensions k′/k. Since k → k′ is faithfully flat, there is at most one k-algebra map

R→ S giving rise to these maps, and the construction of FC#
X shows there is at least

one.

Pointwise calculation of fundamental cycle. Let k be algebraically closed and

keep the notation as in the theorem. We claim FCX(mZ) = [Z] =
∑

x∈X(k) `(OZ,x).

We may assume X is affine. Let f ∈ Γ(X,O). The map FCX is characterized by

mapping f⊗m to detm,X(f). Hence it is enough to show that

det(f |Γ(Z,OZ)) =
∏

x∈X(k)
f(x)`(OZ,x).

Since Γ(Z,OZ) = ⊕iRi, with Ri an Artinian local k-algebra, and both sides are

multiplicative on ⊕, it suffices to consider the case Z is supported at a single point.

This is the content of Lemma

4.1.1.

Now we prove an amplification of the first property.Proposition 4.1.4. Let X and Y be affine of finite type over an infinite field k.

Then there is a unique k-algebra map

Γ(Sm(X)× Y,O)→ Γ(H m(X)× Y,O)

with the following property: for any f ∈ Γ(X,O), b ∈ Γ(Y,O),

f⊗m ⊗ b 7→ detm,X(fb).
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Proof. The morphism X × Y → Y satisfies Condition 1.1 of [

21, II.1]. We have a

canonical isomorphism Sm(×mY (X × Y )) ∼= Sm(X)× Y [

21, I.1.2]. The sections θ are

compatible with base change by [

21, I.4.5].

Let T be an affine k-scheme of finite type. The observations in the preceding para-

graph imply we have a commutative diagram whose bottom row is the product of

(

4.1.1) with Y :

T × Y
=

��

θZ×Y/T×Y// Sm(×mT×Y (ZT × Y ))

∼=
��

Sm(iT )// Sm(×mT×Y (X × T × Y ))

∼=
��

// Sm(×mY (X × Y ))

∼=
��

T × Y
θZ/T×1

// Sm(×mT (ZT ))× Y Sm(iT ) // Sm(×mT (X × T ))× Y // Sm(X)× Y

The incidence bundle. Keeping the notation as above, for the remainder of this sec-

tion assume in addition X is smooth and projective over k. By pulling back Construc-

tion

2.4.1 along the morphism H m(X) × CDiv(X) ↪→ H m(X) ×H ≤dim(X)−1(X),

we obtain an invertible sheaf on H m(X)× CDiv(X):

L = det Rpr23∗(iZ∗(OZ)⊗LiD∗(OD)).

We give a convenient description of L which takes into account the vanishing of the

higher direct images.Lemma 4.1.5. With X,L as above, there is a canonical isomorphism:

L = (det pr23∗(ID ⊗ iZ∗(OZ)))−1 ⊗ det pr23∗(iZ∗(OZ)).

Proof. First we claim there is a canonical quasi-isomorphism of perfect complexes:

Rpr23∗(iZ∗(OZ)⊗LiD∗(OD)) ∼= [pr23∗(ID ⊗ iZ∗(OZ))→ pr23∗(iZ∗(OZ))] (4.1.2)

with pr23∗(iZ∗(OZ)) in degree 0.
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To see (

4.1.2), first notice there is a quasi-isomorphism

iZ∗(OZ)⊗LiD∗(OD) ∼= [ID ⊗ iZ∗(OZ)→ iZ∗(OZ)] (4.1.3)

with ID⊗ iZ∗(OZ) in degree −1 and iZ∗(OZ) in degree 0: use the following canonical

resolution of iD∗(OD) by locally free OX×CDiv(X)-modules.

0→ ID → OX×CDiv(X) → i∗(OD)→ 0

Now pullback to X ×H m(X)×CDiv(X) and tensor with iZ∗(OZ) to obtain (

4.1.3).

To see (

4.1.2), use the quasi-isomorphisms in Lemmas

2.2.5 and

2.2.7. Taking the

determinant of (

4.1.2) finishes the proof.

Now we combine the algebra from Theorem

4.1.3 and the preceding lemma into a

description of L on sufficiently small affines.Lemma 4.1.6. With X,L as above, let f : S = Spec A → H m(X) × CDiv(X) be

a morphism, and let ZS, DS denote the corresponding closed subschemes of X × S.

Then, possibly after shrinking S, we have:
(1) There is an isomorphism of A-modules β : Γ(ZS,OZS

) ∼= Γ(ZS, IDS
⊗OZS

).
(2) Given two such isomorphisms βr, βs, write βr = βs ◦ u, where u denotes multi-

plication by u ∈ Γ(ZS,OZS
)∗. Then the isomorphisms f ∗L ∼= A induced by βr, βs

differ by detS(u).

Proof. To see such an isomorphism of A-modules exists, we make the following ob-

servations:

• Such an isomorphism exists when A is a field, as the line bundle ID ⊗ OZ on

the zero-dimensional scheme Z admits a trivialization.

• If (A,m) is a local ring, and Z0, D0 denote the closed fibers, then Γ(Z,OZ)⊗A
A/m ∼= Γ(Z0,OZ0) as A/m-modules. Similarly for ID ⊗OZ .
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• The A-modules Γ(Z,OZ) and Γ(Z, ID ⊗OZ) are coherent.

Then by Nakayama’s lemma, the isomorphism Γ(Z,OZ)⊗AA/m ∼= Γ(Z, ID⊗OZ)⊗A
A/m lifts to an isomorphism Γ(Z,OZ) ∼= Γ(Z, ID ⊗ OZ) on some open U , with

Spec (A/m) ∈ U ⊂ Spec (A). After shrinking, we may assume U is affine.

Now we flesh out the second claim. We think of an isomorphism βr : Γ(ZS,OZS
) ∼=

Γ(ZS, IDS
⊗OZS

) as a choice of generator r ∈ Γ(ZS, IDS
⊗OZS

).

Now we define ψr : f ∗L ∼= A as follows. Let λ ∈ (detA Γ(ZS, IDS
⊗OZS

))−1 and

v ∈ detA Γ(ZS,OZS
). Then we set:

ψr(λ⊗ v) = λ(detSβr(v))

and extend linearly over general tensors.

Given another choice of generator s ∈ Γ(ZS, IDS
⊗ OZS

), there exists a unique

u ∈ Γ(ZS,OZS
)∗ such that we have a commutative diagram of Γ(ZS,OZS

)-module

isomorphisms:

Γ(ZS, IDS
⊗OZS

)

Γ(ZS,OZS
)

βr

55lllllllllllll

·u

))RRRRRRRRRRRRR

Γ(ZS,OZS
)

βs

OO

This shows detS(βr) = detS(u) · detS(βs). Therefore:

ψr(λ⊗ v) = λ(detSβr(v)) = λ(detS(u)detSβs(v)) = detS(u)ψs(λ⊗ v).

Now we return to the problem of defining a descent datum on the incidence bundle

L. The morphism FC : H m(X)→ Sm(X) gives rise to the fiber square:

H m(X)×Sm(X)H
m(X)

p2 //

p1
��

H m(X)

FC
��

H m(X) FC // Sm(X)
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Taking the product with CDiv(X) yields a pullback morphism for i = 1, 2 (set pi :=

pi × Id):

H m(X)×Sm(X)H
m(X)× CDiv(X)

pi

��
H m(X)× CDiv(X)

Additionally we may form the triple fiber product H m(X) ×Sm(X) H m(X) ×Sm(X)

H m(X), which admits three canonical maps q12, q13, q23 to H m(X)×Sm(X) H m(X).

The purpose of this section is to construct the isomorphisms in the following theorem.Theorem 4.1.7. Keep X,L as above and use the notation immediately above. There

is an isomorphism φ : p1
∗L ∼= p2

∗L of invertible sheaves on H m(X)×Sm(X)H
m(X)×

CDiv(X) with the following properties:

• The isomorphism φ satisfies the cocycle condition: q∗12(φ) ◦ q∗23(φ) = q∗13(φ) on

H m(X)×Sm(X) H m(X)×Sm(X) H m(X)× CDiv(X).

• Given any mZ,D := ([Z], [D]) ∈ Sm(X) × CDiv(X), there exists an open U ⊂

Sm(X) containing mZ, and a trivialization TmZ,D
: L|FC−1U

∼= OFC−1U such

that the following diagram commutes:

p1
∗(L|FC−1U)

p1∗T //

φ

��

O(p1)−1(FC−1U)

=

��
p2
∗(L|FC−1U)

p2∗T // O(p2)−1(FC−1U)

Proof. First we reformulate algebraically the problem of defining φ. Then we use the

algebraic characterization of the morphism FCX obtained in the previous section, as

expressed in Lemma

4.1.6.

To construct φ requires, for an affine scheme S and a morphism f : S →H m(X)×Sm(X)

H m(X) × CDiv(X) (for every (f, S) in a sufficiently large set), an isomorphism



CHAPTER 4. ZERO-CYCLES AND DIVISORS 54

φf : p1
∗L|S ∼= p2

∗L|S, compatible with localization. For example, it would suf-

fice to define φf as f ranges over the inclusions of affine opens (forming a cover of

H m(X) ×Sm(X) H m(X) × CDiv(X)), compatibly on overlaps. We will do a little

better than this: we will construct a system of isomorphisms φf for S a sufficiently

small affine scheme, compatible with arbitrary base change among (sufficiently small)

affine schemes.

Suppose such an f is given. For i = 1, 2, set fi = pi ◦ f : S = Spec A → H m(X) ×

CDiv(X), and let ZiS, DS denote the corresponding subschemes of X × S. Lemma

4.1.6 gives us an isomorphism ψir : fi
∗L ∼= A depending on a choice of generator

r ∈ Γ(ZiS, IDS
⊗OZiS

). We claim (ψ2
r)
−1◦ψ1

r is independent of the choice of generator

r. So let s be another generator, say r = su, and denote by detiS(u) the determinant

of multiplication by u : Γ(ZiS,OZiS
)→ Γ(ZiS,OZiS

). Then by Lemma

4.1.6:

(ψ2
r)
−1 ◦ ψ1

r = [det2
S(u)ψ

2
s ]
−1 ◦ det1

S(u)ψ
1
s = [det2

S(u)]
−1

det1
S(u)(ψ

2
s)
−1 ◦ ψ1

s .

The equality det1
S(u) = det2

S(u) follows from Proposition

4.1.4. Therefore φf =

(ψ2
r)
−1 ◦ ψ1

r = (ψ2
s)
−1 ◦ ψ1

s is well-defined.

Compatibility with base change. Now suppose given a morphism g : T → S from

an affine scheme T = Spec B. We aim to show g∗φf = φfg. In fact we’ll show the ψ’s

are compatible with base change; this follows from the observation that a generator

of Γ(ZS, IDS
⊗OZS

) determines a generator of Γ(ZT , IDT
⊗OZT

).

Set MR := Γ(ZR, IDR
⊗ OZR

), FR := Γ(ZR,OZR
). Using base change isomorphisms

and the compatibility among them (θ in Axiom IV. of Definition-Theorem

2.1.2), and

the quasi-isomorphism (

4.1.2), we obtain a commutative diagram:
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g∗(f ∗ detRpr23∗(OZ⊗LOD))
can //

��

(fg)∗ detRpr23∗(OZ⊗LOD)

��

g∗((detSMS)
−1 ⊗ detS FS)

g∗(ψr)
��

ηg // (detT MT )−1 ⊗ detT FT

ψr⊗B

��
A⊗A B can // B

Given an A-module isomorphism βr : Γ(ZS,OZS
) ∼= Γ(ZS, IDS

⊗ OZS
), we obtain

naturally a B-module isomorphism:

Γ(ZT ,OZT
) ∼= Γ(ZS,OZS

)⊗A B
βr⊗B−−−→ Γ(ZS, IDS

⊗OZS
)⊗A B ∼= Γ(ZT , IDT

⊗OZT
).

Thus ψr⊗B is defined. The equality g∗φf = φfg follows.

Cocycle condition. We may check the equality q∗12(φ) ◦ q∗23(φ) = q∗13(φ) on field

points, but it is no more difficult to check this on the φf just defined on certain affine

schemes. We claim the following diagram commutes

f ∗2L
ψ2

!!B
BB

BB
BB

B

A

(ψ2)
−1

==||||||||
A

(ψ3)
−1

!!B
BB

BB
BB

B

f ∗1L

ψ1
==||||||||
ψ1

// A
(ψ3)

−1

// f ∗3L

We suppress the choice of generator since (ψi)
−1 ◦ ψj is independent of that choice.

Since we could have chosen the same generator to define all ψi’s, the commutativity

is clear.

Descent property. This follows from the construction of φ. Namely, given mZ,D,

we find an affine open Spec A ⊂ X with the following properties:

• Supp(Z) ⊂ Spec A (use X projective); and

• ID admits a trivialization on Spec A.
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For fixed Spec A, the first property is an open condition on [Z], so we choose any open

U 3 mZ on which the first property holds. Set U ′ := FC−1U . Choose a generator

r ∈ Γ(ZU ′ , ID ⊗OZU′
). Now we define TmZ,D

to be ψr:

L|U ′ = det Γ(ZU ′ ,OZU′
)⊗ (det Γ(ZU ′ , ID ⊗OZU′

))−1 ψr−→ OU ′ .

We can use this r to define φ, and the equality p∗1T = p∗2T ◦ φ then follows from the

commutativity of the following diagram:

p∗1(L|U ′)

φ

��

p∗1T=ψ1
r

$$IIIIIIIII

ψ1
r

��
OU ′ OU ′

p∗2(L|U ′)

ψ2
r

OO

p∗2T=ψ2
r

::uuuuuuuuu

Now we show effectiveness of the descent datum just defined, i.e. that (L, φ) is induced

by an element of Pic(Sm(X)×CDiv(X)sn). By abuse of notation we do not distinguish

between L, φ and their pullbacks to CDiv(X)sn = Cn−1(X).Theorem 4.1.8. Keeping the notation as in Theorem

4.1.7, suppose in addition k is

algebraically closed. The line bundle L on H m(X)×Cn−1(X) descends to C0,m(X)×

Cn−1(X).

Proof. We form a proper hypercovering X• augmented over the seminormal scheme

C0,m(X) as follows

X0 := H m(X)

X1 := H m(X)×C0,m(X) H m(X)

Xn := H m(X)×C0,m(X) . . .×C0,m(X) H m(X) (n+ 1 factors)

with the obvious maps. The incidence bundle L on X0 × Cn−1(X) has the descent

datum φ on X1×Cn−1(X) satisfying the cocycle condition on X2×Cn−1(X). We think
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of these data as a morphism Cn−1(X) → PicX• . The descent criterion in Corollary

3.2.4 and the descent property in Theorem

4.1.7 say that for every [D] ∈ Cn−1(X),

the morphism lifts to PicC0,m(X). By Theorem

3.2.10, the pointwise lifts glue to a

morphism Cn−1(X) → PicC0,m(X). To see this morphism determines the desired line

bundle, consider the diagram:

0 // Pic(Cn−1) //

=

��

Pic(C0,m × Cn−1) //

��

PicC0,m
(Cn−1)

��

// 0

0 // Pic(Cn−1) // Pic(X• × Cn−1) // PicX•(Cn−1)

We claim the top row is exact, i.e. that the morphism Cn−1(X)→ PicC0,m(X) is induced

by a line bundle on C0,m × Cn−1. Since C0,m(X) is connected and k is algebraically

closed, the morphism π : C0,m(X) → Spec k satisfies π∗(OC0,m(X)) = OSpec k and has

a section. Hence by [

4, 8.1 Prop. 4], the top row is exact.

Since the outer maps are monomorphisms, even though we do not have right exactness

in the bottom row, so is the middle one. Hence our L determines a unique line bundle

on C0,m × Cn−1.

Computation of fibers of L. Keep the notation and hypotheses as in Theorem

4.1.8: let X be smooth and projective over k = k, and L the incidence bundle. Given

Z ⊂ X a zero-dimensional subscheme of length m, and D ⊂ X a Cartier divisor, we

will “compute” the one-dimensional vector space L|mZ,D
, which by (

4.1.2) is equal to:

detH0(X,OZ)⊗ (detH0(X, ID ⊗OZ))
−1
.

The result suggests the intersecting cycles are moving away from each other.Proposition 4.1.9. With X,Z,D,L as above, suppose Z =
∑
miPi, Pi ∈ X(k).

There is a canonical isomorphism

L|mZ,D
∼=

⊗
Pi

(Hom(ID/I2
D, k)|Pi

)
⊗mi =:

⊗
Pi∈Supp(Z∩D)

(ND⊂X |Pi
)⊗mi .
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(If Z ∩ D = ∅, we understand the RHS to mean the trivial one-dimensional vector

space.)

Proof. Since X is projective, we may choose an open affine Spec A ⊂ X containing

the support of Z and on which ID admits a trivialization. The factors of L|mZ,D

consist in:

• H0(X,OZ) = (A/J), an Artinian k-algebra of dimension m as k-vector space;

and

• H0(X, ID ⊗ OZ) = B ⊗A (A/J), with B an ideal of A such that B ∼= A as

A-modules.

First, since A/J is a direct sum of Artinian local k-algebras, and both sides are

multiplicative over sums, we may assume A/J is local with maximal ideal m. Then our

claim is that detk(A/J)⊗ (B/B2 ⊗A A/m)
⊗m⊗ (detk(B ⊗A A/J))−1 has a canonical

generator.

First assume B ⊂ m and choose a generator f for B, i.e. an A-module isomorphism

f : A ∼= B. We claim v ⊗ f⊗m ⊗ ((det f)(v))−1 is a canonical element. Changing

v to w = av does not change the element since ((det f)(av))−1 = a−1((det f)(v))−1.

Suppose a different generator g : A ∼= B were chosen. Then f = ug for a unit u ∈ A.

Then (ug)⊗m = umg⊗m (where u denotes the class of u mod m) and ((detug)(v))−1 =

(det(u))−1((det g)(v))−1. Lemma

4.1.1 implies um = det(u), hence a different choice

of generator for B does not change the element.

If B 6⊂ m, then the term (B/B2 ⊗A A/m)
⊗m

is trivial. But then B has a canonical

generator as A-module, namely the preimage of 1 under A → A/J (equivalently

A→ A/m), hence detk(B ⊗A A/J) ∼= detk(A/J), canonically.
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4.2 Algebra of Hilbert-Chow for codimension 1

subschemes

Let A → B be a finite locally free ring map, and let M• be a bounded complex of

finite locally free B-modules. The goal of this section is to find a formula relating

detAM
• and detA detBM

•, and to show the formula descends to the derived category.Lemma 4.2.1. Let A → B be a finite locally free ring homomorphism such that B

has rank n as A-module. Let M1, . . . ,Mr be locally free B-modules of rank 1. Then

there exists a canonical isomorphism:

(∧nAB)⊗r−1 ⊗A ∧nA(M1 ⊗B · · · ⊗B Mr) = ∧nAM1 ⊗A · · · ⊗A ∧nAMr.

Proof. Localizing on B we may assume the Mi are free. Localizing on A we may

assume B is A-free. Now choose bases Mi = B · ei and B = ⊕jA · fj. Then we have:

∧nAB = A · f1 ∧ · · · ∧ fn,

M1 ⊗B · · · ⊗B Mr = B · e1 ⊗ · · · ⊗ er, and

∧nA(M1 ⊗B · · · ⊗B Mr) = A · f1(e1 ⊗ · · · ⊗ er) ∧ · · · ∧ fn(e1 ⊗ · · · ⊗ er).

Likewise:

Mi = ⊕jA · fjei and ∧nAMi = A · f1ei ∧ · · · ∧ fnei.

We claim the isomorphism (of free A-modules of rank 1)

ϕ : (∧nAB)⊗r−1 ⊗A ∧nA(M1 ⊗B · · · ⊗B Mr)→ ∧nAM1 ⊗A · · · ⊗A ∧nAMr

(f1 ∧ · · · ∧ fn)⊗r−1 ⊗ f1(e1 ⊗ · · · ⊗ er) ∧ · · · ∧ fn(e1 ⊗ · · · ⊗ er) 7→

(f1e1 ∧ · · · ∧ fne1)⊗ · · · ⊗ (f1er ∧ · · · ∧ fner)

is canonical, i.e. independent of the choice of bases. So suppose different bases ei
′ and

fj
′ were chosen. Then for some αi ∈ B, βjb ∈ A, we have ei

′ = αiei and fj
′ =

∑
b βjbfb;

and (f1
′ ∧ · · · ∧ fn′) = det(β)(f1 ∧ · · · ∧ fn). Let Θ =

∏r
i=1 αi ∈ B, and for any s ∈ B,

let detA(s) ∈ A denote the determinant of multiplication by s : B → B. Then:

f1
′(e1

′ ⊗ · · · ⊗ er ′) ∧ · · · ∧ fn′(e1′ ⊗ · · · ⊗ er ′)
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= f1
′(α1e1 ⊗ · · · ⊗ αrer) ∧ · · · ∧ fn′(α1e1 ⊗ · · · ⊗ αrer)

= Θf1
′(e1 ⊗ · · · ⊗ er) ∧ · · · ∧Θfn

′(e1 ⊗ · · · ⊗ er)

= detA(Θ)f1
′(e1 ⊗ · · · ⊗ er) ∧ · · · ∧ fn′(e1 ⊗ · · · ⊗ er)

= detA(Θ)(
∑

b β1bfb)(e1 ⊗ · · · ⊗ er) ∧ · · · ∧ (
∑

b βnbfb)(e1 ⊗ · · · ⊗ er)

= detA(Θ) det(β)f1(e1 ⊗ · · · ⊗ er) ∧ · · · ∧ fn(e1 ⊗ · · · ⊗ er).

Therefore:

(f1
′ ∧ · · · ∧ fn′)

⊗r−1 ⊗ f1
′(e1

′ ⊗ · · · ⊗ er ′) ∧ · · · ∧ fn′(e1′ ⊗ · · · ⊗ er ′)

= det(β)r−1 detA(Θ) det(β)(f1 ∧ · · · ∧ fn)⊗r−1 ⊗ f1(e1 ⊗ · · · ⊗ er) ∧ · · · ∧ fn(e1 ⊗

· · · ⊗ er).

On the other hand:

(f1
′e1

′ ∧ · · · ∧ fn′e1′)⊗ · · · ⊗ (f1
′er

′ ∧ · · · ∧ fn′er ′)

= (α1f1
′e1 ∧ · · · ∧ α1fn

′e1)⊗ · · · ⊗ (αrf1
′er ∧ · · · ∧ αrfn′er)

= detA(α1)(f1
′e1 ∧ · · · ∧ fn′e1)⊗ · · · ⊗ detA(αr)(f1

′er ∧ · · · ∧ fn′er)

=
∏

i detA(αi)(
∑

b β1bfbe1∧· · ·∧
∑

b βnbfbe1)⊗· · ·⊗(
∑

b β1bfber∧· · ·∧
∑

b βnbfber)

= detA(Θ)det(β)r(f1e1 ∧ · · · ∧ fne1)⊗ · · · ⊗ (f1er ∧ · · · ∧ fner).

So if ϕ′ is the map defined by the same formula in terms of the ei
′ and fj

′, ϕ = ϕ′.
Lemma 4.2.2. Let A → B be a finite locally free ring homomorphism such that B

has rank n as A-module. Let M be a locally free B-module of rank k. Then there

exists a canonical isomorphism:

∧nkA M = (∧nAB)⊗k−1 ⊗A ∧nA(∧kBM).

It also holds that:

∧nkA HomA(M,A) = (∧nAB)⊗−k−1 ⊗A ∧nA(∧kBHomB(M,B)).

Proof. After localizing so thatM is B-free and B is A-free, choose basesM = ⊕iB ·mi

and B = ⊕jA · fj. Then we have:

∧nAB = A · f1 ∧ · · · ∧ fn,
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∧kBM = B ·m1 ∧ · · · ∧mk,

∧nA(∧kBM) = A · f1(m1 ∧ · · · ∧mk) ∧ · · · ∧ fn(m1 ∧ · · · ∧mk), and

∧nkA M = A · f1m1 ∧ · · · ∧ fnmk.

We claim the isomorphism

ϕ : ∧nkA M → (∧nAB)⊗k−1 ⊗A ∧nA(∧kBM)

f1m1 ∧ · · · ∧ fnmk 7→ (f1 ∧ · · · ∧ fn)k−1 ⊗ f1(m1 ∧ · · · ∧mk) ∧ · · · ∧ fn(m1 ∧ · · · ∧mk)

is canonical, i.e. independent of the choice of bases. So suppose different bases mi
′

and fj
′ were chosen. Then for some αia ∈ B, βjb ∈ A, we have mi

′ =
∑

a αiama and

fj
′ =

∑
b βjbfb. Then:

f1
′m1

′ ∧ · · · ∧ fn′mk
′

= (f1
′ ∑

a α1ama ∧ · · · ∧ f1
′ ∑

a αkama)∧ · · · ∧ (fn
′ ∑

a α1ama ∧ · · · ∧ fn′
∑

a αkama)

= (det(α)f1
′m1 ∧ · · · ∧ f1

′mk) ∧ · · · ∧ (det(α)fn
′m1 ∧ · · · ∧ fn′mk)

= detA(det(α))(f1
′m1 ∧ · · · ∧ f1

′mk ∧ · · · ∧ fn′m1 ∧ · · · ∧ fn′mk)

= detA(det(α))(
∑

b β1bfbm1∧· · ·∧
∑

b β1bfbmk∧· · ·∧
∑

b βnbfbm1∧· · ·∧
∑

b βnbfbmk)

= detA(det(α))(det(β))kf1m1 ∧ · · · ∧ fnmk.

On the other hand:

(f1
′ ∧ · · · ∧ fn′)

k−1 ⊗ f1
′(m1

′ ∧ · · · ∧mk
′) ∧ · · · ∧ fn′(m1

′ ∧ · · · ∧mk
′)

= (f1
′ ∧ · · · ∧ fn′)

k−1 ⊗ f1
′(
∑

a α1ama ∧ · · · ∧
∑

a αkama) ∧ · · · ∧ fn′(
∑

a α1ama ∧

· · · ∧
∑

a αkama)

= (det(β))k−1(f1 ∧ · · · ∧ fn)k−1 ⊗ det(α)f1
′(m1 ∧ · · · ∧mk) ∧ · · · ∧ det(α)fn

′(m1 ∧

· · · ∧mk)

= detA(det(α))(det(β))k−1(f1 ∧ · · · ∧ fn)k−1 ⊗ f1
′(m1 ∧ · · · ∧mk) ∧ · · · ∧ fn′(m1 ∧

· · · ∧mk)

= detA(det(α))(det(β))k−1(f1 ∧ · · · ∧ fn)k−1 ⊗
∑

b β1bfb(m1 ∧ · · · ∧ mk) ∧ · · · ∧∑
b βnbfb(m1 ∧ · · · ∧mk)
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= detA(det(α))(det(β))k(f1 ∧ · · · ∧ fn)k−1⊗ f1(m1∧ · · ·∧mk)∧ · · ·∧ fn(m1∧ · · ·∧

mk).

So if ϕ′ is the map defined by the same formula in terms of the mi
′ and fj

′, ϕ = ϕ′.

This proves the first statement.

To prove the second statement, let M1 = ∧kBM and M2 = HomB(∧kBM,B) in Lemma

4.2.1. Then M1 ⊗B M2 = B, so:

(∧nAB)⊗2 = ∧nA(∧kBM)⊗A ∧nA(HomB(∧kBM,B)).

Since HomB(·, B) and ∧kB are compatible, we find:

∧nA(∧kBHomB(M,B)) = HomA(∧nA(∧kBM), A)⊗A (∧nAB)⊗2.

By the first statement of Lemma

4.2.2 just proven, we can replace ∧nA(∧kBM) on the

RHS to obtain:

RHS = HomA(∧nkA M ⊗A (∧nAB)⊗1−k, A)⊗A (∧nAB)⊗2

= HomA(∧nkA M,A)⊗A (∧nAB)⊗k+1, since HomA(·, A) and ⊗A are compatible.

Rearranging, we have:

∧nkA (Hom(M,A)) = HomA(∧nkA M,A) = (∧nAB)⊗−k−1 ⊗A ∧nA(∧kBHomB(M,B))

as desired.
Proposition 4.2.3. Let A → B be a finite locally free ring homomorphism such

that B has rank n as A-module. Let M• be a bounded complex of finite locally free

B-modules with rkB(M i) = mi. Then there is a canonical isomorphism

αMA : detAM
• ∼= (detAB)rk(M

•)−1 ⊗A detAdetBM
•

with the following properties.
(1) The α are compatible with base change: if A→ A′ is any ring map, then αA ⊗A

A′ = αA′.(2) The α are compatible with short exact sequences of complexes of locally free

sheaves of finite rank: if 0 → M•
1 → M•

2 → M•
3 → 0 is such, then the dia-
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gram:

detAM1 ⊗ detAM3

��

αM1⊗αM3// (detAB)rk(M1)+rk(M3)−2 ⊗ detA detBM1 ⊗ detA detBM3

��

detAM2
αM2 // (detAB)rk(M2)−1 ⊗ detA detBM2

in which the vertical arrows are induced by the exact sequence, commutes.
(3) The α are compatible with the canonical trivialization of an acyclic complex of

locally free sheaves of finite rank: if H• is such an acyclic complex, then the

diagram:

detAH
•

��

α // (detAB)−1 ⊗ detA detBH
•

��

A
can // (detAB)−1 ⊗ detAB

in which the vertical arrows are induced by the quasi-isomorphism H• → 0•,

commutes.(4) The α are compatible with quasi-isomorphisms of bounded complexes of locally

free sheaves of finite rank: if q : M• → N• is such, then the diagram

detAM
•

detA(q)

��

αM
// (detAB)rk(M)−1 ⊗ detA detBM

•

1⊗detA detB(q)

��

detAN
• αN

// (detAB)rk(N)−1 ⊗ detA detB N
•

commutes.

Proof. By Lemma

4.2.2, (detA(detBM
i))

−1
= (detAB)⊗−2 ⊗A detA((detBM

i)
−1

)

detA(detBM
•) := detA(⊗B,i(detBM

i)
(−1)i

) by definition

= ⊗A,i detA((detBM
i)

(−1)i

)⊗A (detAB)1−
P

i 1 by Lemma

4.2.1

= ⊗A,i(detA detBM
i)

(−1)i

⊗A (detAB)(
P

iodd 2)+1−
P

i 1 by above (second statement

of Lemma

4.2.2)

= ⊗A,i((detAB)⊗1−mi detAM
i)

(−1)i

⊗A (detAB)(
P

iodd 2)+1−
P

i 1 by Lemma

4.2.2
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Recall that by definition detAM
• = ⊗A,i(detAM

i)
(−1)i

. Therefore:

(detAB)rk(M•)−1 ⊗A detA detBM
• = detAM

• ⊗A (detAB)
P

i (−1)i+
P

iodd 2−
P

i 1.

So it suffices to check
∑

i (−1)i +
∑

iodd 2−
∑

i 1 = 0, which holds one i at a time.

Compatibility with base change. Suppose we used the A-basis {bj} for B. Given

A→ A′, the identification ⊗AA′ is the formula with basis {bj ⊗ 1} for B′ := B⊗AA′.

Over A′ we may choose a different basis and the map αA′ is the same.

Compatibility with short exact sequences. By definition [

23, p.31], the isomor-

phism determined by a short exact sequence of complexes is the tensor product of

the isomorphisms in each degree, with sign. Therefore it suffices to show the formula

for α is compatible with short exact sequences of locally free sheaves of finite rank.

Let 0 → M1
ϕ−→ M2

ψ−→ M3 → 0 be such a sequence, and (localizing if necessary) let

{m1,i}i∈I , {ψ(m2,j)}j∈J be B-bases for M1,M3 respectively. Also let {bk}k∈K be an

A-basis for B. Then the isomorphism detBM1⊗ detBM3
∼= detBM2 is described by:∧

i∈I

m1,i ⊗
∧
j∈J

ψ(m2,j) 7→
∧
i∈I

ϕ(m1,i)
∧
j∈J

m2,j

Taking detA of this identification introduces the extra factor of (detAB)−1 in the

upper right corner, and shows the route passing through this corner (with respect to

the chosen bases) results in (
∧
k∈K

bk)
rk(M2)−1

⊗
∧
k∈K

bk(
∧
i∈I

ϕ(m1,i)
∧
j∈J

m2,j).

On the other hand, the isomorphism detAM1 ⊗ detAM3
∼= detAM2 is described by:∧

k∈K,i∈I

bkm1,i ⊗
∧

k∈K,j∈J

bkψ(m2,j) 7→
∧

k∈K,i∈I

bkϕ(m1,i)
∧

k∈K,j∈J

bkm2,j

Applying αM2 , we get the same result as above.

Compatibility with acyclic complexes. We proceed by induction on the length

of the acyclic complex. The length 2 case amounts to showing the α isomorphism

is compatible with isomorphisms of locally free sheaves of finite rank, which is a

special case of compatibility with short exact sequences of such. Let H• be an acyclic

complex of length n+1 supported in the interval [i, i+n]. Following the method and
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notation of [

23, p.34], we use the short exact sequence of complexes 0→ H•
I → H• →

H•
II → 0 with H•

I acyclic of length 2 and H•
II acyclic of length n. Set RHS(M) =

(detAB)rk(M)−1⊗detA detBM . The sequence of acyclic complexes determines a cube:

detAHI ⊗ detAHII

det(0)⊗det(0)

��

((QQQQQQQQQQQQQ
αHI⊗αHII // RHS(HI)⊗RHS(HII)

(1⊗∧A∧B(0))⊗2

��

**UUUUUUUUUUUUUUUU

detAH

det(0)

��

αH
//

��

RHS(H)

1⊗∧A∧B(0)

��

A⊗ A //

((PPPPPPPPPPPPPPPP
// (∧AB)−2 ⊗ (∧AB)2

**TTTTTTTTTTTTTTTT

A // (∧AB)−1 ⊗ ∧AB

The left and right faces commute by the inductive definition of the trivialization

of the determinant of an acyclic complex [

23, p.34]. The back face commutes by

the induction hypothesis. The top face commutes because the α isomorphisms are

compatible with short exact sequences of complexes of finite rank locally frees. The

commutativity of the bottom face is trivial as the unlabeled arrows are the canonical

ones. Therefore the front face commutes as well, which is what we aimed to show.

Compatibility with quasi-isomorphisms. To define the determinant of a quasi-

isomorphism of bounded complexes of locally free sheaves of finite rank, we use the

short exact sequences (again following the notation of [

23, p.29]):

0→M• (100)−−−→ Z•
q → Cok(100)→ 0

0→ N• (010)−−−→ Z•
q → Cok(010)→ 0

Then detA(q) : detAM
• → detAN

• is defined to be the composition:

detAM
• ← detAM

•⊗detACok(100)→ detAZ
•
q ← detAN

•⊗detACok(010)→ detAN
•.
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Now we claim the following diagram commutes:

detAM
•

αM

��

detAM
• ⊗ detA Cok(100)oo

αM⊗αCok(100)

��

// detA Z
•
q

αZq

��
RHS(M•) RHS(M•)⊗RHS(Cok(100))oo // RHS(Z•

q )

The left square commutes since the α isomorphisms are compatible with acyclic com-

plexes. The right square commutes by compatibility with short exact sequences.

Attaching to the rightmost arrow the analogous diagram with N• and (010), we ob-

tain a diagram whose top row is detA(q) : detAM
• → detAN

• and which expresses

the compatibility of the α isomorphisms with quasi-isomorphisms.
Proposition 4.2.4. Keep the notation from Proposition

4.2.3. The α isomorphisms

are compatible with distinguished triangles in Parf0. If in addition A,B are reduced,

then the α isomorphisms are compatible with arbitrary distinguished triangles.

Proof. Consider the commutative diagram resulting from a given triangle E•1 → E•2 →

E•3 →+1:

det(E•1 )⊗ det(E•3 )

��

triangle // det(E•2 )

��

⊗n(detHn(E•1 ))(−1)n

⊗⊗n(detHn(E•3 ))(−1)n // ⊗n(detHn(E•2 ))(−1)n

From the second and fourth properties of α in Proposition

4.2.3, we deduce com-

patibility with arbitrary short exact sequences of perfect complexes. Since the good

truncation of a complex involves short exact sequences of perfect complexes, the α

isomorphisms are compatible with passing to the cohomology sheaves of a complex

(the vertical arrows). Since the α isomorphisms are compatible with acyclic com-

plexes, they are compatible with the bottom arrow. Therefore they are compatible

with the top row, i.e. the original triangle, as well.
Remark 4.2.5. In the next section we will see the role of the α isomorphisms of

Proposition

4.2.3 in defining the descent datum in the H ≤dim(X)−1 → Cdim(X)−1
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direction. The α isomorphisms will also play an important role in the discussion of

1-cycles on a threefold.

4.3 The Hilbert-Chow morphism for codimension

1 subschemes

Notation. Let X be a smooth projective scheme over a field k. We keep the notation

from Section

4.1.

Let iV : V ↪→ X × H P (X) denote the universal closed subscheme with Hilbert

polynomial P , and iZ : Z ↪→ X × H m(X) the universal closed subscheme with

(constant) Hilbert polynomial m. By abuse of notation let V, Z also refer to the closed

subschemes of X ×H m(X) ×H P (X) corresponding to the projection morphisms

from H m(X) ×H P (X); likewise the inclusions. Let p = pr ◦ iZ : Z → H m(X)

denote the universal finite flat morphism of degree m (or its product with H P (X)

or H P1(X)×CDiv(X) H P2(X)).

Then by Construction

2.4.1 there is a well-defined invertible sheaf on H m(X) ×

H P (X):

L = det Rpr23∗(iZ∗(OZ)⊗LiV ∗(OV )).

There is a morphism FC : H (X)→ CDiv(X) which maps a proper closed subscheme

to its divisorial part. The fundamental cycle of a subscheme supported in codimension

1 is its divisorial part; a subscheme supported in codimension ≥ 2 maps to the trivial

Cartier divisor [

10, 3. 2]. The morphism FC gives rise to the fiber square:

H (X)×CDiv(X)H (X)
p2 //

p1
��

H (X)

FC
��

H (X) FC // CDiv(X)
Remark 4.3.1. We really have a fiber square for every pair of Hilbert polynomials

(P1, P2), and the fiber product is nonempty if and only if H P1(X) and H P2(X) map
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to the same component of CDiv(X); this means the degree dim(X) − 1 terms of P1

and P2 have the same coefficient. So throughout we will think of a pair of Hilbert

schemes mapping to the same space of Cartier divisors.

Taking the product with H m(X) yields pullback morphisms (let pi = Id× pi):

H m(X)×H P1(X)×CDiv(X)H
P2(X)

p2 //

p1
��

H m(X)×H P2(X)

H m(X)×H P1(X)

Then for i = 1, 2 we can define Li on H m(X)×H Pi(X) by replacing V in the above

formula with Vi. Additionally we may form the triple fiber product H P1(X)×CDiv(X)

H P2(X) ×CDiv(X) H P3(X), which admits canonical maps q12, q13, q23 to the appro-

priate H Pi(X) ×CDiv(X) H Pj(X). The purpose of this section is to construct the

isomorphisms in the following theorem.Theorem 4.3.2. Use the notation from above. There exists an isomorphism φ :

p1
∗L ∼= p2

∗L of invertible sheaves on H m(X) × H P1(X) ×CDiv(X) H P2(X). The

isomorphism φ satisfies the cocycle condition: q∗12(φ) ◦ q∗23(φ) = q∗13(φ) on H m(X)×

H P1(X)×CDiv(X) H P2(X)×CDiv(X) H P3(X).

Proof. First we interpret FC(V1) = FC(V2) as an isomorphism of line bundles. Then

we manipulate the formula for L so this isomorphism determines φ as in the theorem.

Interpretation of FC(V1) = FC(V2). We follow [

10, p.69], whose Inv is our det.

For i = 1, 2, let Vi denote the closed subscheme of X ×H P1(X) ×CDiv(X) H P2(X)

corresponding to the projection morphism pi : H P1(X)×CDiv(X)H
P2(X)→H Pi(X).

Each OVi
is a torsion sheaf of finite Tor-dimension on X×H P1(X)×CDiv(X) H

P2(X)

since X is smooth. Therefore OVi
defines a canonical global section of its determinant:

si : OX×H ×CDivH → det(OVi
).
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Now FC(V1) = FC(V2) means V1 and V2 determine the same Cartier divisor on

X ×H P1(X)×CDiv(X) H P2(X): in addition to the fact that det(OV1)
∼= det(OV2) as

abstract invertible sheaves, there is a unique isomorphism ϕ12 making the diagram

commute:

OX×H×CDH

=

��

s1 // det(OV1)

ϕ12

��
OX×H×CDH

s2 // det(OV2)

By uniqueness, we get ϕ13 = ϕ23 ◦ ϕ12.

To define φ, we will construct, for every affine scheme S and every morphism f :

S → H m(X) ×H P1(X) ×CDiv(X) H P2(X), an isomorphism φf : p1
∗L|S ∼= p2

∗L|S,

compatible with arbitrary base change (among affine schemes).

So supposing such an f is given, set fi = pi ◦ f : S = Spec A→H m(X)×H Pi(X),

and let ZS, ViS denote the corresponding subschemes of X×S. Set Γ(ZS,OZS
) = AZ .

First we define

ϑ1 : f ∗p1
∗det Rpr23∗(iZ∗(OZ)⊗LiV ∗(OV )) ∼= (∧AAZ)−1 ⊗ ∧A ∧AZ

LiZS

∗iV1S ∗(OV1S
)

to be the following composition:

f ∗p1
∗ detRpr23∗(iZ∗(OZ)⊗LiV ∗(OV ))

can��

(∧AAZ)−1 ⊗ ∧A ∧AZ
LiZS

∗iV1S ∗(OV1S
)

f1
∗ detRpr23∗(iZ∗(OZ)⊗LiV ∗(OV ))

ηf1��

det pS∗(LiZS

∗(iV1S ∗(OV1S
)))

αS

OO

detLf1
∗Rpr23∗(iZ∗(OZ)⊗LiV ∗(OV ))

base change��

detRpS∗(LiZS

∗(iV1S ∗(OV1S
)))

2.2.7
OO

detRprS∗Lf1
′∗(iZ∗(OZ)⊗LiV ∗(OV ))

Z,V flat // detRprS∗(iZS ∗(OZS
)⊗LiV1S ∗(OV1S

))

2.2.5
OO

Now we define φf := (ϑ2)
−1 ◦ (1⊗ ∧A(ϕ12|ZS

)) ◦ ϑ1.

Compatibility with base change and cocycle condition. Suppose also given a

morphism g : T = Spec B → S = Spec A. That g∗φf = φfg follows from the commu-

tativity of a gigantic diagram we suppress. The basic properties needed are the follow-

ing: the isomorphisms used to define the ϑi are compatible with base change; the ϕij,
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being canonical, are compatible with base change; and the base change isomorphisms

are compatible with compositions of morphisms (Axiom IV. of Definition-Theorem

2.1.2).

The cocycle condition follows easily from the equalities ϕ13 = ϕ23 ◦ϕ12 and q∗ij(φf ) =

(ϑj)
−1 ◦ (1⊗ ∧A(ϕij|ZS

)) ◦ ϑi.
Remark 4.3.3. Previously we defined L directly on H m(X) × CDiv(X), so there is

no question about the effectiveness of the descent datum we have just constructed.

Now we reformulate the results of this chapter in a manner suggestive of the contents

of the next chapter. Omitting the X from the notation, we set:

C := C0,m × Cdim(X)−1;

Vi := H m ×C0,m . . .×C0,m H m (i+ 1 factors);

Wi := ((H ≤dim(X)−1)
sn ×Cdim(X)−1

. . .×Cdim(X)−1
(H ≤dim(X)−1)

sn
)
sn

(i+ 1 factors);

and

Yi := Vi ×Wi for i ≥ 0.

The Hilbert-Chow morphism Y0 → C gives rise to a proper hypercovering Y• aug-

mented over C, with ith term Yi. Since seminormalization is a functor, the morphisms

in Y• are simply the seminormalizations of the canonical morphisms. We have the

incidence bundle L ∈ Pic(Y0). In this chapter we have shown:
(1) L extends to a line bundle on Y•, and

(2) L descends to C via the morphism Y• → C.
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Chapter 5

Pairs of 1-cycles in a threefold

5.1 One variable descent isomorphism

Notation and conventions. Let P be a smooth projective threefold over a perfect

field k. For a k-scheme T , set PT := P ×Spec k T , and let π : PT → T denote the

projection. As usual, if T = Spec R, we will write PR for PT . For F ,G ∈ Parf(PT ),

put:

fT (F ,G) := detTRπ∗(F⊗L
OPT
G).

Since π is a proper flat morphism, this is well-defined.

If F ∈ Coh(PT ) is T -flat, then [F ], the fundamental cycle of F , is a well-defined

family of cycles on P over T [

24, I.3.15].

Now assume in addition T is the spectrum of a DVR R with maximal ideal m. We will

use k0 := R/m, K := FracR, and P0 := Pk0 ; for M ∈ R−mod, we set M0 := M⊗R k0

and MK := M ⊗R K. If, for the T -flat F ∈ Coh(PT ), we write [F ] =
∑

i ni[Ci], then

the Ci are R-flat subvarieties (flatness by [

18, III.9.7]) of maximal relative dimension

(equal to the relative dimension of Supp(F)), and we may define
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fR([F ],G) := ⊗i(detRRπ∗(OCi
⊗LG))⊗ni

.

If the sheaf F is not flat, we have a canonical exact sequence 0 → Tor(F) → F →

Ffl → 0, where Tor(F) denotes the torsion subsheaf of F . In this case we define

[F ] := [Ffl], the cycle of the flat limit of F ⊗R K.

For F ∈ Parf(PT ), we set Supp(F) := ∪qSupp(Hq(F)). We set [F ] :=
∑

(−1)q[Hq(F)],

and therefore fR([F ],G) = ⊗q(fR([Hq(F)],G))(−1)q

.

For r ≥ 0, we define Cohd≤r(PR) to be the subcategory of coherent sheaves F such

that dim(Supp(F)) ≤ r (we mean relative dimension as Definition

2.2.8). Let

Dd≤r(PR) ⊂ Parf(PR) denote the subcategory of perfect complexes F satisfying

Supp(F) has relative dimension ≤ r, i.e. Hq(F) ∈ Cohd≤r(PR) for all q. For a

DVR R, let Dd≤0;1(PR) ⊂ Dd≤1(PR) denote the subcategory of complexes such that

• dim(Supp(F ⊗R K)) = 0, and

• dim(Supp(Hq(F)⊗ k0)) ≤ 1 for all q.

Remark

2.2.9 implies that if F ∈ Dd≤r(PT ), then for any base change T ′ → T , the

derived pullback F⊗L
TT

′ lies in Dd≤r(PT ′).Situation 5.1.1. The following data are fixed throughout this section.

As above P is a smooth projective threefold over the (fixed) perfect field k.

The complex G will be assumed to satisfy/come equipped with:

• G ∈ Parf(PT ) for every base T (so “the” complex G is a really a compatible

system of complexes; in the application there will be a universal G);

• rk(G) = 0; and

• there are given isomorphisms γT : detOPT
(G) ∼= OPT

, for every T which is the

spectrum of a DVR or a field, compatible with quasi-isomorphisms (as we think

of G as an object in the derived category) and base change (among DVRs and

fields).
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On the variable objects in this section, we impose the following hypotheses.Hypotheses 5.1.2. All DVRs and fields contain k.

If R is a DVR, we assume that in the diagram:

R // k0

k

OO

the map R → k0 has a k-linear section. This holds, for example, if k is perfect and

R is complete [

25, 28.J Thm. 60; Cor. 2].

We assume the complex F belongs to Dd≤1(PR).

Goal. We denote fT (F) := fT (F ,G). The purpose of this section is to construct

a coherent system of isomorphisms ϕFT : fT (F) → fT ([F ]), for T the spectrum of

a DVR or field. To define the isomorphisms ϕF will involve some choices; that the

resulting map is independent of these choices is the main content of this section.

Unless otherwise stated, the system of isomorphisms constructed depends on γ; in

the application there will be a natural candidate for γ.

The key property of these isomorphisms is captured in the following definition.Definition 5.1.3. Let D′ ⊂ Dd≤1(PR) be a subcategory. We say a collection of

isomorphisms ϕFR : f(F)→ f([F ]), one for each F ∈ D′, is compatible with triangles

in D′ if whenever F1 → F2 → F3 →+1 is a triangle in Parf(PR) such that all Fi ∈ D′,

the diagram:

fR(F1)⊗ fR(F3) //

ϕ
F1
R ⊗ϕF3

R
��

fR(F2)

ϕ
F2
R

��
fR([F1])⊗ fR([F3])

+ // fR([F2])

in which the triangle induces the top row, and addition of cycles induces the bottom,

is commutative. Note that when [F ] = ∅, fR([F ]) = fR(0) = R, canonically.
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This is equivalent to saying the trivialization f(F1)⊗(f(F2))
−1⊗f(F3)

ϕF1⊗(ϕF2 )
−1⊗ϕF3

−−−−−−−−−−−→

f([F1]) ⊗ (f([F2]))
−1 ⊗ f([F3])

can−−→ O is equal to the trivialization induced by the

triangle.
Remark 5.1.4. When X is reduced, the isomorphism induced by a distinguished tri-

angle is defined by replacing the distinguished triangle with a true triangle [

23, Prop.

7]. If the Fi comprising the triangle belong to Parf0(X), we can equally use the

acyclicity of the long exact cohomology sequence, thought of as a complex [

23, Cor.

2].
Remark 5.1.5. The fact that [−] is additive on triangles follows from two observations:

localization is exact, and length is additive.
Definition 5.1.6. Let T = Spec R for R a DVR or a field, and let F be a coherent

sheaf on PR such that Supp(F) has relative dimension ≤ 1. Then F has a filtration

0 ⊂ F1 ⊂ . . . ⊂ Fn−1 ⊂ Fn = F such that each Fi/Fi−1
∼= OCi

(ni) for some

subvariety Ci ⊂ PR, some ni ∈ Z [

18, I.7.4]. We will call such a filtration a cycle

filtration of F . A cycle filtration of a perfect complex F means a finite collection

of triangles each of whose “terminal” pieces is isomorphic to some OC(n) as above;

equivalently, the collection expresses F =
∑

iOCi
(ni) in K0(PR). One can obtain

a cycle filtration of a complex by taking a cycle filtration of each of its cohomology

sheaves.

The condition in Hypotheses

5.1.2 on the dimension of the support of F implies every

Ci appearing in a cycle filtration has one of the following forms:

• (V) subvariety of dimension ≤ 1 in the closed fiber,

• (Z) flat family of zero-cycles over R, or

• (C) flat family of curves over R.
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Construction 5.1.7. A cycle filtration of F ∈ Parf(PR) induces a “filtration” of

Rπ∗(F⊗LG) whose graded pieces are Rπ∗((Fi/Fi−1)⊗LG), and therefore an isomor-

phism fR(F)→ ⊗ifR(Fi/Fi−1), as follows:

The filtration can be thought of as a collection of triangles Fi−1 → Fi → Fi/Fi−1 →+1,

and the operations −⊗LG and Rπ∗(−) preserve triangles. Then for every i we obtain

an isomorphism fR(Fi)
∼−→ fR(Fi−1) ⊗ fR(Fi/Fi−1), and therefore an identification

fR(F)
∼−→ ⊗ifR(Fi/Fi−1) as asserted.

Now we prove a lemma which reduces “compatibility with triangles” to “additivity

on short exact sequences of coherent sheaves.”Lemma 5.1.8. With notation as above, let C ⊂ Coh(PR) ∩ Dd≤1(PR) be a subcat-

egory with kernels and cokernels, and let D(C) ⊂ Dd≤1(PR) denote the subcategory

of complexes such that Hq(F) ∈ C for all q. Suppose that we have an additive

system of isomorphisms {ϕF}F∈C, i.e. for every F ∈ C, we have an isomorphism

ϕF : f(F)→ f([F ]), and for every short exact sequence 0→ F1 → F2 → F3 → 0 in

C, the following diagram commutes:

f(F1)⊗ f(F3) //

ϕF1⊗ϕF3

��

f(F2)

ϕF2

��
f([F1])⊗ f([F3])

+ // f([F2])

Then these data determine a unique collection of isomorphisms {ϕF}F∈D(C) with the

following properties:

• the ϕF agree on C, and

• the ϕF are compatible with triangles in D(C).

In fact the ϕF are induced by the canonical filtration of F .

Proof. Uniqueness is clear, since for any F ∈ D(C), we can find a finite collection of

triangles expressing F =
∑

(−1)qHq(F) in K-theory. Then the ϕH
q(F) determine ϕF

by compatibility with triangles.
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To show existence, we define ϕF : f(F) ∼= ⊗q(f(Hq(F)))(−1)q ∼= ⊗q(f([Hq(F)]))(−1)q

=:

f([F ]) via first the canonical filtration, then the {ϕF}F∈C . We verify this is compat-

ible with triangles by induction on the length of the amplitude interval of F3.

Suppose the amplitude interval of F3 is [a, b]. Then using the canonical truncation

triangle τ≤b−1F3 → F3 → Hb(F3)[−b] and compatibility with triangles of triangles,

we reduce to the case where the amplitude interval has length 0, i.e F3 ∈ C is a sheaf.

This completes the induction step.

So we must prove compatibility for triangles of the shape F1 → F2 → A[a]→+1 with

A ∈ C. Using the canonical truncations we reduce to the case where F1 and F2 are

0 except possibly in degrees a and a+ 1. Then we use the diagram

τ≤aF1
//

��

τ≤aF2
//

��

I[a]

��
F1

//

��

F2
//

��

A[a]

��
τ>aF1

// τ>aF2
// A/I[a]

Here I ⊂ A is the image of Fa2 . The first and third rows, and the third column,

consist of objects of C. The first and second columns are the canonical truncations.

Hence the ϕF are compatible with the second row as well.

Only the subvarieties of type (C) contribute to [F ]; first we discuss the trivializations

of f(Fi/Fi−1) for the Ci of types (V) and (Z). In fact these trivializations will be

needed to construct f(Fi/Fi−1)
∼−→ f(OCi

) for the Ci of type (C).

Unless otherwise stated, the symbols R,F ,G, γ are as in Situation

5.1.1 and

Hypotheses

5.1.2.

Let R be a DVR and let π ∈ R be a uniformizer. By Dvert(PR) ⊂ Dd≤1(PR) we

denote the subcategory of perfect complexes F such that Supp(F) ⊂ P0 is a subset



CHAPTER 5. PAIRS OF 1-CYCLES IN A THREEFOLD 77

of dimension ≤ 1 in the closed fiber. Then F ∈ Dvert(PR) implies all Hq(F) are

annihilated by some πi. Let Ai ⊂ Coh(PR) denote the subcategory of coherent

sheaves F with dim(Supp(F)) ≤ 1 and πiF = 0. Let Dvert,i(PR) ⊂ Dvert(PR) denote

the subcategory of complexes such that Hq(F) ∈ Ai for all q.Proposition 5.1.9. Let R be a DVR and let π ∈ R be a uniformizer. Then there is

a collection of trivializations {ϕF : fR(F) → R}F∈Dvert(PR) compatible with triangles

in Dvert(PR).

The ϕF are characterized by the properties:

• they are compatible with triangles in Dvert(PR), and

• they extend the normalization trivialization ν : fK(F ⊗R K) = fK(0) ∼= K over

Spec R.

In fact the second property alone characterizes the ϕF .

The construction of the ϕF , for F ∈ ∪iAi ⊂ Coh(PR), will proceed in three steps.

First we will construct the trivialization in the case πF = 0, and show compatibility

with short exact sequences in A1. Then we will show that ϕF for all F ∈ An−1

(compatible with short exact sequences in An−1) induces ϕF for all F ∈ An. Finally we

will show that compatibility with short exact sequences in An−1 implies compatibility

with short exact sequences in An.Lemma 5.1.10. Let R be a DVR and let π ∈ R be a uniformizer. Then there is a

collection of trivializations {ϕF : fR(F) → R}F∈Dvert,1(PR) compatible with triangles

in Dvert,1(PR).

The ϕF extend the normalization trivialization ν : fK(F ⊗R K) = fK(0) ∼= K over

Spec R.

Proof. Since A1 has kernels and cokernels, by Lemma

5.1.8 we reduce to the case

F ∈ Coh(PR) and πF = 0, i.e. F ∈ A1.
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Construction. We may regard F as a coherent sheaf on P0. Since P0 is a non-

singular scheme, by [

11, B.8.3], F has a finite locally free OP0 resolution E•. Then

the total complex of the double complex [E• ⊗k0 m→ E• ⊗k0 R] is a locally free OPR

resolution of F . (Here we use the assumption that R → k0 has a k-linear section.)

Since the total complex is the cone of the morphism E• ⊗ m → E• ⊗ R, there is a

distinguished triangle in Parf(PR):

E• ⊗m→ E• ⊗R→ F .

Applying Construction

5.1.7 to this triangle induces an isomorphism:

f(F)→ (f(E• ⊗m))−1 ⊗ f(E• ⊗R).

To obtain the isomorphism f(F)→ R, we seek an isomorphism f(E•⊗m) ∼= f(E•⊗R)

compatible with quasi-isomorphisms E• → E ′•.

Now m ∼= R as R-modules, and an isomorphism corresponds to a choice of uniformiz-

ing parameter. Given two isomorphisms g1, g2 : m → R, there is a unique element

a ∈ R× making the following diagram of complexes of OPR
-modules commute:

E• ⊗R

a

��

E• ⊗m

g1
99rrrrrrrrrr

g2

%%LLLLLLLLLL

E• ⊗R
Therefore we have:

f(E• ⊗R)

f(a)

��

f(E• ⊗m)

f(g1)
77ooooooooooo

f(g2)

''OOOOOOOOOOO

f(E• ⊗R)

The isomorphism f(a) is multiplication by a to the exponent∑
i

(−1)iRiπ∗((E• ⊗R)⊗LG) =
∑
i

(−1)iH i((E• ⊗R)⊗LG) = χ((E• ⊗R)⊗LG).
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The last quantity is zero by Lemma

2.2.11, so f(g1) = f(g2). Since a quasi-isomorphism

q : E• → E ′• is compatible with multiplication by scalars, the identification is com-

patible with quasi-isomorphisms in the sense that the following diagram commutes:

f(E• ⊗m)

f(q)

��

f(g1) // f(E• ⊗R)

f(q)
��

f(E ′• ⊗m)
f(g1) // f(E ′• ⊗R)

Compatibility. For any short exact sequence 0 → F1 → F2 → F3 → 0 of coherent

sheaves on P0 satisfying the hypotheses of Lemma

5.1.10, we claim the following

diagram commutes:

f(F1)⊗ f(F3)

ϕF1⊗ϕF3

��

// f(F2)

ϕF2

��
R⊗R mult // R

To show this, it suffices to show commutativity at the generic point:

f(F1)K ⊗ f(F3)K

ϕ
F1
K ⊗ϕF3

K
��

// f(F2)K

ϕ
F2
K

��
K ⊗K mult // K

Since the base change isomorphisms η are compatible with triangles, we have a com-

mutative diagram whose top row is ϕF ⊗K (for F = Fi, i = 1, 2, 3):

f(F)K //

η

��

f−1(E• ⊗k0 m)K ⊗ f(E• ⊗k0 R)K

η⊗η
��

f(choice π),mult// R⊗R K
η

��
f(0) // f−1(E• ⊗k0 m⊗R K)⊗ f(E• ⊗k0 R⊗R K)

ψ // K

Here ψ results from the canonical identification K ∼= m ⊗R K ∼= R ⊗R K. To show

the right square commutes, we must show ψ is equal to the isomorphism resulting

from the (non-canonical) identification m⊗R K
∼−→ R⊗R K induced by the choice of

π in the top row. On E• ⊗k0 K these differ by an element of K (namely, the choice
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of generator), which does not influence the resulting map on f(E• ⊗k0 K) by Lemma

2.2.11.

Since ψ is induced by the canonical identificationsK ∼= m⊗RK ∼= R⊗RK, the triangle

giving rise to the bottom row is E•⊗K 1−→ E•⊗K → 0. By Axiom II.A. of Definition-

Theorem

2.1.2, the bottom row is the normalization isomorphism ν : f(0) ∼= K from

Axiom I. of Definition-Theorem

2.1.2. Therefore η ◦ (ϕF ⊗R K) = ν ◦ η. Since the

ν’s are additive on short exact sequences, the desired compatibility follows and the

lemma is proved.

Now we show that a compatible system of ϕF for all F ∈ An−1 induces ϕF for all

F ∈ An.Lemma 5.1.11. Let Ai be as above. Let Tn−1 = {ϕA : fR(A) → R}A∈An−1 be

a collection of trivializations compatible with short exact sequences in An−1. Then

Tn−1 determines a unique collection Tn = {ϕA : fR(A) → R}A∈An of trivializations

compatible with short exact sequences in An and agreeing with Tn−1 on An−1.

Proof. Let F ∈ An \ An−1. For r ∈ R, let AnnF(r) denote the subsheaf of F annihi-

lated by r. In the exact sequence 0→ AnnF(πn−1)→ F → F → 0, we have πF = 0,

so this sequence determines ϕF by forcing the following diagram to commute.

f(AnnF(πn−1))⊗ f(F)

ϕ⊗ϕ
��

// f(F)

ϕF

��
R⊗R R mult // R

Uniqueness. There may be many short exact sequences 0→ A→ F → B → 0 with

πn−1A = πn−1B = 0, but the ϕF thus determined is the same. Given two such, we

have the following exact square (all rows and columns are exact sequences).

C1 //

��

A′ //

��

C2

��
A //

��

F //

��

B

��
C3 // B′ // C4

(5.1.1)
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For all objects X 6= F in (

5.1.1), we have ϕX : f(X) → R compatible with the

four triangles not involving F (the outer rows and columns). By Axiom II.C. of

Definition-Theorem

2.1.2, we have the following commutative cube, which expresses

ϕFA→F→B = ϕFA′→F→B′ .

⊗if(Ci)

⊗ϕCi

��

''OOOOOOOOOOO
// f(A′)⊗ f(B′)

&&NNNNNNNNNNN

f(A)⊗ f(B)

ϕA⊗ϕB

��

//

ϕA
′⊗ϕB′

��

f(F)

ϕF

��

R⊗4
12,34

13,24 ''PPPPPPPPPPPPP
// R⊗2

''OOOOOOOOOOOOO

R⊗2 // R

Compatibility. Finally we show the ϕF just constructed are compatible with short

exact sequences in An. If 0 → F1 → F2 → F3 → 0 is such a sequence, we use the

following exact square.

AnnF1(πn−1) //

��

AnnF2(πn−1) //

��

F3
′

��
F1

//

��

F2
//

��

F3

��
F1

// F2
// F3

′′

Note that if F1 ↪→ F2, then AnnF1(r) = AnnF2(r) ∩ F1. Since πF2 = 0, we have

πF3
′′ = 0; likewise we have πn−1F3

′ = 0. We may apply the induction hypothesis to

the top and bottom rows in this square, yielding the following cube (denote AF =

AnnF(πn−1)).

f(AF1)⊗ f(F3
′)⊗ f(F1)⊗ f(F3

′′)

ϕ⊗4

��

++XXXXXXXXXXXXX
// f(AF2)⊗ f(F2)

((QQQQQQQQ

f(F1)⊗ f(F3)

ϕF1⊗ϕF3

��

//

ϕ⊗ϕ
��

f(F2)

ϕF2

��

R⊗4
12,34

13,24 ,,YYYYYYYYYYYYYYYYYYYYYYYYY // R⊗2

))SSSSSSSSSSSS

R⊗2 // R
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The top face commutes by Axiom II.C. of Definition-Theorem

2.1.2; the back face

commutes by the induction hypothesis; the left and right faces commute by definition;

the bottom face, whose arrows are the (possibly transposed) multiplication maps,

clearly commutes. Therefore the front face commutes too.

Proof of Proposition

5.1.9. The category ∪iAi has kernels and cokernels, so by Lemma

5.1.8 we reduce to short exact sequences in ∪iAi ⊂ Coh(PR). To see the ϕF are com-

patible with short exact sequences, apply Lemma

5.1.11 to the construction in Lemma

5.1.10.

To finish the proof of Proposition

5.1.9, note that any map of free R-modules is

determined by its restriction to the generic point, so it suffices to show the ϕF extend

the normalization trivialization. We proceed by induction on the minimal n such that

πnF = 0. The case n = 1 we observed in the construction. We use the induction

hypothesis on the first and third terms in the sequence 0 → AnnF(πn−1) → F →

F → 0. Since the base change and normalization isomorphisms are compatible with

triangles, the conclusion follows.

Now we deal with factors of type (Z) where the base of the family is a field L (not

necessarily algebraically closed) containing the original field k.Proposition 5.1.12. Let L ⊃ k be a field. Then there is a collection of trivializations

{ϕF : fL(F) → L}F∈Dd≤0(PL) compatible with triangles in Dd≤0(PL). The ϕF are

characterized by the properties:

• they are compatible with triangles in Dd≤0(PL); and

• on F ∈ Coh(PL) of type (Z), they agree with the trivialization (assume F ∼=

OZ):

ϕZL : fL(F) ∼= detLπ∗(OZ⊗LG) αL= (detLOZ)−1 ⊗L detL(detZ(G)) 1⊗detL(γ|Z)−−−−−−−→ L

with αL as in Proposition

4.2.3.



CHAPTER 5. PAIRS OF 1-CYCLES IN A THREEFOLD 83

Remark 5.1.13. Since α and γ are compatible with quasi-isomorphisms and base

change, the trivialization of F ∈ Coh(PL) of type (Z) may depend on the isomorphism

F ∼= OZ , but nothing else. Part of the assertion is that any identification F ∼= OZ
results in the same trivialization.

The category Cohd≤0(PL) has kernels and cokernels, so by Lemma

5.1.8 we reduce to

short exact sequences in Cohd≤0(PL). Since Supp(F) is a finite set, it is contained

in some affine in PL, and the problem is essentially algebraic. For this reason we

formulate the necessary lemmas algebraically, and use the notation f(M) := f(M̃).

Now we show that for F ∈ Coh(PL) of type (Z), the identification F ∼= OZ does not

influence the resulting map on determinants.Lemma 5.1.14. Let (A,m) be an Artinian local L-algebra which is a quotient of

Γ(U,OPL
) for some affine open U ⊂ PL. Let M be an A-module such that M ∼= A/m,

and let β, β′ be isomorphisms M → A/m. Then fL(β) = fL(β′) : fL(M)→ fL(A/m).

Proof. This is a special case of Corollary

2.2.12.
Corollary 5.1.15. Let (A,m) be as in Lemma

5.1.14. Let M be a finite type A-

module, and let {Mi} be a filtration of M such that, for all i, Mi/Mi−1
∼= A/m.

Let {βi}, {β′i} be two families of isomorphisms: βi, β
′
i : Mi/Mi−1 → A/m. Then

⊗if(βi) = ⊗if(β′i) : f(M) ∼= ⊗if(Mi/Mi−1) ∼= f(A/m)`A(M).

Proof. Tensor the result of Lemma

5.1.14 over all i.
Remark 5.1.16. The maximal ideal mp = m ⊂ A is also the unique prime ideal in A,

so such a filtration exists.

We know that for a fixed filtration, the trivializations of the graded pieces do not

intervene; now we compare two filtrations.Lemma 5.1.17. Let (A,m) be as in Lemma

5.1.14. Let M be a finite type A-module,

set ` := `A(M), and let

0 = M0 ⊂M1 ⊂ . . . ⊂M`−1 ⊂M` = M and
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0 = N0 ⊂ N1 ⊂ . . . ⊂ N`−1 ⊂ N` = M

be filtrations of M as in Corollary

5.1.15. Then the isomorphisms:

f(M) ∼= ⊗if(Mi/Mi−1)→ f(A/m)⊗` and

f(M) ∼= ⊗jf(Nj/Nj−1)→ f(A/m)⊗`

are the same.
Remark 5.1.18. The maps⊗if(Mi/Mi−1)→ f(A/m)⊗` and⊗jf(Nj/Nj−1)→ f(A/m)⊗`

are unambiguous by Lemma

5.1.14.

Proof. We use the compatibility between a pair of filtrations [

23, p.22], which is

a consequence of the compatibility of det with triangles of triangles. Set Ki,j =

Mi∩Nj/(Mi−1∩Nj)+(Mi∩Nj−1). Then we have the following commutative diagram

of isomorphisms.

f(M) //

��

⊗if(Mi/Mi−1)

��
⊗jf(Nj/Nj−1) // ⊗i,jf(Ki,j)

Fix i for a moment. The {Ki,j}j are filtration quotients for the filtration {Mi ∩

Nj/Mi−1 ∩Nj}j of Mi/Mi−1. Since Mi/Mi−1
∼= A/m is a simple A-module, all of the

Ki,j are 0 except one, say Ki,ji , and the filtration gives an identification Mi/Mi−1
≈→

Ki,ji . Composing with βi gives a trivialization we will call βi
M : Ki,ji

≈→ A/m.

Tensoring over all i we obtain the a commutative diagram:

f(M)
∼= //

∼=
��

⊗if(Mi/Mi−1)

⊗if(βi)

��
⊗if(Ki,ji)

⊗if(βi
M ) // f(A/m)⊗`

(5.1.2)

where the bottom map is unambiguous by Lemma

5.1.14.

The same argument applied to the βj : Nj/Nj−1
∼= A/m produces trivializations

βj
N : Kij ,j

≈→ A/m and a commutative diagram similar to (

5.1.2) whose bottom
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arrow is ⊗jf(βj
N). Using the identifications ⊗i,jf(Ki,j) = ⊗if(Ki,ji) = ⊗jf(Kij ,j),

we obtain isomorphisms ⊗if(βi
M) and ⊗jf(βj

N) : ⊗i,jf(Ki,j)→f(A/m)⊗`. Now by

Corollary

5.1.15 applied to {Ki,j} and the trivializations {βiM}, {βjN}, we conclude

⊗if(βi
M) = ⊗jf(βj

N). Then we assemble the two commutative diagrams of type

(

5.1.2) into one whose outer square is the desired one:

f(M)
∼= //

∼=
��

⊗if(Mi/Mi−1)

⊗if(βi)

��
⊗jf(Nj/Nj−1)

⊗jf(βj) // f(A/m)⊗`

Proof of Proposition

5.1.12. Now we can define the ϕF whose existence is asserted

in Proposition

5.1.12. Any F ∈ Cohd≤0(PL) can be written as F = ⊕iFi with each

Fi = M̃ for M a finite type module over an Artinian local ring (Ai,mi), and each

Supp(Fi) = {pi}, pi a closed point. We obtain fL(F) ∼= ⊗ifL(Fi), canonically, so we

will trivialize each fL(Fi) and multiply to obtain ϕFL : fL(F) ∼= L.

To fix notation, say pi ∈ PL(Li), where L → Li = Ai/mi is a finite field extension.

Also set `i := `Opi
(Fi). By taking a cycle filtration of Fi and trivializing each graded

piece, then using the identification α (Proposition

4.2.3), and finally restricting γ to

pi, we define ϕFi
L using Construction

5.1.7:

fL(Fi) ∼= (fL(Opi
))`i

α⊗`i∼= ((detLOpi
)−1 ⊗ detLdetpi

G)`i
(1⊗det(γ|pi ))

`i

−−−−−−−−→ L⊗`i
mult−−→ L.

Compatibility. Thinking of a short exact sequence as a filtration possibly needing

refinement to become a cycle filtration, the additivity of ϕ on short exact sequences

in Cohd≤0(PL) is a consequence of the independence of the ϕ of the cycle filtration.

More explicitly, let 0 → F1 → F2
h−→ F3 → 0 be an exact sequence in Cohd≤0(PL).

Then cycle filtrations {F1i}, {F3j} on F1,F3 (of lengths a, b respectively) induce a
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cycle filtration of F2:

0 = F10 ⊂ F11 ⊂ . . . ⊂ F1a−1 ⊂ F1a = h−1(0) ⊂ h−1(F31) ⊂ . . . ⊂ h−1(F3b) = F2.

The map ϕF2 is independent of the cycle filtration, so we are free to choose one

compatible with cycle filtrations of F1 and F3.

Our ϕF are compatible with triangles and, for F ∈ Coh(PL) of type (Z), are defined

to be the trivialization ϕZL in Proposition

5.1.12. These properties clearly characterize

the isomorphisms.

Now we deal with factors of type (Z) over a DVR; we will use the case of (Z) over a

field. Since we encounter factors of type (V) in constructing the trivialization, and

because we will need the more general statement later, we formulate the statement

for F ∈ Dd≤0;1(PR).Proposition 5.1.19. Let R be a DVR. Then there is a collection of trivializations

{ϕFR : fR(F)→ R}F∈Dd≤0;1(PR) compatible with triangles in Dd≤0;1(PR).

The ϕFR are characterized by the properties:

• they are compatible with triangles in Dd≤0;1(PR), and

• they are compatible with restriction to the generic fiber in the sense that ϕFR⊗RK

is equal to the trivialization constructed in Proposition

5.1.12.

In fact the second property alone characterizes the ϕFR.

Proof. The category Coh(PR) ∩Dd≤0;1(PR) has kernels and cokernels, so by Lemma

5.1.8, we are reduced to F ∈ Coh(PR) satisfying the support condition, and we must

show compatibility with short exact sequences of such.

Construction. Any F ∈ Coh(PR) satisfying the hypotheses of Proposition

5.1.19

has a cycle filtration such that Fi/Fi−1
∼= OVi

(ni) for Vi of types (V) and (Z). For
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factors of type (V), we constructed f(OVi
(ni)) ∼= R in Proposition

5.1.9; we call this

trivialization ϕVR.

Consider now a factor of type (Z): suppose F ∼= OZ(n) for a subvariety i : Z ↪→ PR

which is finite and flat over Spec R. First note we may assume n = 0 by Lemma

2.2.13

and Corollary

2.2.12: the choice of identification OZ ∼= OZ(n) does not influence the

resulting map on determinants.

Denote by p = π ◦ i : Z → Spec R. We define ϕFR using the identification α (Proposi-

tion

4.2.3) and γ|Z , as we did in Proposition

5.1.12. (We suppress the identification

fR(F) ∼= detRRπ∗(OZ⊗LG).)

ϕZR : detRRπ∗(OZ⊗LG) ∼= detRp∗(Li
∗G)

αR∼= (detROZ)−1⊗detR(detZ(G)) 1⊗detR(γ|Z)−−−−−−−→ R

Construction

5.1.7 then gives a trivialization:

ϕFR : fR(F)
cycle filt−−−−→ ⊗ifR(Fi/Fi−1)

ϕV
R ,ϕ

Z
R−−−−→ R⊗ mult−−→ R.

It remains to be checked: the trivialization is independent of the choice of the filtra-

tion; and that the collection of trivializations is compatible with short exact sequences

and with restriction to the generic fiber.

Independence of cycle filtration. It suffices to show different filtrations induce

the same map on the generic fiber. So let two cycle filtrations be given, and denote

Fi := gri(F),Gj := grj(F). Since we have shown ϕVR ⊗R K : fR(OV ⊗R K) → K is

the normalization isomorphism from Axiom I. of Definition-Theorem

2.1.2, it suffices

to show the following diagram commutes.

f(F)⊗R K

��

// ⊗i∈Iflf(Fi)⊗R K

��
⊗j∈Jflf(Gj)⊗R K // K

(5.1.3)
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where Ifl = {i|Fi is finite flat overR} and likewise Jfl. To see the two compositions

are equal, we will show they both agree with the trivialization constructed over a field

in Proposition

5.1.12.

We have a diagram:

f(F)⊗K
η

��

filt⊗K // ⊗if(Fi)⊗K
η

��

⊗(αR,γR)K // ⊗i(R⊗K)

η

��

mult // R⊗K
η

��
f(F ⊗K) // ⊗if(Fi ⊗K)

⊗(αK ,γK) // ⊗iK mult // K

which commutes. The filtration isomorphisms consist of triangle isomorphisms, and

the triangle isomorphisms are compatible with base change [

23, Thm. 2]. The iden-

tification α is compatible with base change (Proposition

4.2.3), as is γ. This shows

the diagram commutes.

In fact the bottom row is the trivialization ϕF⊗RK
K constructed in Proposition

5.1.12:

R→ K is a localization, so Γ(Z,OZ)⊗R K is a domain, so (cycle filtration)⊗R K is

a cycle filtration of F ⊗RK. The construction in Proposition

5.1.12 uses αK and γK ,

as we have here. Therefore each route in (

5.1.3) is equal to ϕF⊗RK
K ◦ η. We have also

shown the ϕF (for F as in Proposition

5.1.19) are compatible with restriction to the

generic fiber.

Compatibility. To show compatibility with triangles, by the above remark we can

check on the generic fiber, which was done in Proposition

5.1.12. Alternatively, as

before we may view a short exact sequence as a filtration requiring refinement, and

then independence of cycle filtration (which was shown by looking on the generic

fiber!) gives the additivity. As before, the restriction to the generic point determines

the isomorphism.

In the construction of the ϕF for dim(Supp(F)) = 1, we need a trivialization of f(Q),

dim(Supp(Q)) = 0, for varying Q. Since theQ will be parameterized by a seminormal

base, it suffices to show the construction over a DVR is compatible with base change

to the generic and closed points. The generic point is covered by Proposition

5.1.19.
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First we study algebraically the base change to the closed fiber of the factors of type

(Z).Situation 5.1.20. Let R be a DVR or a field. Let S be a domain which is a quotient

of Γ(U,OPR
) for some affine open U ⊂ PR, and suppose that the natural map R→ S

is finite and flat.

Let K ′ be a field and R → K ′ a ring map. Then S ′ := S ⊗R K ′ is an Artinian

K ′-algebra which splits canonically as S ′ = ⊕Ar, with (Ar,mr) an Artinian local

K ′-algebra with residue field κr. Each Ar has a filtration (necessarily of length `(Ar))

by Ar-submodules with graded pieces grk(Ar) ∼= κr. Let ψkr : grk(Ar) ∼= κr be a

collection of isomorphisms.
Lemma 5.1.21. Let R,S,K ′, (Ar,mr), ψkr be as in Situation

5.1.20. Let G be as in

Situation

5.1.1. Set N = S⊗L
OPR
G and N ′ = N⊗RK ′ = N⊗S S ′. Let γ : detS N → S

denote also the restriction of γ to Spec S. Then:
(1) For each r, the composition

detK′(Ar ⊗N ′) ∼= ⊗k detK′(grk(Ar)⊗N ′)
via ψkr−−−−→ detK′(κr ⊗N ′)⊗`(Ar)

is independent of the choice of filtration and isomorphisms ψkr.(2) The following diagram commutes.
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(detRN)⊗R K ′ (1⊗detR(γ))K′◦(αR⊗K′)
//

η

��

((detR S)−1 ⊗ detR S)K′

η⊗η
��

detK′(N ′)

=

��

(1⊗detK′ (γS′ ))◦αK′ // (detK′ S ′)−1 ⊗K′ detK′ S ′

��

⊗r detK′(Ar ⊗N ′)

∼=
��

⊗k,r detK′(grk(Ar)⊗N ′)

��

⊗rdetK′(κr ⊗N ′)`(Ar) ⊗r(1⊗detK′ (γ⊗κ)◦αr)`(Ar)

// ⊗r((detK′ κr)
−1 ⊗ detK′ κr)

`(Ar)

Here α is as in Proposition

4.2.3.

Proof. The first item is a combination of Lemmas

5.1.14 and

5.1.17.

To see the second, first observe the top rectangle commutes since α and γ are com-

patible with base change. For a single r, the bottom row is the following composition

(∧ = det) to the tensor power of `(Ar):

∧K′(κr ⊗N ′)
αr−→ (∧K′κr)

−1 ⊗ ∧K′ ∧κr (κr ⊗N ′)
1⊗∧K′ (γ⊗κ)−−−−−−−→ (∧K′κr)

−1 ⊗ (∧K′κr).

Recall (Proposition

4.2.3) the α isomorphisms are defined (for a single locally free

S-module N) by choosing bases S = ⊕i∈IR ·si and N = ⊕j∈JS ·nj (I and J are finite

sets consisting of a and b elements respectively), then using the natural map

s1n1 ∧ · · · ∧ sanb 7→ (s1 ∧ · · · ∧ sa)⊗(b−1)s1(n1 ∧ · · · ∧ nb) ∧ · · · ∧ sa(n1 ∧ · · · ∧ nb).

The choice S = ⊕i∈IR · si determines S ′ = ⊕i∈IK ′ · si. Since we have S ′ = ⊕Ar, the

choice of si induces also Ar = ⊕i∈IrK ′ · si, where r 6= r′ ⇒ Ir ∩ Ir′ = ∅ and ∪rIr = I.

We have also grk(Ar) = ⊕i∈Irk
K ′ · si, where k 6= k′ ⇒ Irk ∩ Irk′ = ∅ and ∪kIrk = Ir.

In particular we have κr = gr`(Ar)(Ar) = ⊕i∈Ir`
K ′ · si. Such a decomposition is used

to define the αr.
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Then the identification (along the left column) detK′(N ′) ∼= ⊗rdetK′(κr ⊗N ′)`(Ar) is

given by the formula: ∧
i∈I,j∈J

sinj 7→
⊗
k,r

(
∧

i∈Irk,j∈J

sinj).

A single αr is described by:∧
i∈Irk,j∈J

sinj 7→ (
∧
i∈Irk

si)
⊗(b−1)

(
∧
i∈Irk

si(
∧
j∈J

nj))

which is manifestly compatible with the αK′ recalled above.

We cannot yet deal with base change to the closed fiber in the case dim(Supp(F⊗Lk0)) =

1, so the hypotheses in the following lemma are more restrictive than in Proposition

5.1.19.Lemma 5.1.22. Let R be a DVR. Let F ∈ Cohd≤0(PR). Then the trivialization ϕF

constructed in Proposition

5.1.19 is compatible with restriction to the closed fiber in

the sense that the following diagram commutes.

fR(F)⊗R k0

ϕFR⊗Rk0//

η

��

R⊗R k0

η

��
fk0(F⊗Lk0)

ϕ
F⊗Lk0
k0 // k0

The bottom arrow is the trivialization constructed in Proposition

5.1.12.
Remark 5.1.23. For F as in Lemma

5.1.22, we have dim(Supp(F⊗Lk0)) ≤ 0 by

Remark

2.2.9, so the construction in Proposition

5.1.12 defines ϕF⊗
Lk0

k0
.

Proof. Take a cycle filtration of F . The base change isomorphisms are compatible

with triangles, thus filtrations; and the ϕF constructed in Proposition

5.1.12 are com-

patible with triangles. Therefore we are reduced to showing the diagram commutes

when F is of type (V) (and zero-dimensional, so the structure sheaf of a point in the

closed fiber) or of type (Z).

Type (V). Let E• be a locally free OP0-resolution of F . We observe:
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(1) Tot[E• ⊗k0 m→ E• ⊗k0 R] is adapted to −⊗Lk0; and
(2) Tot[E• ⊗k0 m→ E• ⊗k0 R]⊗Lk0 = E• ⊗k0 m/m2[1]⊕ E•.

Now we claim the following diagram, in which the top path is ϕFR ⊗R k0 and the

leftmost path is ϕF⊗
Lk0

k0
◦ η, commutes.

f(F)0
//

η

��

f−1(E• ⊗k0 m)0 ⊗ f(E• ⊗k0 R)0

η⊗η
��

(m∼=R)⊗1// f−1(E• ⊗k0 R)0 ⊗ f(E• ⊗k0 R)0

��
f(F⊗Lk0) //

take Hq
**UUUUUUUUUUUUUUUUU

f−1(E• ⊗k0 m/m2)⊗ f(E•)

take Hq

��

(m/m2∼=k0)⊗1 // f−1(E•)⊗ f(E•)

take Hq

��
f−1(F ⊗k0 m/m2)⊗ f(F)

(ϕ
F⊗m/m2

k0
)
−1

⊗ϕFk0��

(m/m2∼=k0)⊗1 // f−1(F)⊗ f(F)

(ϕF )
−1⊗ϕF

��
f−1([F ⊗k0 m/m2])⊗ f([F ])

= // f−1([F ])⊗ f([F ])

All squares are trivial except the bottom right. Any g : m/m2 ∼= k0 induces an

isomorphism F ⊗m/m2 ∼= F . Since the ϕ (only on Cohd≤0(P0)) are compatible with

triangles, we have a commutative diagram:

f(F ⊗m/m2)
f(g) //

ϕF⊗m/m2

��

f(F)

ϕF

��
f([F ⊗m/m2])

= // f([F ])

which (after dualizing) shows the bottom right square is commutative.

Type (Z). This part of the argument is valid for any base change R→ K ′ where K ′

is a field.

Let Z = Spec S ⊂ PR be an R-flat closed subvariety of relative dimension zero. Then

the following diagram commutes.

f(OZ)⊗R K ′ϕ
Z
R⊗K

′
//

η

��

R⊗R K ′

η

��
f(OZ ⊗R K ′)

ϕ
Z⊗RK′

K′ // K ′

The commutativity is the content of Lemma

5.1.21.
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In the application dim(Supp(F)), dim(Supp(G)) ≤ 1, so we expect Supp(F) and

Supp(G) to be disjoint. If in addition G is exact on Supp(F), f(F) has another

trivialization induced by the quasi-isomorphism F⊗LG ∼−→ 0. Eventually we will

establish the ϕF are compatible with this quasi-isomorphism; for now we establish it

among coherent sheaves with zero-dimensional support.Proposition 5.1.24. Let R be a DVR or a field. Let i : Z ⊂ PR be a closed

subvariety which is finite and flat over Spec R, and let p = π ◦ i : Z → Spec R denote

the structure map. In addition to Situation

5.1.1, suppose G is exact on Z. (For

example, G ∼−→ OD, where D ⊂ PR is a closed subscheme of relative dimension ≤ 1

such that Z ∩D = ∅.)

Then the trivialization ϕ : fR(OZ) → R constructed in Proposition

5.1.19, with the

canonical γ of Lemma

2.1.4, is equal to the one induced by the quasi-isomorphism

OZ⊗LG ∼−→ 0.

Proof. The composition:

i∗(detPR
(G)) η−→ detZ(Li∗G) det(0)−−−→ det(0) = OZ

is equal to the restriction of γ to Z.

This gives the commutativity of the bottom triangle in the following diagram.

detRπ∗(OZ⊗LG)
=

��

detRπ∗(0) // detRπ∗(0) = R

=

��
det p∗(Li

∗G)
αR

��

det p∗(0) // det p∗(0) = R

αR

��

detR(OZ)−1 ⊗ detR(detZ(Li∗G))
1⊗detR(detZ(0))//

1⊗detR(γ|Z) ,,XXXXXXXXXXXXXXXXXXXXXXX
detR(OZ)−1 ⊗ detR(OZ)

=

��

detR(OZ)−1 ⊗ detR(OZ)

The claim follows. Note that the middle square uses the compatibility of α with

quasi-isomorphisms of complexes of locally free sheaves of finite rank (Proposition

4.2.3).
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Before we consider the case (C), we need a preliminary lemma.Lemma 5.1.25. Let K ⊃ k be an algebraically closed field, and let F1,F2 be torsion

free sheaves of rank 1 on a proper variety X/K.
(1) The functor F : K − algebras→ Sets

F (A) = HomOX
(F1 ⊗K A,F2 ⊗K A)

is isomorphic to the functor HomSch/K(−,An
K), where n = dimK HomOX

(F1,F2).

Let M = Hom(F1,F2) \ 0 ∼= An
K \ 0 denote the K-scheme parameterizing nonzero

morphisms between F1 and F2.(2) If dim(X) = 1 and X ⊂ P , the universal cokernel QU is finite and flat over

M , and the trivializations {ϕQα}α∈M constructed in Proposition

5.1.19 glue to a

trivialization:

ϕU : detMRπ2∗(QU⊗LG) ∼= OM .

Proof. For the first item, use the identities:

HomOX
(F1 ⊗K A,F2 ⊗K A)

= HomOX
(F1,F2 ⊗K A)

= (HomOX
(F1,F2))⊗K A

∼= HomK−vs(HomOX
(F1,F2)

∗, A) since V ∗∗ ∼= V

= HomK−alg(Sym∗
K(HomOX

(F1,F2)
∗), A)

= HomSch/K(Spec A, Spec Sym∗
K(HomOX

(F1,F2)
∗)).

We proceed to the second item. OnX×KM , we have the universal nonzero homomor-

phism π1
∗(F1)→ π1

∗(F2). Any nonzero map between torsion free rank 1 sheaves on a

proper variety over an algebraically closed field must be injective with finite cokernel.

By [

25, 20.E] the universal cokernel is a coherent sheaf QU on X ×K M ⊂ P ×K M

which is finite and flat over M . We have the line bundle detM Rπ2∗(QU⊗LG) on M
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whose fiber over α ∈M is precisely f(Qα). The trivializations constructed in Proposi-

tion

5.1.19 are compatible with base change to the generic and closed (Lemma

5.1.22)

fibers, so they glue as claimed by the seminormality of An
K \0 and Theorem

3.1.5.

Now we begin to tackle the factors of type (C): Ci is a flat family of curves.Proposition 5.1.26. Let L ⊃ k be an algebraically closed field. Then there is a col-

lection of isomorphisms {ϕFL : fL(F) → fL([F ])}F∈Dd≤1(PL) compatible with triangles

in Dd≤1(PL). The ϕFL are characterized by the following properties:

• they are compatible with triangles in Dd≤1(PL);

• on F ∈ Coh(PL) of type (Z), they agree with the trivialization constructed in

Proposition

5.1.12; and

• if C ⊂ PL is a reduced and irreducible curve, then ϕOC
L : f(OC) → f([OC ]) is

the identity.

Proof. The category Cohd≤1(PL) has kernels and cokernels, so by Lemma

5.1.8, we

are reduced to short exact sequences in Cohd≤1(PL).

Construction. Any F ∈ Coh(PL) satisfying the hypotheses of Proposition

5.1.26

has a cycle filtration such that Fi/Fi−1
∼= OVi

(ni) for Vi of types (Z) and (C). We

have trivialized the factors of type (Z). Now we construct SF : f(F) ∼= f(OC) for

coherent sheaves F such that Supp(F) is a reduced and irreducible curve C, and F|C
is torsion free of rank 1.

By Serre’s Theorem [

18, II.5.17], there is a very ample divisorH ⊂ PL such that F(H)

(regarded as a sheaf on the subvariety on which it is scheme-theoretically supported)

has a global section. This gives rise to an exact sequence:

0→ OC(−H)
α−→ F β−→ Qα,β → 0

where Q satisfies the hypotheses of Proposition

5.1.12. Using the trivialization there

constructed and the triangle determined by (α, β), we obtain an isomorphism:
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fL(OC(−H))⊗L L
1⊗(ϕQ)

−1

−−−−−−→ fL(OC(−H))⊗L fL(Qα,β)
f(α,β)−−−→ fL(F).

First we observe this isomorphism does not depend on β: the cokernel is unique up

to isomorphism, and the isomorphism is a (very simple) triangle involving coherent

sheaves satisfying the hypotheses of Proposition

5.1.12. Therefore we denote f(α) =

f(α, β) ◦ 1⊗ (ϕQ)
−1

: f(OC(−H))→ f(F).

Independence of section. We study the effect of changing α. First we show that

for λ ∈ L×, we have f(λα) = f(α). We have an isomorphism of triangles:

OC(−H) λα //

λ
��

F //

1

��

Qλα

��
OC(−H) α // F // Qα

which induces the following commutative diagram (we suppress the f(Qα)).

f(OC(−H))

f(λ)

��

f(λα) // f(F)

1
��

f(OC(−H))
f(α) // f(F)

Since f(λ) = 1 by Lemma

2.2.11, we have f(λα) = f(α).

Now we claim the map

θ : An
L \ 0 ∼= HomOPL

(OC(−H),F) \ 0→ IsomL(f(OC(−H)), f(F)) ∼= A1
L \ 0

θ(α) = f(α)

is a morphism of schemes. If so, then since θ is invariant under scaling by L×, it de-

scends to a map Pn−1
L → A1

L, which must be constant; so in fact f(α) : f(OC(−H))→

f(F) is independent of α.

To prove the claim, notice the left hand side is endowed with a scheme structure by the

first part of Lemma

5.1.25. Now Rπ∗(α⊗L1) : Rπ∗(OC(−H)⊗LG)→ Rπ∗(F⊗LG) is
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even L-linear. Since the determinant is given by a polynomial (say after choosing an

L-basis of the vector space Hom(OC(−H),F)), the map f(α, β) varies algebraically

with α. By the second part of Lemma

5.1.25, (ϕQα) also varies algebraically with

α. Therefore f(α) = f(α, β) ◦ 1 ⊗ (ϕQα)
−1

varies algebraically with α, and θ is a

morphism of schemes.

We have also an exact sequence

0→ OC(−H)
i−→ OC → Qi → 0

where dim(Supp(Qi)) = 0, so the above argument produces f(i) : f(OC(−H)) →

f(OC), independent of i. Then we define SFH = f(i) ◦ (f(α))−1 : f(F) → f(OC). In

fact the choice of H is irrelevant.

Independence of very ample divisor. Suppose we used a different pair of exact

sequences:

OC(−H ′)
α′−→ F → Qα′ OC(−H ′)

i′−→ OC → Qi′ .

We claim SFH = SFH′ . We have the following commutative squares of injective maps.

OC(−H −H ′)

i(−H′)
��

i′(−H)// OC(−H)

α

��

OC(−H −H ′)

i(−H′)
��

i′(−H)// OC(−H)

i
��

OC(−H ′) α′ // F OC(−H ′) i′ // OC

To prove the claim, it suffices to show SH = SH+H′ . Since every S is independent of

the sections used to define it, it suffices to show

f(i) ◦ (f(α))−1 = f(i ◦ i′(−H)) ◦ (f(α ◦ i′(−H)))
−1
. (5.1.4)

To show (

5.1.4) it suffices to check

f(α ◦ i′(−H)) = f(α) ◦ f(i′(−H)) (5.1.5)
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and likewise for i ◦ i′(−H). To see (

5.1.5) we use the following exact square.

OC(−H −H ′)
α◦i′(−H)//

i′(−H)
��

F //

=

��

Qα◦i′(−H))

��
OC(−H) α //

��

F //

��

Qα

��
Qi′(−H) // 0 // Q′′

Note the rightmost column is in general a distinguished triangle, not a short exact

sequence. All of the Q terms satisfy the hypotheses of Proposition

5.1.12, so the

trivializations are compatible with the triangles in this exact square. Therefore we

obtain a commutative square:

f(OC(−H −H ′))
f(α◦i′(−H)) //

f(i′(−H))
��

f(F)

1
��

f(OC(−H))
f(α) // f(F)

which proves (

5.1.5). The proof that f(i ◦ i′(−H)) = f(i) ◦ f(i′(−H)) is identical.

The claim follows.

Independence of cycle filtration. We have constructed SF : f(F) ∼= f(OC) for

coherent sheaves F such that Supp(F) is a reduced and irreducible curve C, and F|C
is torsion free of rank 1. In particular we have constructed f(F) ∼= f([F ]) for factors

of type (C). Now using the trivialization of the (Z) factors constructed in Proposition

5.1.12, we define the isomorphism ϕFL , relative to a cycle filtration, using Construction

5.1.7:

fL(F)
cycle filt−−−−→ ⊗ifL(Fi/Fi−1)

5.1.12,SF−−−−−→ L⊗ ⊗ fL([F ])
mult−−→ fL([F ]).

In fact this map is independent of the filtration: let F ∈ Cohd≤1(PL), and let

{Fi}, {Gj} be two cycle filtrations of F . Then we claim the maps

f(F)→ ⊗if(Fi/Fi−1)
S⊗ϕZ

−−−→ f([F ]) and f(F)→ ⊗jf(Gj/Gj−1)
S⊗ϕZ

−−−→ f([F ])
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are equal. For fixed i, let Kij denote the quotients of the filtration {Fi∩Gj/Fi−1∩Gj}

of Fi/Fi−1. Then we have the following commutative diagram.

f(F) //

��

⊗if(Fi/Fi−1)

��
⊗jf(Gj/Gj−1) // ⊗i,jf(Kij)

The idea is to show ⊗if(Fi/Fi−1)
S⊗ϕZ

−−−→ f([F ]) and ⊗jf(Gj/Gj−1)
S⊗ϕZ

−−−→ f([F ])

induce the same map ⊗i,jf(Kij)→ f([F ]).

The quotients Fi/Fi−1 of type (Z) are (isomorphic to) structure sheaves of L-points

(as L = L), so, as in Lemma

5.1.17, the subsheaves Fi ∩ Gj/Fi−1 ∩ Gj are equal to

Fi/Fi−1 for a while, then become 0. The trivialization ϕKij : f(Kij)→ L constructed

in Proposition

5.1.12 is compatible with the trivialization ϕFi/Fi−1 .

For a factor Fi/Fi−1 of type (C), there exists ji such that:

Fi ∩ Gj/Fi−1 ∩ Gj is torsion free of rank 1 on C for j ≥ ji; and

Fi ∩ Gj/Fi−1 ∩ Gj = 0 for j < ji.

If necessary, twist F itself by some very ample H ⊂ PR so that all sheaves of the

shape Fi ∩ Gj/Fi−1 ∩ Gj have global sections. We will suppress the H because if the

maps to f(OC(−H)) are the same, by composing with f(OC(−H))→ f(OC), we see

the maps to f(OC) are the same.

By choosing a section of Fi ∩ Gji/Fi−1 ∩ Gji , for all j > ji, we have a triangle of

triangles:

OC = //

��

OC //

��

0

��
Fi ∩ Gj−1/Fi−1 ∩ Gj−1

//

��

Fi ∩ Gj/Fi−1 ∩ Gj //

��

Kij

��
Q1

// Q2
// Kij

(5.1.6)
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which induces the following commutative diagram.

f(Fi ∩ Gj/Fi−1 ∩ Gj) //

��

f(OC)⊗ f(Q2)
1⊗ϕQ2

//

��

f(OC)

1
��

f(Fi ∩ Gj−1/Fi−1 ∩ Gj−1)⊗ f(Kij) // f(OC)⊗ f(Q1)⊗ f(Kij)
1⊗ϕQ1⊗ϕKij

// f(OC)

The top row is the map S : f(Fi∩Gj/Fi−1∩Gj) ∼= f([Fi∩Gj/Fi−1∩Gj]) constructed

above, and the bottom row is the map f(Fi∩Gj−1/Fi−1∩Gj−1) ∼= f([Fi∩Gj−1/Fi−1∩

Gj−1]) tensored with the trivialization ϕKij : f(Kij) → L constructed in Proposition

5.1.12. On Fi ∩ Gji/Fi−1 ∩ Gji itself, SFi/Fi−1 induces SFi∩Gji
/Fi−1∩Gji .

Therefore S⊗ϕZ : ⊗if(Fi/Fi−1)→ f([F ]) induces S⊗ϕZ : ⊗i,jf(Kij)→ f([F ]). Of

course S ⊗ ϕZ : ⊗jf(Gj/Gj−1)→ f([F ]) does as well, and the claim follows.

Compatibility. As in Proposition

5.1.12, compatibility with triangles follows from

independence of cycle filtration: given a short exact sequence in Cohd≤1(PL), we use

a cycle filtration of the middle term which induces cycle filtrations of the outer terms.

Characterizing properties. Our construction clearly has the stated properties, so

it suffices to show the properties determine the isomorphisms. For any very ample

H ⊂ PL, the sequence

0→ OC(−H)→ OC → Q→ 0

determines ϕOC(−H) : f(OC(−H))→ f([OC(−H)]) = f(OC), since we have additivity

on the sequence and we have specified the isomorphisms on the second and third

terms of the sequence. Then ϕF is determined for any F such that Supp(F) is a

reduced and irreducible curve C and F|C is torsion free of rank 1, because we can

always find a very ample H such that there is a nonzero map OC(−H) → F whose

cokernel is (necessarily) supported in dimension zero. Then the normalization on

F ∈ Coh(PL) of type (Z) and compatibility with filtrations determines ϕF for any

F ∈ Cohd≤1(PL).
Corollary 5.1.27. Let L ⊃ k be an algebraically closed field. Let F1,F2 ∈ Cohd≤1(PL).

Let α, α′ : F1 → F2 be injective morphisms, and suppose that dim(Supp(Cok(α))) =
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dim(Supp(Cok(α′))) = 0. Then f(α) = f(α′) : f(F1)
∼−→ f(F2).

Proof. Both f(α) and f(α′) are equal to (ϕF2)
−1 ◦ ϕF1 .

We will need the result Proposition

5.1.26 when the base is a DVR or an arbitrary

field. A minor difference between the DVR case and the case of an algebraically

closed field is that filtrations quotients may be vertical. Since all cokernels still lie

in Dd≤0;1(PR), this is not a problem. More serious is the failure of the second part

of Lemma

5.1.25 to hold, even over a field K: CK need not be a variety even if CK

is, and then the locus of injective maps inside HomCK
(F1,F2) is mysterious, even

in the case F1 and F2 are torsion free of rank 1. It seems difficult to argue that

HomCK
(F1,F2)/K

×
is a variety without nonconstant functions.

To get around this, we extract the necessary result (independence of choice of section)

by deducing it from the case L = K.Lemma 5.1.28. Let R be a DVR or a field. Let CR be a reduced and irreducible

relative curve, and let F1,F2 be torsion free sheaves of rank 1 on CR. Let α, α′ : F1 →

F2 be injective morphisms; then both Cok(α) and Cok(α′) satisfy the hypotheses of

Proposition

5.1.19. Then f(α) = f(α′), that is:

1⊗ (ϕCok(α))
−1 ◦ f(α, β) = 1⊗ (ϕCok(α′))

−1 ◦ f(α′, β′) : f(F1)
∼−→ f(F2).

Here the β’s denote the canonical maps to the cokernels.

Proof. It suffices to show f(α) ⊗R K = f(α′) ⊗R K, where K = Frac R and K

denotes its algebraic closure. Since the base change isomorphisms are compatible

with triangles, we have f(α, β)⊗R K = f(α⊗R K, β ⊗R K).

Likewise the ϕQ’s are compatible with the base change R → K: ϕCok(α) ⊗R K =

ϕCok(α⊗RK). The compatibility with R → K follows from Proposition

5.1.19, and

with K → K from the argument in “Type (Z)” in Lemma

5.1.22.

Now R → K is flat, so α ⊗R K and α′ ⊗R K are injective. Corollary

5.1.27 implies

f(α⊗R K) = f(α′ ⊗R K), so we are done.

When R is a field, only the base change K → K is interesting.
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Theorem 5.1.29. Let R be a DVR or a field. Then there is a collection of isomor-

phisms {ϕFR : fR(F) → fR([F ])}F∈Dd≤1(PR) compatible with triangles in Dd≤1(PR).

The ϕFR are characterized by the following properties:

• they are compatible with triangles in Dd≤1(PR);

• on F ∈ Dd≤0;1(PR), they agree with the trivialization constructed in Proposition

5.1.19; and

• if C ⊂ PR is a reduced and irreducible R-flat curve, then ϕOC
R : f(OC) →

f([OC ]) is the identity.

Proof. The construction is the same as in Proposition

5.1.26: take a cycle filtration

of F , use the trivializations constructed in Proposition

5.1.19 on the terms of type

(Z) and (V), twist and take sections on the terms of type (C), and multiply these

together using Construction

5.1.7. By Lemma

5.1.28 we obtain independence of the

choice of section. The previous argument for independence of the choice of very ample

divisor is valid over a DVR as well. The argument for independence of cycle filtration

requires a mild strengthening because filtrations over a DVR may be more interesting.

So let F ∈ Coh(PR), and suppose two cycle filtrations {Fi}, {Gj} are given. Let Kij
denote the subquotients of the filtration {Fi ∩ Gj/Fi−1 ∩ Gj} of Fi/Fi−1.

For a factor Fi/Fi−1 of type (V) or (Z), all of the subsheaves Fi ∩Gj/Fi−1 ∩Gj are of

the same type, so the trivializations ϕKij are compatible with ϕFi/Fi−1 by Proposition

5.1.19.

For a factor Fi/Fi−1 of type (C), we construct a triangle of triangles as in (

5.1.6)

where Q1,Q2,Kij all satisfy the hypotheses of Proposition

5.1.19.

As both ⊗if(Fi/Fi−1)→ f([F ]) and ⊗jf(Gj/Gj−1)→ f([F ]) induce the “expected”

map S ⊗ ϕV ⊗ ϕZ : ⊗i,jf(Kij)→ f([F ]), we conclude f(F)→ f([F ]) is independent

of the cycle filtration.
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Our construction clearly has the stated properties. Since any F ∈ Dd≤1(PR) has a

filtration whose factors lie inDd≤0;1(PR) or are reduced and irreducible relative curves,

the stated properties determine the isomorphisms on the subcategory Dd≤1(PR).

Summary. For F ∈ Dd≤1(PR), we constructed ϕFR : fR(F) ∼= fR([F ]) as follows:

f(F)
cycle filtration−−−−−−−−→ ⊗if(Fi)

ϕV ⊗ϕZ⊗S−−−−−−→ f([F ])

where each Fi is a subquotient of the cycle filtration (so of type (V), (Z), or (C)).

5.2 Compatibilities among the ϕ.

Eventually we will show the ϕ are compatible with base change from Spec R to the

closed and generic fibers; now we prove the ϕ are compatible with field extensions.

We renew the conditions in Hypotheses

5.1.2 and the fixed data in Situation

5.1.1.

Further decorations of the ϕ symbol will be explained as we encounter them.

Field extensions

First we analyze the behavior under a field extension K ′/K of the trivialization

ϕF for F ∈ Coh(PK) of type (Z). Then we do the same for the isomorphism ϕF

for F ∈ Coh(PK) of type (C). Finally we combine these results to show the ϕ are

compatible with field extensions.Remark 5.2.1. For r = 0, 1, if F ∈ Dd≤r(PK), then FK′ ∈ Dd≤r(PK′) by Remark

2.2.9. We use this to know certain ϕK′ are defined.
Lemma 5.2.2. Let K ′/K be a field extension. Let Z = Spec L ⊂ PK be a zero-

dimensional closed subvariety. Then the following diagram commutes.

f(OZ)⊗K ′ϕ
Z
K⊗K

′
//

η

��

K ⊗K ′

η

��
f(OZ ⊗K ′)

ϕZ⊗K′
K′ // K ′
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Proof. This follows from Lemma

5.1.21 with R = K.
Corollary 5.2.3. Let K ′/K be a field extension. Then the trivializations {ϕFK :

fK(F) → K}F∈Dd≤0(PK) are compatible with base change to K ′. This means for any

F ∈ Dd≤0(PK), the following diagram commutes.

f(F)⊗K ′ϕ
F
K⊗K

′
//

η

��

K ⊗K ′

η

��
f(F ⊗K ′)

ϕF⊗K′
K′ // K ′

.

Proof. Both {ϕFK ⊗ K ′} and {η−1 ◦ ϕF⊗K′

K′ ◦ η} are compatible with triangles, and

by Lemma

5.2.2 they agree on the pullbacks of coherent sheaves of type (Z). These

properties characterize the trivializations on the image of Dd≤0(PK) in Dd≤0(PK′) via

pullback.
Lemma 5.2.4. Let K ′/K be a field extension. Let F ∈ Coh(PK) be such that

Supp(F) is a reduced and irreducible curve C, and F|C is torsion free of rank 1.

Then the following diagram commutes.

f(F)⊗K K ′

η

��

ϕFK⊗K
′
// f(OC)⊗K K ′

η

��
f(F ⊗K K ′)

ϕF⊗K′
K′ ((QQQQQQQQQQQQ

f(OCK′
)

ϕ
OCK′
K′��

f([OCK′
])

Remark 5.2.5. The subscheme CK′ ⊂ PK′ need not be reduced nor irreducible. The

isomorphism ϕ
OCK′
K′ is constructed in Theorem

5.1.29.

Proof. Suppose ϕFK : fK(F) → fK([F ]) = fK(OC) is realized by a short exact se-

quence 0 → OC → F → Q → 0, the general case being obtained by splicing two

together. Then the sequence 0 → OCK′
→ FK′ → QK′ → 0 is exact. We claim the
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following diagram commutes.

f(F)K′

η

��

// (f(OC)⊗ f(Q))K′

η

��

(1⊗ϕQ)K′// f(OC)K′

η

��
f(F ⊗K ′) //

ϕF⊗K′

��

f(OCK′
)⊗ f(QK′)

ϕ
OCK′ ⊗ϕQK′

��

1⊗ϕQK′// f(OCK′
)

ϕ
OCK′

��
f([F ⊗K ′])

+ // f([OCK′
])⊗K ′ // f([OCK′

])

The bottom left square commutes because the ϕ are compatible with triangles. The

top right square commutes since the ϕ on Dd≤0(PK) are compatible with field exten-

sions by Corollary

5.2.3. The commutativity of the bottom right square is trivial.

The commutativity of the outer square is what we aimed to prove.
Proposition 5.2.6. Let K ′/K be a field extension. For any F ∈ Dd≤1(PK), the

following diagram commutes.

f(F)⊗K K ′

η

��

ϕFK⊗K
′
// f([F ])⊗K K ′

η

��
f(F ⊗K K ′)

ϕ
F⊗KK′

K′
((QQQQQQQQQQQQ

f([F ]⊗K K ′)

ϕ
[F]⊗KK′

K′��
f([F ⊗K K ′])

Remark 5.2.7. Suppose [F ] =
∑
niCi and [CiK′ ] =

∑
mijC

′
j. Then [FK′ ] =

∑
nimijC

′
j.

By definition, ϕ
[F ]⊗KK

′

K′ = ⊗i(ϕ
OCiK′
K′ )

⊗ni

.

Proof. Since the base change and ϕ isomorphisms are compatible with triangles, it

suffices to show the diagram commutes when F ∈ Coh(PK) is of type (Z) or (C).

These were done in Lemmas

5.2.2 and

5.2.4 respectively.
Corollary 5.2.8. Let K ′/K be a field extension. For any F1,F2 ∈ Dd≤1(PK) such

that [F1] = [F2], the following diagram commutes.

f(F1)⊗K K ′ ((ϕ
F2
K )

−1
◦ϕF1

K )⊗KK
′
//

η

��

f(F2)⊗K K ′

η

��
f(F1 ⊗K K ′)

(ϕ
F2⊗K′

K′ )
−1

◦ϕF1⊗K′

K′ // f(F2 ⊗K K ′)
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Having constructed the isomorphism over fields and DVRs, we proceed to show these

constructions are compatible with base change from Spec R to the closed and generic

fibers.

Base change to the generic fiberProposition 5.2.9. Let R be a DVR and K its fraction field. For any F ∈ Dd≤1(PR),

the following diagram commutes.

f(F)⊗R K
η

��

ϕFR⊗RK // f([F ])⊗R K
η

��
f(F ⊗R K)

ϕ
F⊗RK

K // f([F ]⊗R K) = f([F ⊗R K])
Remark 5.2.10. Because R→ K is a localization, varieties over R restrict to varieties

over K. Hence the diagram here is simpler than in Proposition

5.2.6.

Proof. Since the base change isomorphisms are compatible with triangles, it suffices

to show the diagram commutes when F ∈ Coh(PR) is of type (V), (Z), or (C). On

those of types (V) and (Z), the trivializations ϕR are compatible with restriction to

the generic fiber by Proposition

5.1.19.

For those of type (C), we argue as in Lemma

5.2.4. Suppose an exact sequence

0→ OC → F → Q→ 0 on PR is used to construct ϕFR : fR(F)→ fR([F ]) = fR(OC).

This pulls back to an exact sequence on PK , so is compatible with the construction of

ϕF⊗RK
K . Since the trivialization of f(Q) is compatible with restriction to the generic

fiber by Proposition

5.1.19, we obtain a commutative diagram as in the proof of

Lemma

5.2.4.
Corollary 5.2.11. Keep the notation from Proposition

5.2.9. For any F1,F2 ∈

Dd≤1(PR) such that [F1] = [F2], the following diagram commutes.

f(F1)⊗R K
((ϕ

F2
R )

−1
◦ϕF1

R )⊗RK //

η

��

f(F2)⊗R K
η

��
f(F1 ⊗R K)

(ϕ
F2⊗K
K )

−1
◦ϕF1⊗K

K // f(F2 ⊗R K)
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From compatibility with field extensions and with base change to the generic fiber,

compatibility with base change between DVRs follows formally.Corollary 5.2.12. Let R and R′ be DVRs with fraction fields K and K ′, and let

R → R′ be a ring map. For any F1,F2 ∈ Dd≤1(PR) such that [F1] = [F2], the

following diagram commutes.

f(F1)⊗R R′ ((ϕ
F2
R )

−1
◦ϕF1

R )⊗RR
′
//

η

��

f(F2)⊗R R′

η

��
f(F1 ⊗R R′)

(ϕ
F2⊗R′

R′ )
−1

◦ϕF1⊗R′

R′ // f(F2 ⊗R R′)

Proof. It suffices to show the diagram commutes after further base change to K ′.

Since the intermediate step in the base change R→ K ′ does not affect the end result,

we can think of the top row as ((ϕF2
R )

−1◦ϕF1
R )⊗RK⊗KK ′. Then by compatibility with

field extensions (Corollary

5.2.8) and with base change to the generic fiber (Corollary

5.2.11), the top row is equal to (ϕF2⊗K′

K′ )
−1
◦ϕF1⊗K′

K′ . This is equal to the bottom row

by Corollary

5.2.11 again.

Base change to the closed fiber

As in the case of a field extension, we analyze the restriction of the trivializations

ϕFR on F ∈ Coh(PR) of types (V) and (Z), then we study the restriction of the

isomorphisms ϕFR on those of type (C). Finally we combine these to show the ϕ are

compatible with restriction to the closed fiber.Proposition 5.2.13. Let R be a DVR and k0 its residue field. Let F ∈ Dvert(PR).

Then the following diagram commutes.

f(F)⊗ k0

η

��

ϕFR⊗k0// R⊗ k0

η

��
f(F⊗Lk0)

ϕ
F⊗Lk0
k0 // k0

Remark 5.2.14. If F ∈ Dvert(PR), then [F⊗Lk0] = ∅. It is possible there exist q such

that [Hq(F⊗Lk0)] 6= ∅; in this case [F⊗Lk0] = ∅ means the nontrivial terms cancel.
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Over any base, whenever [F ] = ∅, by ϕF is meant

f(F)→ ⊗q(f(Hq(F)))(−1)q ⊗ϕHq(F)

−−−−−→ ⊗q(f([Hq(F)]))(−1)q pair canceling terms−−−−−−−−−−−→ O.

We may use any collection of triangles which decomposes F into coherent sheaves of

type (Z), (V), and (C).

Proof. Since the η and ϕ are compatible with triangles, we may suppose F ∈ Coh(PR)

is scheme-theoretically supported on P0 and dim(Supp(F)) ≤ 1.

Let E• be a locally free OP0-resolution of F . As in the proof of Lemma

5.1.22, we

have:(1) Tot[E• ⊗k0 m→ E• ⊗k0 R] is adapted to −⊗Lk0; and
(2) Tot[E• ⊗k0 m→ E• ⊗k0 R]⊗Lk0 = E• ⊗k0 m/m2[1]⊕ E•.

Then we obtain a large diagram as in the proof of Lemma

5.1.22, with the bottom

right square possibly involving complexes supported on curves. Since the ϕk0 are

compatible with triangles in Dd≤1(P0), we have a commutative diagram:

f(F ⊗m/m2)
f(g) //

ϕF⊗m/m2

��

f(F)

ϕF

��
f([F ⊗m/m2])

= // f([F ])

which (after dualizing) shows the bottom right square is commutative.
Proposition 5.2.15. Let R be a DVR. Let Z ⊂ PR be a subvariety which is finite

and flat over Spec R. Then the following diagram commutes.

f(OZ)⊗ k0

η

��

ϕZ
R⊗k0// R⊗ k0

η

��
f(OZ ⊗ k0)

ϕ
Z⊗k0
k0 // k0
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Proof. Because Z is R-flat, −⊗Lk0 may be replaced with −⊗ k0 via the base change

isomorphisms [

20, 8.3.2.2] Li∗Rπ∗OZ ∼= Rπ′∗i
′∗OZ = Rπ′∗(OZ⊗k0) for the following

diagram.

P0
i′ //

π′

��

PR

π

��
Spec k0

i // Spec R

The commutativity of the diagram is an entirely algebraic claim and follows from

Lemma

5.1.21 with K ′ = k0.
Corollary 5.2.16. Let R be a DVR. For any F ∈ Coh(PR) such that [F ] = ∅,

i.e. one with a cycle filtration all of whose graded pieces are of types (V) and (Z), the

trivialization ϕFR is compatible with restriction to the closed fiber: the diagram

f(F)⊗ k0

η

��

ϕFR⊗k0// R⊗ k0

η

��
f(F⊗Lk0)

ϕ
F⊗Lk0
k0 // k0

commutes.
Proposition 5.2.17. Let R be a DVR. Let F ∈ Coh(PR) be an R-flat sheaf such

that Supp(F) is a reduced and irreducible relative curve C, and F|C is torsion free of

rank 1. Then the following diagram commutes.

f(F)⊗ k0

η

��

ϕFR⊗k0 // f(OC)⊗ k0

η

��
f(F ⊗ k0)

ϕ
F⊗k0
k0

))SSSSSSSSSSSSSS
f(OC0)

ϕ
OC0
k0��

f([F ⊗ k0] = f([OC0 ])

Remark 5.2.18. The fact that taking the fundamental cycle of a flat sheaf is compatible

with specialization, here [OC0 ] = [F ⊗ k0], follows from [

24, I.3.2.2].

Proof. Suppose ϕFR is constructed using the exact sequence 0→ OC
α−→ F → Q→ 0,

the general case being obtained by splicing two together. Then we have the following
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commutative diagram.

f(F)0

η

��

f(α)−1⊗k0 // f(OC)0 ⊗ f(Q)0

η⊗η
��

ϕQR⊗k0 // f(OC)0

η

��
f(F ⊗ k0)

f(α⊗Lk0)
−1

// f(OC0)⊗ f(Q⊗Lk0)
1⊗ϕQ⊗

Lk0
k0 // f(OC0)

The right hand square commutes by Corollary

5.2.16. Since OC0

α⊗Lk0−−−−→ F ⊗ k0 →

Q⊗Lk0 →+1 is a triangle, we have a commutative diagram:

f(OC0)⊗ f(Q⊗Lk0)

ϕ
OC0⊗ϕQ⊗Lk0

��

f(α⊗Lk0) // f(F ⊗ k0)

ϕF⊗k0

��
f([OC0 ])⊗ k0

mult // f([F ⊗ k0])

which, pasted on the bottom of the previous diagram, gives the desired diagram.
Proposition 5.2.19. Let R be a DVR and k0 its residue field. For any F ∈

Dd≤1(PR), the following diagram commutes.

f(F)⊗R k0

η

��

ϕFR⊗Rk0// f([F ])⊗R k0

η

��
f(F⊗L

Rk0)

ϕ
F⊗L

Rk0
k0

((PPPPPPPPPPPP
f([F ]⊗R k0)

ϕ
[F]⊗Rk0
k0��

f([F⊗L
Rk0])

Proof. Since the base change and ϕ isomorphisms are compatible with triangles, by

taking a cycle filtration of F we reduce to showing commutativity in the case F ∈

Coh(PR) is type (V), (Z), or (C). These were done in Propositions

5.2.13,

5.2.15, and

5.2.17, respectively.
Corollary 5.2.20. Keep the notation from Proposition

5.2.19. For any F1,F2 ∈

Dd≤1(PR) such that [F1] = [F2], the following diagram commutes.

f(F1)⊗R k0

((ϕ
F2
R )

−1
◦ϕF1

R )⊗Rk0 //

η

��

f(F2)⊗R k0

η

��
f(F1⊗L

Rk0)
(ϕ
F2⊗

Lk0
k0

)
−1

◦ϕF1⊗
Lk0

k0 // f(F2⊗L
Rk0)
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Theorem 5.2.21. Let B be a seminormal k-scheme. Let F1,F2 ∈ Dd≤1(PB) be such

that [F1] = [F2]. (For example, Fi = OCi
, where C1, C2 ⊂ PB are B-flat closed

subschemes of relative dimension ≤ 1 such that [C1] = [C2].)

Let G be as in Situation

5.1.1. (For example, G is a locally free resolution of a B-flat

subscheme D ⊂ PB of relative dimension ≤ 1.)

Then there is an isomorphism φF1,F2

G : fB(F1) ∼= fB(F2) of line bundles on B.

The φ’s satisfy the cocycle condition: if F3 ∈ Dd≤1(PB) satisfies [F3] = [Fi] for

i = 1, 2, then φF1,F3

G = φF2,F3

G ◦ φF1,F2

G .

The isomorphism φ := φF1,F2

G is characterized by the property that for any field K

and any morphism Spec K → B,

φ|Spec K = (ϕF2⊗LK
K )

−1
◦ ϕF1⊗LK

K .

Proof. By Corollary

3.1.11, an isomorphism of line bundles L ∼= M on a seminormal

scheme B is equivalent to isomorphisms f ∗L ∼= f ∗M for every f : Spec R → B, R a

complete DVR or a field, compatible with restriction to the generic and closed points.

We obtain such isomorphisms using the construction in Theorem

5.1.29:

(ϕF2
R )

−1 ◦ ϕF1
R : fR(F1)→ fR([F1]) = fR([F2])→ fR(F2).

These isomorphisms are compatible with restriction to the generic point by Corollary

5.2.11, and to the closed point by Corollary

5.2.20.

The cocycle condition is clear: (ϕF3
R )

−1 ◦ ϕF1
R = (ϕF3

R )
−1 ◦ ϕF2

R ◦ (ϕF2
R )

−1 ◦ ϕF1
R .

Any isomorphism of line bundles is determined by its fibers.

Further compatibility with disjoint cycles. In Proposition

5.1.24 we showed

(over a field L) that the trivialization ϕZL : fL(OZ) → L is the one induced by the

quasi-isomorphism OZ⊗LG ∼−→ 0 if G is exact on Z. Now we prove an amplification

of this result.
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Proposition 5.2.22. Let K ⊃ k be a field. Let F ,G ∈ Dd≤1(PK) satisfy Supp(F) ∩

Supp(G) = ∅. Then the following diagram commutes.

f(F) = detRπ∗(F⊗LG)
detRπ∗(0) //

ϕF

))RRRRRRRRRRRRRRR
det(0) = K

f([F ])

⊗ detRπ∗(0)
88qqqqqqqqqq

Proof. By Proposition

5.2.6, we may suppose K = K. We can find a cycle filtration

of F using triangles all of whose objects have support disjoint from the support of G.

Then the quasi-isomorphism F⊗LG ∼−→ 0 is compatible with triangles: suppose the

triangle A→ F → B →+1 is used. Then the diagram:

A⊗LG //

o
��

F⊗LG //

o
��

B⊗LG
o

��
0 // 0 // 0

induces the following commutative diagram.

f(A)⊗ f(B) //

��

f(F)

��
f(0)⊗ f(0) // f(0)

(5.2.1)

Since the ϕ are also compatible with triangles, we reduce the proposition to the case

F ∈ Coh(PK) and F is of type (Z) or (C). Factors of type (Z) were handled in

Proposition

5.1.24.

There is nothing to prove in case F = OC . By using OC(−H) → OC → Q1 and a

diagram similar to (

5.2.1), we deduce the proposition for any OC(−H). For a general

F of type (C), use OC(−H)→ F → Q2.
Corollary 5.2.23. With notation and hypotheses as in Theorem

5.2.21, suppose also

Supp(F1) ∩ Supp(G) = Supp(F2) ∩ Supp(G) = ∅. Then the following diagram com-

mutes.

fB(F1)

φ
��

detRπ∗(0) // OB
=

��
fB(F2)

detRπ∗(0) // OB
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5.3 The two variable problem

Goal. In constructing the descent datum, we encounter the following problem: given

(C,D), (C ′, D′) ∈ H × H with [C] = [C ′] and [D] = [D′], identify the fibers

f(C,D) ∼= f(C ′, D′). Both fibers map to f([C], [D]), but in (possibly) two ways: we

can use the operations C ; [C], then D ; [D]; or vice versa. The goal of this section

is to show these define the same isomorphism.

In this section only the threefold P/k is fixed, and we allow G to vary. In addition to

Hypotheses

5.1.2, in this section we impose the following conditions on the variable

objects.Hypotheses 5.3.1. The complexes F and G belong to Dd≤1(PR).

Both F and G are equipped with the canonical trivializations (see Lemma

2.1.4).

γF : detOPT
(F) ∼= OPT

γG : detOPT
(G) ∼= OPT

Notation. Since we will operate on both variables, we further decorate the notation

from the previous section. Set ϕFR = ϕ
F;[F ]
G,γ R

: fR(F ,G)→ fR([F ],G).

By operating on the second variable and using the canonical trivializations above, we

define ϕF ,γFG;[G],γGR
: fR(F ,G)→ fR(F , [G]).

If [G] =
∑

i niCi, we define ϕ
F;[F ],γF
[G],γ[G]

= ⊗i(ϕF;[F ],γF
OCi

,γOCi

)
⊗ni

.
Lemma 5.3.2. Let K ⊃ k be a field. In addition to Hypotheses

5.3.1, suppose

F ∈ Coh(PK) is of type (Z), i.e. F ∼= Op for some p ∈ P (L), with L/K finite.

Let G1 → G2 → G3 →+1 be a triangle in Dd≤1(PK). Then the following diagram

commutes.

f(Op,G1)⊗ f(Op,G3) //

ϕ
Op;∅
G1

⊗ϕOp;∅
G3��

f(Op,G2)

ϕ
Op;∅
G2��

K ⊗K mult // K

(5.3.1)

Proof. Let Ei be a bounded resolution of Gi by finite locally free OPK
-modules. Let

ip : p ↪→ PK denote the inclusion and πp : p→ Spec K the structure morphism. Then
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the following diagram commutes (∧ := detK).

f(Op,G1)⊗ f(Op,G3) //

��

f(Op,G2)

��
∧π∗Lip∗E1 ⊗ ∧π∗Lip∗E3 //

α⊗α
��

∧π∗Lip∗E2
α

��

(∧Op)−1 ⊗ ∧ detp E1 ⊗ (∧Op)−1 ⊗ ∧ detp E3 //

1⊗∧(γG1
)⊗1⊗∧(γG3

)

��

(∧Op)−1 ⊗ ∧ detp E2
1⊗∧(γG2

)

��
K ⊗K // K

(5.3.2)

The middle square commutes because the α isomorphisms are compatible with tri-

angles (Proposition

4.2.4). To see the bottom square commutes, restrict the com-

mutative diagram from the third statement of Lemma

2.1.4 to p, apply detK , and

use the identity

4.2.1 for 1-dimensional Op-vector spaces A,B: detK(A ⊗Op B) =

(detK Op)−1 ⊗K detK A⊗K detK B.

We obtain the following diagram which, when tensored with (∧Op)−1, proves the

commutativity of the bottom square in (

5.3.2). (Again set ∧ := detK .)

(∧Op)−1 ⊗ ∧(∧pE1)⊗ ∧(∧pE3)
1⊗∧(γ1|p)⊗∧(γ3|p)

��

= // ∧(∧pE1 ⊗p ∧pE3)

∧(γ1|p⊗γ3|p)

��

// ∧(∧pE2)

∧(γ2|p)

��
(∧Op)−1 ⊗ ∧Op ⊗ ∧Op

= // ∧(Op ⊗Op) // ∧Op

Now we deduce the result of Lemma

5.3.2 for any F ∈ Cohd≤0(PK).Corollary 5.3.3. Let K ⊃ k be a field. In addition to Hypotheses

5.3.1, suppose

F ∈ Cohd≤0(PK). Let G1 → G2 → G3 →+1 be a distinguished triangle in Dd≤1(PK).

Then we have a commutative diagram akin to (

5.3.1) except we replace Op with F .

Proof. We may operate on F one summand at a time, so it suffices to prove Corollary

5.3.3 in the case Supp(F) = {p} for p ∈ P (L), L/K a finite field extension.
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We induct on `Op(F). The case ` = 1 is Lemma

5.3.2. In general we can find an

exact sequence 0→ F ′ → F → F ′′ → 0 with `(F ′), `(F ′′) < `(F). This gives rise to

the following exact square.

F ′⊗LG1
//

��

F ′⊗LG2
//

��

F ′⊗LG3

��
F⊗LG1

//

��

F⊗LG2
//

��

F⊗LG3

��
F ′′⊗LG1

// F ′′⊗LG2
// F ′′⊗LG3

(5.3.3)

The trivializations are compatible with the columns by the 1-variable case (Proposi-

tion

5.1.12), and with the first and third rows by the induction hypothesis. Therefore

they are compatible with the second row as well.

Now we show the ϕC are compatible with triangles in the other variable.Lemma 5.3.4. Let K ⊃ k be a field. In addition to Hypotheses

5.3.1, suppose

F ∈ Coh(PK) is of type (C), i.e. Supp(F) is a reduced and irreducible curve C, and

F|C is torsion free of rank 1. Let G1 → G2 → G3 →+1 be a distinguished triangle in

Dd≤1(PK). Then the following diagram commutes.

f(F ,G1)⊗ f(F ,G3) //

ϕ
F;OC
G1

⊗ϕF;OC
G3��

f(F ,G2)

ϕ
F;OC
G2��

f(OC ,G1)⊗ f(OC ,G3) // f(OC ,G2)

Here both the top and bottom rows are induced by triangles.

Proof. Without loss of generality, suppose ϕF : f(F) ∼= f(C) is realized by 0 →

OC → F → Q→ 0. Form the exact square analogous to (

5.3.3) by replacing F ′ with

OC and F ′′ with Q. This gives the commutativity of the top square in the following
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diagram.

f(F ,G1)⊗ f(F ,G3) //

��

f(F ,G2)

��
f(OC ,G1)⊗ f(Q,G1)⊗ f(OC ,G3)⊗ f(Q,G3) //

1⊗ϕQ;∅
G1

⊗1⊗ϕQ;∅
G3

��

f(OC ,G2)⊗ f(Q,G2)

1⊗ϕQ;∅
G2

��
f(OC ,G1)⊗ f(OC ,G3) // f(OC ,G2)

The bottom square commutes by Corollary

5.3.3. The columns are ϕF;OC
Gi

.
Lemma 5.3.5. Let K ⊃ k be a field. Let p, q be closed points of PK. Then ϕ

Op;∅
Oq

=

ϕ
Op

Oq;∅ : f(Op,Oq)→ K.

Proof. Let ip : p ↪→ PK denote the inclusion and πp : p → Spec K the structure

morphism. Let E•p denote a locally freeOPK
-resolution ofOp, and let γp : detPK

(E•p )→

OPK
denote the canonical trivialization.

We claim the following diagram commutes.

f(Op,Oq) //

��

det πq∗Liq
∗(E•p )

α // (detK Oq)−1 ⊗ detK(detq E•p )

1⊗detK(γp|q)

��

det πp∗Lip
∗(E•q )

α

��

(detK Op)−1 ⊗ detK(detp E•q )
1⊗detK(γq |p) // K

In case p 6= q, both compositions are equal to f(Op,Oq)
f(Op⊗LOq

∼−→0)−−−−−−−−−→ f(0) = K by

Proposition

5.1.24.

In case p = q, the compositions differ by
∏

i detH i(σ), where σ : E•⊗LE• → E•⊗LE•

denotes the ‘switch’ map, defined (following [

7, 1.3]) with sign (−1)ab on E•a ⊗ E•b
(a summand of the degree a + b term of E•⊗LE•). Because p is a local complete

intersection in PK , and because p is affine (!), we can compute explicitly using the

Koszul resolution. So let U = Spec A 3 p be an open affine in PK such that we have
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(f1, f2, f3) = mp for f1, f2, f3 ∈ A. Let M ∼= A3 be the A-module on generators fi.

Then we can take E• to be the complex of A-modules:

∧3M
d3−→ ∧2M

d2−→M
d1−→ A

with differentials:

d3(a ∧ b ∧ c) = a(b ∧ c)− b(a ∧ c) + c(a ∧ b),

d2(a ∧ b) = a(b)− b(a), and

d1(a) = a, i.e. d1(v1, v2, v3) = v1f1 + v2f2 + v3f3.

Then E•⊗LE• is (the single complex associated to) the double complex which appears

below with its maps to E•⊗LOp and Op⊗LE•; the sign convention on the double

complex again follows [

7].

A/m⊗ ∧3M
0 // A/m⊗ ∧2M

0 // A/m⊗M 0 // A/m⊗ A

A⊗ ∧3M
1⊗d3 // A⊗ ∧2M

OO

1⊗d2 // A⊗M 1⊗d1 // A⊗ A A⊗ A/m

M ⊗ ∧2M

d1⊗1

OO

−1⊗d2 // M ⊗M

d1⊗1

OO

−1⊗d1 // M ⊗ A

d1⊗1

OO

//

M ⊗ A/m

0

OO

∧2M ⊗M

d2⊗1

OO

1⊗d1 // ∧2M ⊗ A

d2⊗1

OO

∧2M ⊗ A/m

0

OO

∧3M ⊗ A

d3⊗1

OO

∧3M ⊗ A/m

0

OO

We calculate the sign of σ on each H i separately, moving from the right hand column

to the top row.

H i(E•⊗LOp)↔ class in ⊕r=ir=0 ∧i−rM ⊗ ∧rM ↔ H i(Op⊗LE•)

α⊗ 1↔ [α⊗ 1] = [1⊗ α]↔ 1⊗ α⇒ H0(σ) = 1

a⊗ 1↔ [a⊗ 1,−1⊗ a]↔ −1⊗ a⇒ H1(σ) = −1

a ∧ b⊗ 1↔ [(a ∧ b)⊗ 1, b⊗ a− a⊗ b, 1⊗ (a ∧ b)]↔ 1⊗ a ∧ b⇒ H2(σ) = 1
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a ∧ b ∧ c⊗ 1↔ [(a ∧ b ∧ c)⊗ 1,−(b ∧ c)⊗ a+ (a ∧ c)⊗ b− (a ∧ b)⊗ c, c⊗ (a ∧ b) +

a⊗ (b ∧ c)− b⊗ (a ∧ c),−1⊗ (a ∧ b ∧ c)]↔ −1⊗ a ∧ b ∧ c⇒ H3(σ) = −1

Therefore
∏

i detH i(σ) = 1 and the original diagram commutes.
Remark 5.3.6. Thinking of the possible failure of the diagram to commute as a func-

tion R : P (K)× P (K) → {−1, 1}, since we know R|P (K)×P (K)\∆ = 1, it seems quite

likely that R ≡ 1.Corollary 5.3.7. Let K ⊃ k be a field. Let F ,G ∈ Cohd≤0(PK). Then ϕF;∅
G =

ϕFG;∅ : f(F ,G)→ K.
Lemma 5.3.8. Let K ⊃ k be a field. Let p ∈ PK be a closed point, and suppose

G ∈ Coh(PK) is of type (C), i.e. Supp(G) is a reduced and irreducible curve C, and

G|C is torsion free of rank 1. Then the following diagram commutes.

f(Op,G)
ϕ
Op
G;OC//

ϕ
Op;∅
G

��

f(Op,OC)

ϕ
Op;∅
OC��

K
= // K

Proof. Without loss of generality suppose ϕG : f(G) ∼= f(OC) is constructed via a

short exact sequence 0 → OC → G → Q → 0. We claim the following diagram

commutes.

f(Op,G) //

ϕ
Op;∅
G

��

f(Op,OC)⊗ f(Op,Q)

ϕ
Op;∅
OC

⊗ϕOp;∅
Q

��

1⊗ϕOp
Q;∅// f(Op,OC)

ϕ
Op;∅
OC��

K
mult−1

// K ⊗K mult // K

The left square commutes by Lemma

5.3.2 and the right by

5.3.7.
Corollary 5.3.9. Let K ⊃ k be a field. Let F ∈ Cohd≤0(PK), and let G ∈ Coh(PK)

be of type (C), i.e. Supp(G) is a reduced and irreducible curve C, and G|C is torsion

free of rank 1. Then the following diagram commutes.

f(F ,G)
ϕFG;OC//

ϕF;∅
G

��

f(F ,OC)

ϕF;∅
OC

��
K

= // K
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Proof. We may take a cycle filtration of F by Lemma

5.3.4 (with the roles of F ,G

reversed), then apply Lemma

5.3.8 to each of the factors.
Lemma 5.3.10. Let K ⊃ k be a field. Let F ,G ∈ Cohd≤1(PK) be such that Supp(F) =

C1 a reduced and irreducible curve, and F|C1 is torsion free of rank 1; similarly for

G with a reduced and irreducible curve C2. Then the following diagram commutes.

f(F ,G)
ϕFG;OC2 //

ϕ
F;OC1
G

��

f(F ,OC2)

ϕ
F;OC1
OC2��

f(OC1 ,G)
ϕ
OC1
G;OC2 // f(OC1 ,OC2)

Proof. Without loss of generality suppose ϕF : f(F) ∼= f(OC1) is constructed via a

short exact sequence 0→ OC1 → F → Q1 → 0, and ϕG via 0→ OC2 → G → Q2 → 0.

We claim the diagram:

f(F ,G) //

ϕ
F;OC1
G

��

f(F ,OC2)⊗ f(F ,Q2)
1⊗ϕFQ2;∅ //

ϕ
F;OC1
OC2

⊗ϕ
F;OC1
Q2��

f(F ,OC2)

ϕ
F;OC1
OC2��

f(OC1 ,G) // f(OC1 ,OC2)⊗ f(OC1 ,Q2)
1⊗ϕ

OC1
Q2;∅ // f(OC1 ,OC2)

commutes. The left square commutes by Lemma

5.3.4 and the right by Corollary

5.3.9.
Proposition 5.3.11. Let K ⊃ k be a field. Let F ,G ∈ Dd≤1(PK) be as in Hypotheses

5.3.1. Then the following diagram commutes.

f(F ,G)
ϕFG;[G] //

ϕ
F;[F]
G

��

f(F , [G])
ϕ
F;[F]
[G]

��
f([F ],G)

ϕ
[F]
G;[G]// f([F ], [G])

Proof. Choose a cycle filtration of F (resp. G) whose graded pieces are denoted by
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Fi (resp. Gj). Then we need to show the following diagram commutes.

f(F ,G)

filt F
��

filt G // ⊗jf(F ,Gj)

⊗filt F
��

⊗jϕ
F
Gj;[Gj ]

// f(F , [G])

⊗filt F
��

⊗if(Fi,G)
⊗filt G //

⊗iϕ
Fi;[Fi]
G

��

⊗i,jf(Fi,Gj)
⊗i,jϕ

Fi
Gj;[Gj ]

//

⊗i,jϕ
Fi;[Fi]
Gj

��

⊗if(Fi, [G])
⊗iϕ

Fi;[Fi]

[G]
��

f([F ],G) ⊗filt G // ⊗jf([F ],Gj)
⊗jϕ

[F]
Gj;[Gj ]

// f([F ], [G])

(5.3.4)

The commutativity of the top left square is trivial. The top right and bottom left

squares in (

5.3.4) assert that ϕ (on sheaves of types (Z) and (C)) are compatible with

triangles in the other variable. We proved this for type (Z) in Lemma

5.3.2 and for

type (C) in Lemma

5.3.4.

There are three cases of the bottom right square: (point, point), (point, curve), and

(curve, curve). The commutativity in these cases was verified in Lemmas

5.3.5,

5.3.8,

and

5.3.10, respectively.
Theorem 5.3.12. Let B be a seminormal k-scheme.

Let F1,F2,G1,G2 ∈ Dd≤1(PB) be such that [F1] = [F2] and [G1] = [G2]. Then there is

an isomorphism φF1,F2

G1,G2
: fB(F1,G1) ∼= fB(F2,G2) of line bundles on B.

The φ’s satisfy the cocycle condition: if F3,G3 ∈ Dd≤1(PB) satisfy [F3] = [Fi] and

[G3] = [Gi] for i = 1, 2, then φF1,F3

G1,G3
= φF2,F3

G2,G3
◦ φF1,F2

G1,G2
: fB(F1,G1) ∼= fB(F3,G3).

Proof. By Theorem

5.2.21 we have two candidates: φF2
G1,G2
◦ φF1,F2

G1
and φF1,F2

G2
◦ φF1

G1,G2
,

corresponding to the two outermost ways of traversing the following square.

f(F1,G1) //

��

f(F1, [G1])

��

f(F1,G1)oo

��
f([F1],G1) // f([F1], [G1]) f([F1],G2)oo

f(F2,G1)

OO

// f(F2, [G1])

OO

f(F2,G2)

OO

oo
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It suffices to check the commutativity at every field-valued point of B, and at these

points it suffices to check the commutativity of the smaller squares. These commute by

Proposition

5.3.11. Therefore we may define φF1,F2

G1,G2
:= φF2

G1,G2
◦φF1,F2

G1
= φF1,F2

G2
◦φF1

G1,G2
.

The preceding equality, together with the cocycle condition with one factor fixed

(Theorem

5.2.21), implies the cocycle condition:

φ23
23φ

12
12 = (φ23

3 φ
2
23)(φ

2
12φ

12
1 ) = φ23

3 φ
2
13φ

12
1 = φ23

3 (φ12
3 φ

1
13) = φ13

3 φ
1
13 = φ13

13.

Theorem 5.3.13. Use the notation from Construction

2.4.1 (with q1, q2 of degree

one), Theorem

5.2.21, and Theorem

5.3.12. There exists an isomorphism φ : p1
∗L ∼=

p2
∗L on (H1 ×H2 ×C1×C2 H1 ×H2)

sn satsifying the cocycle condition: q∗12(φ)◦q∗23(φ) =

q∗13(φ) on (H1 ×H2 ×C1×C2 H1 ×H2 ×C1×C2 H1 ×H2)
sn.

Proof. This is simply Theorem

5.3.12 with B = (H1 ×H2 ×C1×C2 H1 ×H2)
sn and

Fi,Gi the structure sheaves of the appropriate universal flat families.

5.4 Descent property

In this section we show the descent datum just defined is effective. We freely use

notation from the previous three sections.

Notation. Let P/k be the fixed smooth projective threefold from before, with k now

supposed algebraically closed. Let C1 (resp. C2) denote its Chow variety of curves of

degree d1 (resp. d2). Let q be a linear numerical polynomial with leading coefficient

d1, and let (H q
1 )′ denote the closed subscheme of the Hilbert scheme consisting of

subschemes T ⊂ P such that all irreducible components of T are one-dimensional. Let

H1 =
∐

q (H q
1 )′

sn
denote the disjoint union of the seminormalizations of the (H q

1 )′.

We have the universal family U1 ↪→ P×H1 and a morphism π1 : H1 → C1. (Similarly

when 1 is replaced with 2.) We have the line bundle L := detRpr23∗(OU1⊗LOU2) on
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H1 ×H2 and the isomorphism φ : p1
∗L ∼= p2

∗L on (H1 ×H2 ×C1×C2 H1 ×H2)
sn.

All γ’s are understood to be the canonical ones as in Lemma

2.1.4, and all fields are

extensions of k.

Strategy. First we use the moving lemma (in the form of Lemma

2.2.14) to construct

trivializations locally on the Chow varieties. As a result, we conclude (L, φ) descends

to both C1×H2 and H1×C2. Next we apply Proposition

3.2.11 to show the descended

bundles lift to simplicial line bundles. Finally we show these bundles descend to

C1 × C2.Construction 5.4.1. Let K ⊃ k be a field and let YK ⊂ PK := P ×k K be a

one-dimensional subscheme corresponding to y ∈ H2(K). Let C be a 1-cycle on P

corresponding to c ∈ C1(k).

Now apply Lemma

2.2.14 with X = PK : choose a collection of short exact sequences

{α} in Coh(PK) expressing [OYK
] =

∑
i ni[Ti] with Ti ∈ Coh(PK) as in Lemma

2.2.14,

i.e. Supp(Ti) ∩ Supp(CK) = ∅ for all i. Let ac,y be the unique automorphism of OPK

making the following diagram commute:

detPK
OYK

γOYK

��

⊗ det(α)// ⊗i(detPK
Ti)

⊗ni

⊗i(γTi
)⊗ni

��
OPK

ac,y // OPK

Since P is projective, we have ac,y ∈ K.

Define U ⊂ C1 to consist of those cycles C ′ satisfying Supp(C ′
K) ∩ Supp(Ti) = ∅ for

all i. Thus U is an open set containing c. We have V := π−1(U) =
∐

q Vq ⊂H1 as q

ranges over certain numerical polynomials.

Define Tc,y : L|Vq×y
∼= OVq×y, on each Vq separately, as follows:

detRpr23∗(OUVq
⊗LOYK

)
α−→ ⊗i(detRpr23∗(OUVq

⊗LTi))
⊗ni β−→ OVq×y

·ac,y
−q(0)

−−−−−→ OVq×y.

Here α means the map induced by the collection {α}, and β is induced by the natural

maps

Rpr23∗(OUVq
⊗LTi)

∼−→ 0
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which are quasi-isomorphisms because a locally free resolution of Ti is acyclic on UVq .

Now we study how the construction interacts with the isomorphism φ.Lemma 5.4.2. Let F ∈ Coh(P ) satisfy F ∼= Op for p ∈ P (k), and let ψ : F ∼= Op
be a chosen identification. Let YK , Ti be obtained by Construction

5.4.1. Then the

following diagram commutes.

f(FK ,OY ) α //

f(ψK)

��

⊗f(FK , Ti)⊗ni

⊗f(ψK)
��

β

((RRRRRRRRRRRRRRRR

f(OpK ,OY )

=

��

α // ⊗f(OpK , Ti)
⊗ni

=

��

K

detpK
OYK

//

γOYK
|pK

��

⊗(detpK
Ti)

⊗ni

⊗(γTi
|pK

)⊗ni

��
K ·ac,y

// K

=

<<yyyyyyyyyyyyyyyyyyyyyyy

Proof. The commutativity of the squares is trivial. The triangle commutes by Propo-

sition

5.1.24.
Corollary 5.4.3. Keep the notation from Construction

5.4.1 and Lemma

5.4.2. Let

pj ∈ P (k) be closed points, and let aj ∈ Z. Then the following diagram commutes.

⊗jf(OpjK
,OYK

)⊗aj α //

⊗ϕ
Opj ;∅
OYK��

⊗i,j(f(OpjK
, Ti)

⊗aj)
⊗ni

β

��
K

ac,y

P
aj

// K
Proposition 5.4.4. Keep the notation from Construction

5.4.1. Let F ∈ Cohd≤1(P ),

and suppose chosen short exact sequences of coherent sheaves on P expressing F =

[F ] +
∑
ajpj. Set A =

∑
aj. Then the following diagram commutes.

f(FK ,OYK
)

ϕ
F;[F]
OY ��

βα // K

ac,y
−A

��
f([FK ],OYK

)
βα // K
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Remark 5.4.5. Since k is algebraically closed, a cycle filtration of F induces one of

FK , and the notation [F ]K = [FK ] is unambiguous. Henceforth we omit the subscript

K.

Proof. The isomorphism ϕ
F;[F ]
OY

admits the following description: choose short exact

sequences of coherent sheaves on P expressing F = [F ] +
∑
ajpj, for example via a

cycle filtration, and trivialize the factors of the form f(Opj
,OY ). Using many triangles

of triangles, we obtain a commutative diagram:

f(F ,OY ) α //

��

⊗i(f(F , Ti))⊗ni
β //

��

K

=

��
f([F ],OY )⊗⊗jf(Opj

,OY )⊗aj α // ⊗i(f([F ], Ti)⊗⊗jf(Opj
, Ti)

⊗aj)
⊗ni β // K

Combining this with the diagram in Corollary

5.4.3 gives the result.
Proposition 5.4.6. Keep the notation from Construction

5.4.1 and Proposition

5.4.4.

Suppose F1,F2 ∈ Cohd≤1(P ) satisfy [F1] = [F2]. Suppose chosen short exact se-

quences expressing F1 = [F1] +
∑
ajpj and F2 = [F2] +

∑
bkqk. Set A =

∑
aj and

B =
∑
bk. Then the following diagram commutes.

f(F1,OY )
βα //

ϕ
F1;[F1]
OY ��

K
ac,y

−χ(F1)

//

ac,y
−A

��

K

=

��

f([F1],OY )
βα // K

f(F2,OY )

ϕ
F2;[F2]
OY

OO

βα // K

ac,y
−B

OO

ac,y
−χ(F2)

// K

Proof. The squares on the left commute by Corollary

5.4.3, and the right side is clearly

commutative. Note the left column is φ : p1
∗L ∼= p2

∗L on the fiber at (F1,OY )×[F1],OY

(F2,OY ) ∈ (H1 ×H2 ×C1×C2 H1 ×H2)
sn, and the top and bottom rows are Tc,y.

Theorem 5.4.7. For any (c, y) ∈ C1(k) × H2(K), there exist an open U ⊂ C1

containing c, and a trivialization (on H1 × y) Tc,y : L|π1
−1(U)

∼= Oπ1
−1(U) such that
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the following diagram commutes.

p1
∗(L|Vq×y)

p1∗Tc,y//

φ

��

O(p1)−1(Vq×y)

=

��
p2
∗(L|Vq×y)

p2∗Tc,y// O(p2)−1(Vq×y)

Proof. Construction

5.4.1 gives an open neighborhood U and a trivialization Tc,y.

(Note that if Supp(c) ∩ Supp(y) = ∅, no “moving” is necessary.)

To see Tc,y is compatible with the descent datum, it is enough the check the com-

mutativity of the diagram pointwise. So we must show: if F1,F2 are the structure

sheaves of subschemes with Hilbert polynomials q1, q2 such that [F1] = [F2] = c, then

the following diagram commutes.

f(F1,OY )

φ

&&

Tc,y //

ϕ

��

K

=

��

f([F1], [OY ])

f(F2,OY )
Tc,y //

ϕ

OO

K

Since the maps f([F1],OY ) → f([F1], [OY ]) and f([F2],OY ) → f([F2], [OY ]) are

equal, we may replace f([F1], [OY ]) with f([F1],OY ) in this diagram. Then the

commutativity follows from Proposition

5.4.6.
Theorem 5.4.8. Keep the notation from the beginning of this section. The line

bundle L on H1 ×H2 descends to C1 ×H2 and to H1 × C2.

Proof. We form a proper hypercovering Y 1
• augmented over the seminormal scheme

C1 as follows

Y 1
0 := H1

Y 1
1 := (H1 ×C1 H1)

sn

Y 1
n := (H1 ×C1 . . .×C1 H1)

sn (n+ 1 factors)

with the obvious maps. To obtain the maps we use that seminormalization is a

functor. By restricting the descent datum from Theorem

5.3.13, we see the incidence
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bundle L on Y 1
0 ×H2 has the descent datum φ on Y 1

1 ×H2 satisfying the cocycle

condition on Y 1
2 ×H2. We think of these data as a morphism H2 → PicY 1

•
. The

descent criterion in Corollary

3.2.4 and the descent property in Theorem

5.4.7 say

that for every h ∈H2, the morphism lifts to PicC1
. By Theorem

3.2.10, the pointwise

lifts glue to a morphism H2 → PicC1
. To see we obtain a line bundle this way, consider

the diagram:

0 // Pic(H2) //

=

��

Pic(C1 ×H2) //

��

PicC1
(H2)

��

// 0

0 // Pic(H2) // Pic(Y 1
• ×H2) // PicY 1

•
(H2)

By considering this diagram this diagram one connected component of C1 at a time,

we argue as in Theorem

4.1.8 that the morphism H2 → PicC1
is induced by a line

bundle on C1×H2. Since the top row is exact and the rightmost column is injective,

there is a unique such line bundle.
Remark 5.4.9. Strictly speaking, we should choose a finite collection F1 of numerical

polynomials q such that
∐

F1
(H q

1 )′
sn → C1 is surjective, and similarly for C2; form the

proper hypercovering along
∐

F1
(H q

1 )′
sn → C1; and replace H2 with

∐
F2

(H q
2 )′

sn
.

Since the result holds for any pair of finite collections, and the resulting line bundle

(in this case, on a particular C1×(H q
2 )′

sn
) does not depend on the collections chosen,

we make the statement and give the proof without reference to any discrete invariants.Remark 5.4.10. We would be done if we could show the following. For i = 1, 2, let

fi : Yi → Xi be a (proper, surjective) morphism (between seminormal k-schemes, k

algebraically closed). Suppose L ∈ Pic(Y1 × Y2) descends to X1 × Y2 and Y1 × X2.

Then L descends to X1 ×X2. Unfortunately we are not able to do this.Corollary 5.4.11. Keep the notation from the beginning of this section and Theorem

5.4.8. The descended line bundles on C1×H2 and H1×C2 extend to line bundles on

C1 × Y 2
• and Y 1

• × C2.

Proof. This is a special case of Proposition

3.2.11.
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Theorem 5.4.12. Keep the notation from the beginning of this section and Theorem

5.4.8. The line bundle L descends to C1 × C2.

Proof. Thus far we have constructed the commutative diagram on the right hand side

of the following diagram.

Spec K ′ //

��

H2

��

// PicC1

��
Spec K // C2

// PicY 1
•

Note the arrow C2 → PicY 1
•

is a consequence of Corollary

5.4.11. Now let Spec K →

C2 be a morphism, with K ⊃ k a field. Since H2 → C2 is surjective, we can lift it to

a field-valued point Spec K ′ →H2. We would like to find a lift Spec K → PicC1
.

The bundle corresponding to Spec K ′ → PicC1
inherits a descent datum on C1 ×k

(K ′ ×K K ′) by restricting the line bundle on C1 × Y 2
• . Since Spec K ′ → Spec K is

faithfully flat, this descent datum is effective. Therefore we have a lift Spec K →

PicC1
.

By Theorem

3.2.10, the lifts glue to a morphism C2 → PicC1
. To see this morphism

determines a unique line bundle on C1 × C2, consider the diagram with exact rows

and injective outer (hence middle) columns:

0 // Pic(C2) //

=

��

Pic(C1 × C2) //

��

PicC1
(C2)

��

// 0

0 // Pic(C2) // Pic(Y 1
• × C2) // PicY 1

•
(C2)
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