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Abstract

Splice diagrams. Singularity Links and Universal Abelian Covers

Helge Møller Pedersen

To a rational homology sphere graph manifold one can associate a weighted tree

invariant called splice diagram. In this thesis we prove a sufficient numerical condition

on the splice diagram for a graph manifold to be a singularity link. We also show

that if two manifolds have the same splice diagram, then their universal abelian covers

are homeomorphic. To prove the last theorem we have to generalize our notions to

orbifolds.
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Chapter 1 1

Chapter 1

Introduction

For a prime 3-manifoldM one has several decomposition theorems, like the geometric

decomposition which cuts M along embedded tori and Klein bottles into geometric

pieces, or the JSJ decomposition which cuts M along embedded tori into simple

and Seifert fibered pieces. A graph manifold is a manifold that does not have any

hyperbolic pieces in its geometric decomposition, or equivalently only has Seifert

fibered pieces in its JSJ decomposition. To a graph manifold one can associate several

graph invariants, and in this thesis we are going to describe the properties of such an

invariant, the splice diagram.

Splice diagrams were originally introduced in [EN85] and [Sie80], but only for

manifolds that are integer homology spheres. Splice diagrams were then generalized to

rational homology spheres in [NW02], and used extensively in [NW05a] and [NW05b].

Our splice diagrams differ from the ones in [EN85] in that we do not allow negative

weights on edges, and from the ones in [NW02], [NW05a] and [NW05b] in that we

have decorations on the nodes; however it is shown in [NW05a] that in the case of

singularity links their splice diagrams are the same as ours.

It has long been known that the link of a isolated complex surface singularity
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is a graph manifold having a plumbing diagram with only orientable base surfaces

and having a negative definite intersection form. Grauert showed in [Gra62] that the

converse is also true. In [Neu97] Neumann described conditions on the decomposition

graph, which are equivalent to the manifold being a singularity link. It is shown in

Appendix 1 of [NW05a] that a rational homology sphere singularity link has a splice

diagram without any negative decorations at nodes and has all edge determinants

positive. In this thesis we prove the other direction to get the following theorem.

Theorem 1. LetM be a rational homology sphere graph manifold with splice diagram

Γ. Then M is a singularity link if and only if Γ has no negative decorations at nodes

and all edge determinants are positive.

Another interesting subject in the study of 3 manifolds is the theory of abelian

covers. Since our manifolds are rational homology spheres their universal abelian

covers are finite covers. We show that the splice diagram of a manifold determines

its universal abelian cover.

Theorem 2. Let M and M ′ be rational homology sphere graph manifolds with the

same splice diagram Γ. Then M and M ′ have isomorphic universal abelian covers.

For singularity links the result of theorem 2 was obtained in [NW05a]. These will

be referred to as Main Theorem 1 and 2 throughout this thesis, or as first and second

Main Theorem.

The first 2 chapters will provide a general background on 3-manifolds and links of

normal surface singularities, and will not include any proofs. In the last 3 chapters

complete proofs are presented for most results. Where references are given in lieu of

proofs, it is because presenting the proof would be beyond the scope of this thesis.

In chapter 2 we describe several notions and results we need from 3-manifold

theory. Section 2.1 contains the description of the prime and JSJ decompositions (of

which we will primarily use variations of the latter). In section 2.2 we define Seifert

fibered manifolds, which are going to be the basic pieces of the decompositions we are
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interested in. We will give two different definitions. The first as being “almost” circle

fibrations over surfaces, and the second as being actual circle fibrations, but in the

category of orbifolds instead of in the category of manifolds. The first definition is

good for getting invariants, while the second is useful since we are able to generalize it

to what we will call graph orbifolds, which are needed for the proof of Main Theorem

2. The invariants obtained from Seifert fibered manifolds will then be used to study

universal and universal abelian covers of Seifert fibered manifolds in the last part of

this section.

We are going to study graph manifolds more closely in Section 2.3. First we in-

troduce the decomposition graph of a graph manifold, which is an invariant obtained

from the JSJ decomposition. Then we describe the plumbing construction of a graph

manifold, which yields a 4-manifold having the given 3-manifold as a boundary. We

then discuss the non-uniqueness of the plumbing constructions, and deduce an invari-

ant of the graph manifold. The last part of the chapter is devoted to the intersection

matrix, which is very important in the study of graph manifolds, and its use to see

when graph manifolds are rational homology spheres.

Chapter 3 is about normal surface singularities. First we discuss the topology

of normal surface singularities by studying the 3-manifold called the link of the sin-

gularity. It turns out that the link determines the topology. To determine which

3-manifolds are links of normal surface singularities, we study the resolution of the

singularity, and arrive at the dual resolution graph, which turns out to be a plumbing

graph of the link. We then describe Grauert’s result about which 3-manifolds are

singularity links, and Neumann’s version of this using the decomposition graph.

In Section 3.2 we describe a particularly nice type of singularity known as the

Brieskorn complete intersection, which turns out to have Seifert fibered links. We give

a description of their Seifert invariants from their equations, and use this to classify

universal abelian covers of rational homology sphere Seifert fibered manifolds.

In Chapter 4 we define our version of splice diagrams, and prove several facts we
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need about them, included how one gets a splice diagram from a plumbing diagram.

Chapter 5 contains the proof of the two Main Theorems, which are in 5.2 and 5.4

respectively. Section 5.1 has some important lemmas, which among other things show

that the splice diagram together with the order of the first homology group determine

the decomposition graph. In Section 5.3 we define graph orbifolds and examine some

of their properties, since they will be needed to prove Main Theorem 2.

The final chapter is about some corollaries of the second Main Theorem and its

proof. We determine from the splice diagram when the universal abelian cover is an

integer homology sphere, and find a necessary condition on the splice diagram for the

universal abelian cover to be a rational homology sphere. In the case of singularity

links, the condition also turns out to be sufficient.



Chapter 2 5

Chapter 2

3-Manifolds

2.1 Decomposition theorems

In understanding and classifying closed oriented 3-manifolds, we are going to do as

one often does in science: divide the manifold into simpler, more understandable

pieces. But before we start applying this procedure to 3-manifolds, let us look at how

it is done with 2-manifolds. The procedure one uses to decompose 2-manifolds into

simpler pieces is called connected sum and is defined as follows in all dimensions: let

M1 and M2 be closed manifolds of dimension n, let M̃i be Mi with a ball removed.

Note that ∂M̃i = Sn−1, and let M1 connect sum M2, denoted M1 #M2, be defined as

M̃1

⋃
ϕ−M̃2 where ϕ : Sn−1 → Sn−1 is a homeomorphism. This gives a natural way

to compose manifolds, and just as multiplication of natural numbers lets us define

prime numbers we can define prime manifolds. A manifold M 6= Sn is prime if

M = M1 #M2 implies that M1 or M2 is homeomorphic to Sn. Note that Sn is a unit

for the connected sum, since Sn with a ball removed is just a ball.

In the case of 2 dimensional manifolds there are only two different prime mani-

folds, namely S2 and the torus T 2 (if we include unorientable manifolds then RP 2 is

also prime). We have a unique prime decomposition, every orientable surface is home-

omorphic to #
g
T 2 (where we take the empty sum to be S2) where g is the genus
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of the surface. This actually gives a semi group isomorphism between oriented sur-

faces modulo homeomorphisms with connected sum and N with plus. For unoriented

surfaces there is no unique factorization, since RP 2 #RP 2 #RP 2 is homeomorphic

to T 2 #RP 2.

A manifold is irreducible if every embedded sphere bounds a disk. It is clear that

irreducible implies prime, since if a manifold is not prime, the sphere along which the

connected sum is taken does not bound a disk. On the other hand the torus is prime

but not irreducible, since T 2 has lots of circles, which are not null-homologous. So

a prime 2-manifold is either irreducible or T 2. In three dimensions we see the same

behaviour.

Proposition 2.1. If M , a closed oriented 3 dimensional manifold, is prime, then

either M is irreducible or M is homeomorphic to S2 × S1.

We have the following theorem which is analogous to the prime decomposition for

2-manifolds.

Theorem 2.2 (Kneser-Milnor). Let M be a closed orientable 3-manifold, then M is

homeomorphic to #
n

i=1
Pi, where Pi are prime, and the decomposition is unique up

to permutation of the Pi’s.

The prime decomposition of 2-manifolds is fairly simple, since the pieces of the

decomposition all tori. This is not the case for 3-manifolds. There are infinitely many

prime 3-manifolds, and prime 3-manifolds may be very complicated. In fact there is

currently no complete classification of prime 3-manifolds.

In the following any closed 3-manifold will be prime. To understand prime 3-

manifolds and try to classify them, we are going to cut them along tori. But cutting

a manifold along a torus has the following two complications.

The first is that gluing two manifolds along torus boundaries, is not a unique

operation. The gluing depends on the isotopy class of the diffeomorphism of the

torus we use in the gluing. Keeping track of the gluing data, i.e. the isotopy class of
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the gluing map, is very important and in section 2.3 we give several ways to do it for

the type of manifolds we are particularly interested in. In the prime decomposition

where we only considered closed manifolds, because after we cut the manifold into two

pieces, we glued a ball into the boundaries of the pieces, which is a unique operation.

We can not do this in the case of torus boundary since there is not a unique way to

glue in a solid torus. Hence the pieces of the decomposition have to be thought of as

manifolds with boundary.

The second complication is that we need to consider which embedded tori we are

going to cut along. We do not want to cut along too many tori since it would leave

too much information in the gluing maps, and not in the pieces of the decomposition.

Saying this in another way, well understood manifolds should not be cut. Consider

the following, the class of lens spaces are a nice class of manifold, but every lens space

L has an embedded tori T 2, such that if we cut L along T 2 we get two solid tori. If

we cut along tori of this type, then every lens space would decompose into two solid

tori, so the only way to distinguish two lens space would be by the gluing map. We

are going to restrict the types of tori we cut along to avoid things like this.

An embedded surface F ⊂ M is called boundary parallel if it is isotopic to a

boundary component of M . Cutting along a boundary parallel torus leaves a compo-

nent homeomorphic to T 2 × [0, 1], and a component which is homeomorphic to the

piece we had before we cut. Hence we have not gained any new information.Next we

define a restriction on the tori to avoid the example above with separating lens spaces

into two solid tori.

Definition 2.3. Let F ⊂M be an embedded surface in an oriented 3-manifold. We

call F incompressible if either (i) F is S2, does not bound a ball and is not boundary

parallel: or (ii) π1(F )→ π1(M) is an injection.

We call a surface compressible, if it is not incompressible. For tori we get the

following result:

Proposition 2.4. Let T 2 ⊂ M be an embedded torus in an oriented irreducible



CHAPTER 2. 3-MANIFOLDS 8

manifold. T 2 is compressible if and only if either T 2 bounds a solid torus or T 2 ⊂

D3 ⊂M and T 2 bounds a knot complement, where D3 is a 3-ball.

So cutting along incompressible tori, ensures that we do not cut lens spaces into

solid tori. We say that two submanifolds are parallel if they are isotopic. We have

the Kneser-Haken Finiteness Theorem:

Theorem 2.5. Let M be a compact irreducible 3-manifold, then there exists a bound

on the number of pairwise non-parallel incompressible surfaces in M .

Now to separate the incompressible surfaces we have:

Lemma 2.6. Let S1, . . . , Sn ⊂M incompressible surfaces, such that every pair Si, Sj

can be isotoped to be disjoint. Then one can make them simultaneously disjoint, and

S1

⋃
· · ·
⋃
Sn ⊂M is determined up to isotopy.

We call an incompressible torus canonical if it can be isotoped to be disjoint from

any other incompressible torus. By the Kneser-Haken Finiteness Theorem there are

only finitely many non-parallel canonical tori. These are the tori we are going to

cut along. A manifold is called atoroidal or simple if every incompressible tori is

boundary parallel.

Theorem 2.7 (JSJ Decomposition). LetM be a irreducible 3-manifold and {T1, . . . , Tn}

be a maximal set of non-parallel canonical tori. Then T =
⋃n
i=1 Ti cuts M into simple

or Seifert fibered pieces. Furthermore T is uniquely minimal up to isotopy among all

collections of incompressible tori which cut M into simple or Seifert fibered pieces.

We will describe Seifert fibered manifolds in greater detail in the next section. It

should be said that a piece could be both Seifert fibered and simple, e.g. S3 or lens

spaces.

We are in this thesis primarily going to be interested in graph manifolds, which are

defined to be manifolds, where all the pieces of their JSJ decomposition are Seifert

fibered.
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There is another decomposition of 3-manifolds, namely the geometric decompo-

sition, which decomposes a 3-manifold into geometric pieces. This differs from the

JSJ-decomposition in several ways. Firstly, in the geometric decomposition one cuts

along both tori and Klein bottles; where the geometric decomposition would cut along

a Klein bottles, the JSJ-decomposition cut along the torus boundary of its orientation

I-bundle instead. Also there are several manifolds which are geometric but would be

cut in the JSJ decomposition, e.g. manifolds with the Sol geometry. Also RP 3 #RP 3

is geometric and would thus not be cut in the geometric decomposition even though

it is not prime.

2.2 Seifert fibered manifolds

2.2.1 Definitions and invariants

The following discussion of Seifert fibered manifolds is based on [Neu99] and [Neu07].

Let us start looking at the Seifert fibered manifolds which come up as one of the types

of pieces in the JSJ decomposition. They are defined as follows

Definition 2.8. A generalized Seifert fibration on a 3-manifold M consist of a 2-

manifold S (possible with boundary) and a map π : M → S such that all the fibers

are circles, and there is a smallest finite (possible empty) set of fibers F1, . . . , Fn ⊂

M − ∂M , such that if H =
⋃n
i=1 Fi, π|(M−H) : (M −H)→ (S−π(H)) is an fibration.

One calls the Fi singular fibers. A 3-manifold M is Seifert fibered if there exist a

Seifert fibration on M .

To a Seifert fibration one associates several natural invariants. The simplest is

the genus of the base surface. If S in unorientable then by the genus of S we mean

minus the rank of the first singular homology group. Even if S is not orientable, we

always assume from now on that M is orientable. For the next invariants let us look

more closely at the fibers. Let F be a fiber (possibly singular). Then we can find a
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regular neighbourhood N of F such that N = π−1(D) where D is a disk around π(F ).

N is homeomorphic to a solid torus, and thus T = ∂N is a torus. We can choose

N such that no additional singular fibers are included. We get a natural fibration

π|T : T → S1, by restricting π. Choose a longitude l ⊂ T and a meridian m ⊂ T , i.e.

simple closed curves such that their homology classes generate H1(T ), and such that

the class of l generate H1(N), while m is contractible in N . Then the class of a fiber

f of the fibration π|T : T → S1 is equal to αl+qm for some coprime α, q. One can see

N−F as made of toral shells the following way. ConsiderD−π(F ) =
⋃
r∈(p,1] S

1
r where

S1
r is a circle of radius r, then N − F =

⋃
r∈(o.1] π

−1(S1
r ), and T = π−1(S1

r ) is a torus.

More over all the T ’s are fibered the same way, since π|(N−F ) : (N −F )→ (D−π(F ))

is a fibration. Seeing N −F as made up of toral shells one can see that nearby fibers

converge to αF , or saying it in an other way, nearby fibers cover F α times. One

therefore calls α the degree of the fiber F . If α = 1 then F is a regular fiber, i.e not

a singular fiber. That α ≥ 0 follows by choosing the right orientation on f , and if

α = 0 then M is in fact a connected sum of lens spaces, and hence not prime. We

will prove the last fact in a more general setting as part of the proof of the second

main theorem see 5.14.

Choose a section s of the fibration of T . Then we have the following homological

relation m = αs + βf where βq ≡ 1 (modα), we call the pair (α, β) for the Seifert

pair of the the fiber F . Now β depends on the choice of section s. Two different

sections s and s′ differs in homology by a multiple of f , and s + f is also a section.

Hence changing sections changes β by adding multiples of α. There is a unique β

satisfying 0 ≤ β < α; we will say that the Seifert pair is normalized if this is satisfied.

In defining α, β there is a choice of orientation of T . Now the choice of orientation will

not change α but changing the orientation of T will change q to −q, and therefore β

to α− β. We will use the conventions of [Neu97] to choose our orientations (which is

the opposite of the more standard ones used in [JN83], [Neu83b], [Orl72]) and [Sco83],

because Seifert pairs that will be obtained from plumbing diagrams will have a nicer
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presentation, as we will see.

Choose a collection of fibers F1, . . . , Fn which include all the singular fibers. Let

Fi ⊂ Ni be neighbourhoods of the fibers as above, let N̊i be the interior of Ni and let

M0 = M −
⋃n
i=1 N̊i. Now M0 is a genuine fibration over S0 = S−π(

⋃
N̊i). Let s be a

section of the fibration. s restricts to a section on each of the boundary components

of M0, so one get a section si of the fibration of ∂Ni, and hence as above a Seifert

pair (αi, βi) for each of the fibers Fi. Now changing the section s will change all the

si by nifi, for some ni ∈ Z subject to the restraint
∑
ni = 0. Thus changing the

section keeps fixed the congruence class βi (modαi) and e =
∑ βi

αi
. We call the sum

e the rational euler number of the Seifert fibration. Note that if we had chosen the

other convention for Seifert pairs then one defines e = −
∑ βi

αi
in order to get the

same number.

If αi = 1 then Fi is not a singular fiber, as mentioned before, so the fibration

on M0 can be extended to a fibration on M0

⋃
Ni. If furthermore βi = 0 then s

can be extended to a section on all of M0

⋃
Ni, hence we can discard pair of Seifert

invariants of the form (1, 0). Discarding such pairs does not change e. Assuming that

M is prime, the only way we can change the collection of Seifert pairs is by adding

niαi to βi such that
∑

i ni = 0 and discarding pairs of the form (1, 0). Since e is

preserved under these operations, e is an invariant of the Seifert fibration.

Choose a collection of fibres F1, . . . , Fn which includes all the singular fibers and

at least one non singular fiber. Then choose any section of π : M0 → S0 one gets a n-

tuple of Seifert pairs (α1, β1), (α2, β2), . . . , (αn, βn). By changing the Seifert invariant

as described above and reordering the fibers, the Seifert invariants can be brought to

the following form: (1, b), (α′1, β
′
1), . . . , (α′n′ , β

′
n′) where α′i+1 ≥ α′i for all i and α′1 > 1,

and if α′i = α′i+1 then β′i ≤ β′i+1. We say collection of Seifert pairs in this form are in

normal form. Viewed in this way, the set of α′i, β′i gives a section of ∂(M −
⋃n′

i=1 Ni)

and b is the obstruction to extending this section to all of M −
⋃n′

i=1Ni.

Given a manifold M and a Seifert fibration of M , we associate a set of Seifert in-
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variants given by (g, r, (1, b), (α1, β1), . . . , (αn, βn)) where g is the genus of the base sur-

face S, r is the number of boundary components ofM , and (1, b), (α1, β1) . . . , (αn, βn)

are the collection of Seifert pairs of the fibers in normal form. This invariant uniquely

describes the given Seifert fibration, and it also determines the topology of M except

in the few cases where M has several Seifert fibrations.

Theorem 2.9. Let (g, r, (1, b), (α1, β1), . . . , (αn, βn)) be a set of integers where r ≥ 0,

the n-tuple of αi, βi are ordered by the lexicographic ordering, α1 > 1, αi > βi ≥ 0 and

gcd(αi, βi) = 1. Then there exists a 3-manifold M(g, r, (1, b), (α1, β1), . . . , (αn, βn))

with that set of integers as its Seifert invariants in normal form. Furthermore this is

the unique Seifert fibration of M except in the following cases:

M(0, 1, (α, β))- There are infinitely many Seifert fibrations of the solid torus.

M(0, 1, (2, 1), (2, 1)) = M(−1, 1, (1, 0)).

M(0, 0, (α1, β1), (α2, β2))- There are many fibrations of S3, S1 × S2 and the lens

spaces.

M(0, 0, (1, b), (2, 1), (2, 1), (α, β)) = M(−1, 0, (α(b − 1) − β, α))- (Note the second

expression might not be in normal form, so we mean the Seifert invariant obtained

by putting it in normal form, which depends on α and β.)

M(0, 0, (1,−2), (2, 1), (2, 1), (2, 1), (2, 1)) = M(−2, 0, (1, 0)).

Example 2.10. M(0, 0, (1,−2), (2, 1), (3, 2), (5, 4)) is the Poincare homology sphere,

and the rational euler number of the Poincare homology sphere is − 1
30
.

Given the Seifert invariants of a manifold M one can get the usual algebraic

topological invariants in the following way.
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Theorem 2.11. Let M = M(g, 0, (α1, β1), . . . , (αn, βn) if g ≥ 0 then

π1(M) = 〈a1, b1, . . . , ag, bg, q1, . . . , qn, h | [h, ai] = [h, bi] = [h, qi] = 1,

q
αj

j h
βJ = 1,

( n∏
j+1

qj

)( g∏
i=1

[ai, bi]
)

= 1〉 (2.1)

if g < 0 then

π1(M) = 〈a1, . . . , ag, q1, . . . , qn, h | a−1
i hai = h−1, [h, qi] = 1, q

αj

j h
βJ = 1,( n∏

j+1

qj

)( |g|∏
i=1

a2
i

)
= 1〉. (2.2)

For proofs see [JN83] or [Orl72]. In [Orl72] he also proves under a condition on the

Seifert invariants he call “large”, that π1(M) determines the Seifert invariants. This is

clearly not always the case since we had the examples before of manifolds with more

than one Seifert fibration.

Corollary 2.12. Let M = M(g, 0, (α1, β1), . . . , (αn, βn) where g ≥ 0 then

H1(M) = Z2g ⊕ 〈Q1, . . . , Qn, H |αjQj + βjH = 0,
n∑
i=1

Qi = 0〉. (2.3)

In particular if e(M) 6= 0 then H1(M) = Z2g ⊕ T where T is a finite abelian group

of order |T | = α1α2 . . . αn|e| and if e(M) = 0 then H1(M) = Z2g+1 ⊕ T where T is a

finite group.

It is clear from the corollary that M is a rational homology sphere if and only

if e(M) 6= 0 and g = 0; Moreover M is an integer homology sphere if and only if

g = 0 and |e(M)| = α1α2 . . . αn. In particular this proves that the Poincare homology

sphere is an integer homology sphere. From this it is easy to see that the αi’s have

to be pairwise coprime for M to be a integer homology sphere. We will see later how

one constructs from any collection of pairwise coprime numbers an integer homology

sphere which is a Seifert fibered manifold, and that such a manifold is unique.
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2.2.2 Alternative definition

Instead of defining Seifert fibrations as “almost” circle fibrations, we will extend the

category we are working in to one where Seifert fibrations are actual S1 fibrations.

To do this we need the following definition.

Definition 2.13. An n-dimensional orbifold atlas on a paracompact Hausdorf space

M consist of an open cover {Ui}i∈I closed under finite intersections, and for each i ∈ I

a homeomorphism ϕi : Ũi/Gi → Ui where Ũi is a open subset of Rn and Gi is a finite

group acting smoothly on Ũi. Furthermore it satisfies the compatibility condition that

whenever Uj ⊆ Ui there is an inclusion fji : Gj → Gi and an embedding ϕji : Ũj → Ũi,

equivariant with respect to fji such that the following diagram commutes

Ũj
eϕji //

��

Ũi

��

Ũj/Gj

ϕji //

ϕi

��

Ũi/fjiGj

��

Ũi/Gi

ϕi

��
Uj

� � // Ui.

(2.4)

Each of the (Ui, Ũi, Gi) is called an orbifold chart.

An orbifold atlas is of course not unique but, as with manifolds, we define a n-

dimensional orbifold to be a paracompact Hausdorf space equipped with a maximal

orbifold atlas. Clearly all smooth manifolds are orbifolds, using smooth charts with

trivial Gi action. More generally, if all the Gi act freely then M is a manifold. Also

note that ifM is an n-dimensional orbifold then there is an open dense subset U ⊆M ,

such that for each x ∈ U , x has a neighbourhood diffeomorphic to Rn.

Let f : M → N be a continuous map between two orbifolds. We say f is a orbifold

map if for every x ∈ M there exist orbifold charts (Ux, Ũx, Gx), (Uf(x), Ũf(x), Gf(x))
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with x ∈ Ux ⊆M and f(x) ∈ Uf(x) ⊆M such that f(Ux) ⊆ Uf(x), a homeomorphism

ψ : Gx → Gf(x), and a smooth map f̃ : Ũx → Ũf(x) equivariant with respect to the

actions of Gx and Gf(x) (i.e ψ(g)f̃(y) = f̃(gy) for g ∈ Gx and y ∈ Ũx)) such that the

following diagram commutes

Ũx
ef |Ux //

��

Ũf(x)

��

Ũx/Gx

ϕx

��

Ũf(x)/Gf(x)

ϕf(x)

��
Ux

f |Ux // Uf(x).

(2.5)

If M and N are smooth manifolds, then all orbifold maps are smooth maps. A

isomorphism of orbifolds is a homeomorphism f : M → N such that f and f−1 are

orbifold maps.

An orbifold fibration with fiber F is defined to be a orbifold map f : M → N such

that each point x ∈ N has a neighbourhood Ux homeomorphic to Ũx/Gx, F is a

manifold with a Gx-action for each x, and such that the orbifold chart for f−1(Ux) is

(f−1(Ux), Ũx × F,Gx) with Gx acting diagonally on Ũx × F with quotient f−1(Ux).

We also require that the overlap between charts in M respects the fibered structure.

Notice that if the diagonal action of Gx on Ũx × F is free for all Gx then M is a

manifold, even if N is not. Now we can make another definition of Seifert fibered

manifolds.

Definition 2.14. A Seifert fibered manifold is an orbifold fibration f : M → S with

fibers S1, where S is a 2 dimensional orbifold, and M is a manifold with the given

orbifold charts.

This definition is equivalent to our previous definition. Since M is a manifold, the

only singular points of S, i.e. points where where Gx does not act freely on Ux, are

cone points i.e. points where Gx
∼= Z/pZ acts as a subgroup of SO(2). There are only

finitely many cone points, each corresponds to a singular fiber of M , and the first of

the Seifert pair α, β associated to the singular fiber is p, i.e. α = p.
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χorb > 0 χorb = 0 χorb < 0

e = 0 S2 ×E E3 H2 ×E

e 6= 0 S3 Nil PSL

Table 2.1: Geometries of Seifert fibered manifolds

The definition of Seifert fibered manifolds as orbifold fibrations gives rise to two

invariants of the Seifert fibration. The first is the orbifold euler characteristic of S

given by

χorb(S) = χ(S)−
∑
i

(1− 1
pi

), (2.6)

where χ(S) is the topological euler characteristic of S and the sum is taken over all

points where Gi
∼= Z/piZ for pi 6= 1. The other invariant is the rational euler number

we defined above, but in this definition it is actual the euler number of the orbifold

circle fibration, hence an obstruction to the existence of a section. So the Poincare

homology sphere has χorb = 1
30
, and earlier we saw that its rational euler number is

−1
30
. These two invariants are important since they determine the geometric structure

on Seifert fibered manifolds according to Table 2.1.

By this we see that the geometry of the Poincare homology sphere is spherical,

which of course is obvious from most of its constructions.

One can easily define orbifolds with boundaries by using a half space instead of Rn

in the definition. Then χorb(S) is defined the same way, but we need more information

before we can define e. Let M be a Seifert fibered manifold with boundary, choose a

simple closed curve in each of the boundary pieces transverse to the fibrations. We

call such a choice a system of meridians. Given a system of meridians one can form

a closed Seifert fibered manifold M by gluing a solid torus in each of the boundary

components, identifying a meridian of the solid torus with the simple closed curve of

the boundary piece. Then one defines the rational euler number of M with a system

of meridians to be e(M). We will later see how the JSJ decomposition gives a system

of meridians.
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2.2.3 Covers of Seifert fibered manifolds

We have the following useful theorem about maps between Seifert fibered spaces

Theorem 2.15. Let g : M1 → M2 be a map between Seifert fibered manifolds such

that if π1 : M1 → S1 and π2 : M2 → S2 are the Seifert fibrations, and there is a map

g′ : S1 → S2 such that the following diagram commutes

M1
g //

π1

��

M2

π2

��
S1

g′ // S2.

(2.7)

Then e(M2) = b
f
e(M1) where b = deg(g′) and f is the degree of g restricted to a

general fiber, i.e. deg(g) = bf .

For a proof of this see [JN83].

This theorem is particularly useful when looking at (finite) coverings of Seifert

fibered manifolds. Universal covers are completely determined by χorb and e, deduced

from the geometries of the Seifert fibered spaces (see Table 2.1). If χorb ≤ 0 the the

universal cover is R3, if χorb > 0 and e = 0 the universal cover is S2×R. Only in the

case χorb < 0 and e 6= 0 is the universal cover a finite cover, and hence S3. Playing

with the condition χorb < 0 and e 6= 0 one can determine that the only Seifert fibered

manifolds with cover S3 are either lens space or spaces with genus 0 having 3 singular

fibers of degrees (2, 2, n), (2, 3, 3), (2, 3, 4) or (2, 3, 5).

We are in general in this thesis interested in universal abelian covers, i.e. the cover

that has H1(M) as covering transformation group. The universal abelian cover of a

manifold M is finite if and only if H1(M) is finite. We saw in Theorem 2.12 that a

Seifert fibered manifold has finite H1(M) if and only if the genus is 0 and e 6= 0. While

only a few Seifert fibered manifolds have finite universal covers there are many that

have finite universal abelian covers. Given any finite collection of pairs of coprime

integers greater than 0 there are infinitely many rational homology spheres with that
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set as its Seifert pairs. Now notice that any finite cover of a Seifert fibered manifold is

Seifert fibered, so by Theorem 2.15, one can determine e of the cover just by knowing

the degree of the cover, and either the degree of the covering restricted to the fibers or

the degree of the covering restricted to the base. Notice that the covering restricted to

the base need not be a covering map, but can be branched along the singular points;

if we see this as a covering in the category of orbifolds, then map restricted to the

base is an actual orbifold cover. We will later show a way to construct the universal

abelian cover of a Seifert fibered manifold, knowing the Seifert invariants.

2.3 Graph Manifolds

In this thesis most of the manifolds we are going to consider are graph manifolds. We

have defined these before, but we repeat the definition for convenience.

Definition 2.16. A graph manifold is a 3-manifold which only has Seifert fibered

pieces in its JSJ-decomposition.

We have an alternative characterisation of graph manifolds given by Waldhausen

see [Wal67]:

Theorem 2.17 (Waldhausen). A manifold M is a graph manifold if and only if M

can be cut along embedded tori into pieces of the form Σ× S1 where Σ is a surface.

2.3.1 The decomposition graph

We want to construct invariants of graph manifolds. As is fitting for the name “graph

manifolds”, most of the invariants are going to be (weighted) graphs. The first in-

variant we will construct is the decomposition graph. It has a vertex for each Seifert

fibered piece in the JSJ decomposition ofM , and an edge corresponding to each torus

we have cut along in the JSJ decomposition, attached to the vertices where each side

of the torus was glued (this could mean that our graph has loops).
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One adds the following decorations to the graph Γ(M). Each of the pieces is a

Seifert fibered manifold with boundary (at least if there are any edges in the diagram),

so each of the boundary components has a natural fibration. If two vertices vi and vj

(corresponding to Seifert fibered pieces Mi and Mj) are connected by an edge, then

Mi and Mj are glued along a torus T . Take fi and fj to be fibers of the boundary

pieces of Mi and Mj which are glued along T . Then we can view fi and fj as simple

closed curves in T , and hence they have a intersection number pij = fi · fj. To make

sure pij is well-defined we always orient T as the boundary of the piece Mi. Then

fi · fj = fj · fi, since we change the orientation on T when we change the order of

factors. Notice that pij 6= 0, because if pij = 0 then fibers from each of the side

would not intersect, hence are homologous and the fibration can be extended over T ,

so Mi

⋃
T Mj is Seifert fibered and T is not a torus we would cut along in the JSJ

decomposition.

To each vertex vi we associate two numbers. The first is χorb of the piece Mi,

which we donote by [χorb]. The other is the rational euler number e of Mi with the

following system of meridians: for each boundary component of Mi choose a fiber fj

of the boundary of the pieces Mj glued to Mi along the torus corresponding to the

edge, and let the simple closed curve be the image of fj in Mi.

Example 2.18.

[−7
2

]

−3
4◦

3

PPPPPPPPPPPPPP

[−9
5

]

5
4◦

[−3
2

]

6
7◦ 1

−2

PPPPPPPPPPPPPP

[−9
2

]

−5
2◦

2
nnnnnnnnnnnnnn

[−7
3

]

6
5◦

1
nnnnnnnnnnnnnn

[−5
3

]

−5
4◦

7
nnnnnnnnnnnnnn .

Obvious the decomposition graph for a Seifert fibered manifold is just one vertex,

with χorb and e as added decorations.

Given a decomposition graph one can form the decomposition matrix, which is a

symmetric n × n matrix if the decomposition graph has n vertices. The entries are
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as follows

aii = e(Mi) + 2
∑

k∈

8>>><>>>:
edges from

vi to vi

9>>>=>>>;

1

|pk|
(2.8)

aij =
∑

k∈

8>>><>>>:
edges from

vi to vj

9>>>=>>>;

1

|pk|
(2.9)

We will later use the decomposition matrix to determine which graph manifolds

are singularity links, which are going to be important for the proof of the first Main

Theorem. There are other uses of the decomposition matrix, such as determining

when a graph manifold fibers over the circle, and when a graph manifold has an

embedded surface transverse to a Seifert fiber at one of the Seifert fibered pieces.

This is shown in part 2 and 3 of Theorem D in [Neu97], which is also is the article

where Neumann introduce the decomposition graph and decomposition matrix.

2.3.2 The plumbing graph

We now describe another “invariant” of graph manifold, the plumbing graph or plumb-

ing diagram. This graph serves two purposes simultaneously, it describes a certain

way to decompose M into pieces along tori (generally cutting along more tori than in

the JSJ decomposition), and it gives a construction of a 4-manifold X whose bound-

ary is M . Since this effectively construct M , the plumbing diagram is a complete

“invariant”, so two graph manifolds M1 and M2 with the same plumbing diagram are

diffeomorphic. However there may be many different cuttings, or different 4-manifolds

with the same boundary, so that the plumbing graph depends on the chosen construc-

tion. Nonetheless there is a calculus of plumbing graphs which enable us to eventually

define a particular plumbing graph called the normal form, which is an invariant of

M .
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The decomposition of M we are going to get is not quite the decomposition given

by Waldhausen’s theorem 2.17, but will correspond to this immediate corollary of it.

Corollary 2.19. A manifold M is a graph manifold if and only if it can be cut along

tori into pieces of the form S1-bundle over a surface Σ.

Moreover, any piece which is a non trivial S1-bundle over Σ can further be cut

into pieces of the form of Theorem 2.17: cut Σ along a circle into two surfaces with

boundaries; any S1-bundle over a surface with boundary is trivial. However, consider-

ing more general S1-bundles will give us a more interesting data. The corresponding

plumbing graph will effectively have vertices corresponding to these pieces, with dec-

orations which identify the S1-bundle.

To find a 4-manifold whose boundary is a S1-bundle, one should look for a disk

bundle. This inspires the approach below. Start with a collection of disk bundles

Xi → Σi where the Σi’s are surfaces of genus gi, remember that −gi < 0 means that

Σi is unorientable and rankH1(Σi) = gi. One can then glue Xi to Xj in the following

way. Take disc Di ⊆ Σi and Dj ⊆ Σj, and restricting the fibrations to Di and Dj

gives subsets Di × D′i ⊆ Xi and Dj × D′j ⊆ Xj where D′i, D′j are disks, such that

Xi−Di×D′i fibers over Σi−Di and Xj −Dj ×D′j fibers over Σj −Dj. Now glue Xi

to Xj by identifying Di × D′i with Dj × D′j with the map that reverses the factors,

i.e. identify all the disk with the standard disk and let the map be (x, y) → (y, x).

So a collection {Xi}’s and data describing gluings of various pieces gives rise to a

4-manifold which we will called plumbed according to this data. A convenient way

to record the data is in a graph Γ, which we will call a plumbing graph or plumbing

diagram. It has a vertex corresponding to each Xi, and an edge between vertices vi

and vj for each time we glued Xi to Xj. We decorate each vertex with gi and the euler

number ei of Xj → Σi which also corresponds to the self-intersection number of the

zero section of the bundle Xi → Σi. When drawing plumbing graphs, by convention

we generally omit the genus label when gi = 0.
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Example 2.20.

−2◦
RRRRRRR

1◦

yyyyyyyy
−3◦

[3]

−2◦
XXXXXXXXXXXXX

−1◦
lllllll

[−1]

3◦ −2◦
lllllll

EEEEEEEE
−3◦

RRRRRRR
−1◦

lllllll

2◦

[2]

−3◦
RRRRRRR

[−1]

−1◦
lllllll 0◦

RRRRRRR
−3◦

lllllll 0◦
lllllll −2◦

lllllll −3◦ .

Consider the boundary of a plumbed 4-manifold. It is not smooth, so we smooth

it; the result is unique up to diffeomorphism. The boundary Mi of each Xi before

the plumbing is an S1-bundle over Σi, and moreover all S1 bundles over Σi can be

obtained this way, ei is the euler number of that bundle. Removing Di × D′i from

Xi corresponds to removing a solid torus Di × S1 from Mi, and Mi −Di × S1 fibers

over Σi − Di with torus boundary. When we then glue Xi to Xj, we identify the

boundaries of Mi−Di×S1 with the boundaryMj−Dj×S1 by exchanging the fibers

and sections. This then shows that the boundary of the plumbed manifold can be

cut along a collection of tori, one for each edge in Γ, into pieces which are S1 bundles

over surfaces.

This shows that all boundaries of plumbed 4-manifolds are graph manifolds by

Corollary 2.19. There is still one obstruction to all graph manifolds being of this

form. Decompose an arbitrary graph manifold into pieces of the form of S1 bundle

over surfaces, make a graph Γ with a vertex for each piece and a edge for each torus

in the decomposition; if there is a cycle in Γ then we may not be able to orient the

pieces compatibly for this to be a plumbing as above. To extend the plumbing graph

construction to all graph manifolds, we associate a map τ : H1(Γ)→ Z/2Z such that

τ of a cycle is 0 if we can orient the pieces compatibly, 1 otherwise. Given a plumbing

graph with a τ as above, we first make a graph manifold M ′ as before according to

Γ, and then for each cycle where τ = 1, we take any one of the tori corresponding to

an edge in the cycle, cut the manifold M ′ along it, and reglue by the map
( −1 0

0 −1

)
.

Doing this appropriately will return our original graph manifold M .

One can also extend the plumbing graph to manifolds which are not prime, but
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which only have graph manifolds in its prime decomposition. The plumbing graph is

then going to be the disjoint union of the plumbing graphs of the the pieces of the

prime decomposition. This means when we have a plumbing graph with two disjoint

pieces it represents the connected sum of the graph manifolds associated to the pieces.

2.3.3 Plumbing calculus and normal form

We saw in last section how to associate to a graph manifold a plumbing graph. This

is unfortunately highly non-unique. Given a graph manifold M there are in general

infinitely many different plumbing graphs for M . This is because there are several

ways to change X without changing its boundary, the most important of which are

blowing up and blowing down. There are two types of blow ups, +1 and −1. A −1

blow up corresponds to taking a connect sum with CP 2 while a +1 corresponds to

taking a connect sum with CP 2. The −1 also has another description in the algebraic

setting which make it very usefull in the next chapter. Blow downs are the inverses of

these operations. These operations have one of the following effects on the plumbing

graph for X, depending where the points one blows up are. In the following ε = ±1,

+ denotes disjoint union of graphs and the left hand side is the blow up of the right

hand side

Γ +
ε
◦ ←→ Γ

...
[gi]

ei

◦
PPPPPPP

nnnnnnn
ε
◦ ←→ ...

[gi]

ei−ε◦
QQQQQQQQ

mmmmmmmm

...
[gi]

ei

◦
PPPPPPP

oooooooo
ε
◦

[gj ]

ej

◦
nnnnnnn

OOOOOOOO ... ←→ ...
[gi]

ei−ε◦
QQQQQQQQ

nnnnnnnn
[gj ]

ej−ε◦
nnnnnnn

OOOOOOOO ...
.

There are also blow ups which interact with loops and 2 cycles in a graph, but since

the plumbing diagrams we generally deal with do not have these we will not describe

this, as it involves a subtlety with the map τ .
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Another valid transformation of plumbing graphs is:

...
[gi]

ei

◦
PPPPPPP

pppppppp
0◦

[gj ]

ej

◦
nnnnnnn

NNNNNNNN ... ←→ ...
[gi # gj ]

ei+ej◦
PPPPPPP

pppppppp

nnnnnnn

NNNNNNNN ...
,

where gi # gj = gi + gj if they both have the same sign, and if one of them (say gi) is

negative the gi # gj = gi − 2gj. This corresponds to the extension of the fibration of

each of the pieces over the torus corresponding to the edge, to get a fibration on the

union of the pieces. (Again, there is a sublety with the map τ , which we can ignore

since we are only interested in trees.)

If a vertex vi with ei = 0 and gi = 0 has valence one then the associated manifold

is not prime, being a connected sum of the manifolds one get from plumbing on the

connected pieces of Γ minus the vertex vi and minus the vj vertex adjacent to vi and

a number of S1 × S2’s.

Γ1

0◦
[g]

e
◦

9y9y9y9y

%e%e%e%e
... ←→ Γ1 + · · ·+ Γn + #m

k=1
0◦

Γn ,

Where /o/o/o indicates that there may be several edges starting at vi and ending at

a vertex of Γl.

To see the reminder of the plumbing graph moves, and for a proof that this

“plumbing calculus” works, see [Neu81]. One can also define a plumbing calculus for

graph manifolds with boundaries, see [Neu81].

Using all these moves, one can get the plumbing diagram to a normal form. By a

string we mean a chain of valence two vertices with gi = 0.

Theorem 2.21. Every graph manifold has a unique normal form plumbing diagram,

such that the number of vertices with negative genus is minimal and on all strings the

ei’s are ≤ −2.
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This is not quite the same normal form as in [Neu81] but using the plumbing

calculus mentioned above we can get from Neumann’s normal form to the one we use

see [Neu89b].

Example 2.22. The plumbing diagram in Example 2.20 was not in normal form,

here is its normal form

−2◦
RRRRRRR

[3]

−2◦
RRRRRRR

−2◦

[−1]

3◦ −2◦
lllllll

JJJJJJJJ
−4◦ 0◦

lllllll

[−5]

−4◦ 2◦ 0◦
RRRRRRR

−3◦
lllllll −2◦

lllllll −3◦ .

We can now describe the plumbing diagram for any Seifert fibered manifold.

Theorem 2.23. A Seifert fibered manifold M = M(g, 0, (1, b), (α1, β1), . . . , (αn, βn)

has the following normal form plumbing graph

−b1M1◦
lllllll

−b1m1−1◦

y
y

y
y

−b2M2

◦
lllllll

−b2m2−1

◦

y
y

y
y−b11◦

���������

−b21
◦

ssssssss

[g]

b◦

CCCCCCCCC ...
−bk1◦

J
J

J
J

−bk(mk−1)◦
RRRRRRR
−bkmk◦

,

where

αi
βi

= bi1 −
1

bi2 −
1

bi3 − . . .

. (2.10)

Notice that since αi > βi and gcd(αi.βi) = 1, αi

βi
has a unique continued fraction

expression with the entries greater than or equal to 2.
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Example 2.24. The following weighted graph is a plumbing graph for the Poincare

homology sphere.
−2◦ −2◦ −2◦ −2◦ −2◦ −2◦ −2◦

−2 ◦ ,

2.3.4 Intersection form

The plumbed manifold X deformation retracts down to the union of the Σi all inter-

secting transversely, hence the Σi’s generate H2(X,Z). The plumbing graph encodes

how the Σi’s intersect each other, so from the plumbing graph Γ one can make the

intersection matrix I(Γ), which is a representation of the intersection form on H2(X)

in the generating set given by the Σi’s. I(Γ) is an n× n matrix (aij), where n is the

number of vertices of Γ, with aii = ei and aij is equal to the number of edges between

vi and vj in Γ for i 6= j. In the next chapter we will see some important application

of the intersection matrix. In [Neu97] Neumann shows how to get the decomposition

matrix from the intersection matrix.

We are in general going to be most interested in rational homology sphere graph

manifolds, so let us see how to deduce from the plumbing diagram that a manifold

is a rational homology sphere. The first thing to notice is that there is no cycle.

Otherwise M is the union of two connected pieces M1 and M2, such that M1

⋂
M2

has at least two connected components, and Meyer-Vietoris then implies that the

image of H1(M) in H0(M1

⋂
M2) has a Z summand, hence that H1(M) has a Z

summand. The second thing to notice is that if any of the pieces is plumbed over a

surface with gi 6= 0 then one gets first homology classes of infinite order; this follows

by doing induction of the number of pieces of the plumbing (using Meyer-Vietoris on

the gluing), and in the case of one node from Leray-Hirsch. Finally if there are no

cycles and gi = 0 for all i, then if we look at I(Γ) as a map from Zn to Zn, we get

H1(M,Z) ∼= Coker I(Γ). For H1(M) to be finite det(I(Γ)) 6= 0. Thus we conclude

the following.
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Proposition 2.25. A graph manifold is a rational homology sphere if and only if its

normal form plumbing graph is a tree, it is plumbed over surfaces of genus zero and

det(I(Γ)) 6= 0.
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Chapter 3

Normal Surface Singularities

3.1 The topology of normal surface singularities

3.1.1 The link of a singularity

Let X be a normal complex analytic surface. Then every singular point p ∈ X is

isolated, and there exists a neighbourhood U of P such that p is the only singular

point in U , and U embeds into CN for some N . We choose the embedding so that p

is sent to the origin of CN . Let Mε = U
⋂
S2N−1
ε where S2N−1

ε is the sphere of radius

ε in CN .

Theorem 3.1. For sufficiently small ε, Mε is a smooth real manifold, and the dif-

feomorphism type of Mε does not depend on ε or the embedding. In this case we call

Mε the link of the singular point. Let Bε be the ball of radius ε. Then for suffi-

ciently small ε (U
⋂
Bε,Mε) is homeomorphic to (CM,M) where M is the link of the

singular point p and CM is the cone over M .

For a proof, see [Mil68]. We will be interested in the local topology at a singular

point, so when we talk about a singularity X, we mean a neighbourhood of a singular

point, such that X is homeomorphic to the cone over the link.
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The first result regarding the topology of a complex singularity is the following

theorem due to Mumford.

Theorem 3.2. Let p ∈ X. If the link of p is diffeomorphic to S3, then the point is

smooth.

The reason we look at normal singularities instead of more general singularities

is that the normalization of an irreducible singular point does not change its local

topology.

3.1.2 Resolution of singularities

We want to see which 3-manifolds arise as links of singularities, and to do this we

need the following construction.

Definition 3.3. A resolution of a singularity p ∈ X is a smooth complex variety

X̃ and a surjective and proper morphism of analytic varieties π : X̃ → X such that,

π|( eX−π−1(p)) : (X̃ − π−1(p))→ X − p is an isomorphism.

Theorem 3.4. Resolutions of singularities always exist and the map π is a composi-

tion of blow ups.

A proof of this in all dimensions is due to Hironaka, but for surfaces this was

proven much earlier.

Given a resolution π : X̃ → X of a singular point p in a surface, one defines the

exceptional divisor E = π−1(p). Then E =
∑

iEi where Ei are irreducible curves of

X̃. One calls a resolution good if E is a normal crossing divisor, in other words that

all the Ei’s are smooth curves which intersect transversely, at most two at a time.

It is always possible to get a good resolution, just by continuing to blowing up the

points of X̃, where the Ei are singular, intersect non transversely, or more than two

intersect at the point. Henceforth we assume that all resolutions are good; this is

necessary for the next definition, and therefore for the rest of the thesis.
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Given a resolution one can encode the information given by the exceptional divisor

in a graph called the dual resolution graph. Take a vertex for each Ei, connect the

vertices vi and vj by Ei · Ej edges. Analytic curves never intersect negatively so this

makes sense. One decorates a vertex with self-intersection number E2
i and the genus

g(Ei).

3.1.3 Links are plumbed manifolds

The dual resolution graph looks superficially very much like a plumbing diagram, so

to examine this connection, look closer at what the resolution does to the topology

of X.

Since the link M ⊂ X is in the complement of the singular point, π−1(M) is

diffeomorphic to M , where π : X̃ → X is a resolution. We are only looking at the

neighbourhood of the singular point p, so we can assume that X is homeomorphic to

the cone overM , so that π−1(M) = ∂X̃. X̃ deformation retracts onto E. Hence if the

resolution is good, X̃ is is union of disk bundles over each of the Ei, and the Tubular

neighbourhood theorem says they look like a neighbourhood of the zerosections of

the bundles, and thus is a plumbed manifold whit euler numbers E2
i .

We may conclude that singularity links are plumbed 3-manifolds, and the dual

resolution graph is simultaneously a plumbing graph forM . One says that a resolution

is minimal if there is no curve Ei of E with self intersection number E2
i = −1, since

if there were such Ei, it could then be blown down by Castelnuovo’s criterion. It is

know that there exist a unique minimal good resolution, by blowing down Ei with

E2
i = −1 such that we still have a good resolution after blowing down. A minimal

good resolution need not be minimal, but can have Ei’s with E2
i = −1, such Ei have

no self intersection (i.e. are embedded), has at least 3 intersection with other Ej’s or

3 intersections with one single other Ej. The dual resolution graph for the minimal

good resolution is the normal form plumbing graph for the link, as defined in the last

chapter.
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Not every plumbed manifold is the link of a isolated normal surface singularity.

One easy observation is that each component of the exceptional divisor is an analytic

curve, hence is orientable. So a singularity link is plumbed over orientable surfaces.

A complete classification of which plumbed manifolds are singularity links is given by

the Grauert’s Theorem.

Theorem 3.5. Let M be a closed graph manifold. Then M is the link of a normal

complex surface singularity if and only if M is plumbed over orientable surfaces, τ is

the constant map 0 and the intersection matrix I is negative definite.

As a historical note, Grauert only proved that if a plumbed manifold satisfies the

criterion then it is an singularity link; the other direction was proved earlier by Du

Val, although even this direction is sometimes referred to as Mumford’s Theorem due

to a very nice proof he gave.

Now in Theorem 4.1 in [Neu97] Neumann showed how the intersection matrix is

related to the decomposition matrix, and hence gave the following classification of

singularity links using the decomposition matrix. Remember that good means that

all the Seifert fibered pieces have orientable base.

Definition 3.6. A graph manifold is Very good if the pieces of the decomposition

graph can be compatibly oriented such that the pi’s are all positive. This corresponds

to τ = 0.

Theorem 3.7. Let M be a closed graph manifold. If M does not fiber over the circle

with torus fibers, then M is a singularity link if and only if it is good and very good,

and the decomposition matrix is negative definite. If M is a T 2 bundle over S1, it is

a singularity link if and only if the monodromy is conjugate to ( 1 0
b 1 ) with b > 0, or

has trace > 2.
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3.2 Brieskorn complete intersections

In this section we are going to look closer at a particular type of singularity that has

a particularly nice topology. It also turns up that the links of these singularities play

an important role in the theory of abelian covers of Seifert fibered spaces.

Definition 3.8. The Brieskorn complete intersection VA(α1, α2, . . . , αn) where αi ∈

N and αi > 1 is defined as the vanishing locus of the n− 2 equations

a1iX
α1
1 + a2iX

α2
2 + · · ·+ aniX

αn
n = 0 for i = 1, 2, . . . , n− 2 (3.1)

such that all maximal minors of the n×(n−2) matrix A with entries aji are non-zero.

Proposition 3.9. Brieskorn complete intersections define normal surfaces with a

unique singular point (0, 0, . . . , 0). Furthermore, the topological type of VA does not

depend on the choice of A satisfying the criterion.

Since the choice ofA does not change the topological type we define Σ(α1, α2, . . . , αn)

to be the link of VA(α1, . . . , αn) for any choice ofA. It turns out Σ(α1, . . . , αn) is Seifert

fibered, and its Seifert invariant can be calculated using the following theorem.

Theorem 3.10. Let Σ(α1, . . . , αn) be the link of a Brieskorn complete intersection.

Then it is homeomorphic toM(g, 0, (1, b), (p1, q1), . . . , (p1, q1)︸ ︷︷ ︸
t1

, (p2, q2) . . . , (p2, q2)︸ ︷︷ ︸
t2

, . . . ,

(pn, qn), . . . , (pn, qn)︸ ︷︷ ︸
tn

), where

pi =
lcmj(αj)

lcmj 6=i(αj)
(3.2)

ti =

∏
j 6=i αj

lcmj 6=i(αj)
(3.3)

g = 1
2

(
2 +

(n− 2)
∏

i αi
lcmi(αi)

−
n∑
i=1

ti
)
. (3.4)

One deduces the values of qi from the equations lcm(αj)

αi
qi ≡ −1 (mod pi), and b is then

given by

b = −
∏

i αi + lcmi(αi)
∑

i qi
∏

j 6=i αj

(lcmi(αi))2
(3.5)
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The rational euler number is given

e = −
∏

i αi
(lcmi αi)2

. (3.6)

For a proof of this see [JN83], but be aware the reference uses the opposite orien-

tation convention when defining Seifert invariants.

Example 3.11. Consider the hypersurface given by X2 + Y 3 + Z5 = 0. It is a

Brieskorn complete intersection since A = ( 1 1 1 ). By the last theorem Σ(2, 3, 5) is

homeomorphic to M(0, 0, (1,−2), (2, 1), (3, 2), (5, 4)), which we saw in last chapter is

the Poincare homology sphere.

Notice that if α1, . . . , αn are pairwise coprime then one finds that pi = αi, ti = 1,

g = 0 and e = − 1
α1...αn

. Remember from the discussion following 2.12 that if g = 0

and e 6= 0 then the order of the first homology group is α1...αn

|e| . Hence if α1, . . . , αn are

pairwise, coprime Σ(α1, . . . , αn) is a integer homology sphere. In fact, this manifold

is the unique integer homology sphere with Seifert invariants pi = ai for given set

αi and e < 0. The manifold with the opposite orientation is clearly also an integer

homology sphere, but changing orientation change the rational euler number to −e.

This follows from the classification of universal abelian covers of rational homology

sphere Seifert fibered manifolds, given in the next theorem.

Theorem 3.12. Let M be a rational homology sphere Seifert fibered manifold, with

Seifert invariants (α1, β1), . . . , (αn, βn). Then the universal abelian cover of M is

homeomorphic to Σ(α1, α2, . . . , αn).

If e > 0 one compose the cover of the manifold with the other orientation with a

orientation reversing map. For proofs of see [Neu83a] and [Neu83b].

We are going to generalise this theorem to all graph manifolds in the second

main Theorem. In the next chapter, we define define what should replace the Seifert

invariants in the case of an arbitrary rational homology sphere graph manifold.
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Chapter 4

Splice Diagrams

4.1 Defining splice diagrams

A splice diagram is a tree which has vertices of valence one, which we call leaves,

and vertices of valence greater than or equal to 3, which we call nodes. The end of

an edge adjacent to a node of the splice diagram is decorated with a non-negative

integer, and each node is decorated with either a plus or a minus sign; in general one

only writes the minus signs. Here is an example:

◦ ◦
⊕

3
RRRRRRR

5mmmmmmm
22 10 	

7
kkkkkkkk

2 6RRRRRRR ◦
◦ ⊕

3
mmmmmmm

2 RRRRRRR

◦ ,

We will in general not distinguish between a leaf and the edge leading to that leaf,

except when it would be confusing not to.

Given a rational homology sphere graph manifold M , one can construct the splice

diagram Γ(M) as follows. Take a node for each Seifert fibered piece. Attach an edge

between two nodes if the Seifert fibered pieces are glued along a torus, and attach a

leaf to a node for each singular fiber of the Seifert fibered piece. This makes sense

since the JSJ decomposition of a rational homology sphere is a tree according to 2.25,

i.e. the decomposition graph is a tree, and the nodes of the splice diagram correspond
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to the vertices of the decomposition graph.

If v is a node of Γ(M) then Mv is the corresponding Seifert fibered piece of the

JSJ decomposition. Let v be a node of Γ(M) and let e be a edge at v, we define the

manifoldMve as follows. CutM along the torus corresponding to e, and letM ′ be the

connected component after cutting not containingMv. ThenMve = M ′⋃
T (S1×D2),

by gluing a meridian of the solid torus to a fiber of Mv.

The decoration dve on edge e at node v is the order of the first homology of Mve.

We assign 0 if the homology is infinite.

For the decorations on nodes, we need the following definition.

Definition 4.1. Let L0, L1 ⊂M be two disjoint knots in a rational homology sphere.

Let C1 ⊂M be a submanifold, such that ∂C1 = d1L1, for some integer d1. Then the

linking number of L0 with L1 is defined to be lk(L0, L1) = 1
d1
L0 •C1, where • denotes

the intersection product in M .

Such a C1 always exists since M is a rational homology sphere. To see that

lk(L0, L1) is well defined, we need to show that if C ′1 ⊂ M is a submanifold such

that ∂C ′1 = d′1L1 then 1
d0
L0 • C1 = 1

d′0
L0 • C ′1. Since ∂C ′1 = d′1L1 we have that

∂(d1C
′
1) = d1d

′
1L1, in the same way we have that ∂(d′1C1) = d1d

′
1L1. We can then

form a closed submanifold N = d1C
′
1

⋃
d1d′1L1

−d′1C1. Since M is a rational homology

sphere, the homology class of N is 0, so L0 • N = 0. But then 0 = L0 • N =

L0 • (d1C
′
1

⋃
d1d′1L0

−d′1C1) = L0 • d1C
′
1 − L0 • d′1C1. Since the intersection product is

bilinear we get the result we desire, after dividing by d1d
′
1.

To show that lk(L0, L1) = lk(L1, L0), we will define another notion of linking

number equivalent to our first definition, and this alternative definition is symmetric

with respect to L0, L1

Definition 4.2. Let L0, L1 ⊂ M be knots in a rational homology sphere, let X be

a compact 4-manifold such that M = ∂X. Let A0, A1 ⊂ X be submanifolds such

that ∂Ai = diLi for some integers d0, d1, and such that either A1 or A0 has zero
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intersection with any 2-cycle in X. Then let l̃k(L0, L1) = 1
d0d1

A0 ·A1, where · denotes

the intersection product in X.

Ai exists since M is a rational homology sphere, and we can the choose Ai ⊂M .

That one of the Ai’s can be chosen so that it does not intersect any closed cycles

of X follows because a collar neighbourhood of M has zero second homology, since

H2((0, 1]×M) ∼= H2(M) = {0}, and hence we can just choose Ai ⊂ (0, 1]×M . Since

the definition is symmetric we henceforth assume that A0 has zero intersection with all

2-cycles. To show l̃k(L0, L1) is well defined we start by showing that if A′1 ⊂ X is such

that ∂A′1 = d′1L1 then 1
d0d1

A0 ·A1 = 1
d0d′1

A0 ·A′1. We form N = (d′1A1

⋃
d1d′1L1

−d1A
′
1),

then A0 ·N = 0 since N is a closed 2-cycle, and it follows that 1
d0d1

A0 ·A1 = 1
d0d′1

A0 ·A′1
as above. Now assume A′0 ⊂ X is such that ∂A′0 = d′0L0 and A′0 has zero intersection

with all 2-cycles in X. To show that 1
d0d1

A0 · A1 = 1
d′0d1

A′0 · A1 we can choose a

A1 ⊂ X such that A1 has zero intersection with any 2-cycles, since changing A1 does

not change l̃k(L0, L1) as just shown. Then form N ′ = (d′0A0

⋃
d0d′0L0

−d0A
′
0). Now N

is a 2-cycle and by our choice of A1, N ·A1 = 0 it follows that 1
d0d1

A0 ·A1 = 1
d′0d1

A′0 ·A1

and therefore that l̃k(L0, L1) is well-defined.

Proposition 4.3. lk(L0, L1) = l̃k(L0, L1)

Proof. We choose A0 such that we have that A0 ∩ (0, 1]×M = (0, 1]× d0L0, and we

choose A1 such that A1 ⊂M . Then we get that l̃k(L0, L1) = 1
d0d1

(0, 1]× d0L0 · A1 =

1
d0d1

({1} × d0L0) · A1 = d0
d0d1

L0 • A1 = lk(L0, L1)

Hence lk(L0, L1) is symmetric.

We decorate a node of the splice diagram we a sign εv corresponding to the sign

of the linking number of two non singular fibers in the Seifert fibration.

Example 4.4. The splice diagram for the Poincare homology sphere is the following

◦ ◦
⊕

2
SSSSSSS

3

5
kkkkkkk

◦ ,
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4.2 Edge determinants and orientations

A general edge between two nodes looks like

...
v0
◦

n01
MMMMMMMM

n0k0qqqqqqqq
r0 r1

v1
◦
n11

qqqqqqqq

n1k1 MMMMMMMM ...
.

To such an edge we assign a number called the edge determinant.

Definition 4.5. The edge determinant D associated to a edge between nodes v0 and

v1 is defined by the equation

D = r0r1 − ε0ε1N0N1, (4.1)

where Ni is the product of all the edge weights adjacent to vi, (except ri). I.e.

Ni =
∏ki

j=1 nij, and εi is the sign on the node vi, if we interpret a plus sign as 1 and

a minus sign as −1.

An edge in our splice diagram between nodes v0 and v1 corresponds to a torus

T 2 along which pieces are glued. In that torus we get several natural knots from the

Seifert fibered structure on each side: namely, a fiber Fi and a section Si from the

fibration of Mvi
. We are going to be interested in the fiber intersection of F0 with F1

in the torus T 2. We use the following convention: when we write F0 · F1 we mean

the intersection product in T 2, where T 2 is oriented as the boundary of Mv0 ; when

we write F1 · F0 we mean the intersection product in T 2 oriented as the boundary of

Mv1 . In this way F0 · F1 = F1 · F0, since we change the orientation on T 2 when we

interchange F0 and F1.

Because a splice diagram is a tree, it is possible to orient the Fi’s and Si’s such

that the intersection number of the fibers Fi and Fj from the Seifert fibered pieces on

each side of a separating torus is always positive, and so that Fi · Si = 1. It should

be mentioned that one can change Si by adding a multiple of Fi, but for choosing a

orientation of the Fi’s and the Si’s in the fibration, it does not matter.
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One does this by choosing an end node v, i.e. a node only connected to one other

node v′, and choose a orientation on Mv. This then gives an orientation on the fiber

in the boundary ofMv and we the choose the orientation of the sections to satisfy the

above. Choose the orientation on the Mv′ , such that the fiber intersection number

is positive, and choose the orientation of the sections to satisfy the above. Then

continue to do the same in the other boundary pieces of Mv′ , and so on. The process

will terminate since Γ(M) is a tree.

We will always assume our fibers and sections are oriented this way.

4.3 Constructing splice diagrams from plumbing

graphs

We can deduce the splice diagram for a manifold directly from a plumbing diagram

for the manifold. Suppose M has a plumbing diagram ∆(M) which we assume is in

normal form, see Theorem 2.21. In particular, all base surfaces are orientable and the

decorations on strings are less than or equal to −2.

We then get a splice diagram Γ(M) by taking one node for each node in ∆(M), i.e.

vertex with more than 3 edges, or with genus 6= 0. Note that for rational homology

spheres, every vertex of the plumbing diagram has genus = 0 by Proposition 2.25.

Connect two nodes in Γ(M) if there is a string between the corresponding nodes in

∆(M), and add a leaf at a node in Γ(M) for each string starting at that node in

∆(M) and not ending at any node. We also get from Proposition 2.25 that ∆(M) is

a tree, so this makes sense.

We denote the intersection matrix by A(∆(M)) and define det(∆(M)) to be equal

to det(−A(∆(M))).

Lemma 4.6. Let v be a node in Γ(M), and e be a edge on that node. We get the

weight dve on that edge by dve = |det(∆(M)ve)|, where ∆(M)ve is is the connected

component of ∆(M)− e which does not contain v.
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∆(M) = ...
v

avv

◦
U U U U U U

i i i i i i
e

aww

◦
eeeeeeeeee

YYYYYYYYYY ...︸ ︷︷ ︸
∆(M)ve

Proof. First we notice that the manifold given by the plumbing diagram ∆(M)ve, is

the manifold corresponding to gluing a solid torus in the boundary of the manifold

obtained by cutting M along the torus corresponding to e, and taking the connected

component not containing Mv. The solid torus is glued as we described in the defini-

tion ofMve, and hence ∆(M)ve is a plumbing diagram ofMve. The result now follows

from the fact that the absolute value of the determinant of the intersection matrix of

a rational homology sphere graph manifold is the order of the first homology group,

and the determinant is 0 if the first homology group is infinite.

Note that we used that ∆(M)ve is plumbing diagram for Mve, a fact we will use

several times later. We will in general denote ∆(Mve) by ∆ve.

Lemma 4.7. Let v be a node in Γ(M). Then the sign ε at v is ε = − sign(avv),

where avv is the entry of A(∆(M))−1 corresponding to the node v.

Proof. To prove this we calculate l̃k(Lv, Lw) where Lv is a nonsingular fiber at the

v’th node and Lw is a non singular fiber at the w’th node. Let X be the plumbed

4-manifold given by ∆(M). Then each vertex of ∆(M) corresponds to a circle bundle

over a 2-manifold in the plumbing. The i’th node gives us a 2-cycle Ei in X, and

the collection of all the Ei’s generate H2(X). The intersection matrix A(∆(M)) is

the matrix representation for the intersection form on H2(X) with respect to this

generating set. So to construct A0 with zero intersection with all 2-cycles, we just

need that A0 · Ei = 0 for all i. Let Dv and Dw be transverse disks to Ev and

Ew respectively, with boundaries Lv and Lw. If v = w, choose Dv and Dw to be

disjoint. Set A0 = det(∆(M))Dv−
∑

i det(∆(M))(avi)Ei, where aij is the ij’th entry

of A(∆(M))−1, and choose A1 = Dw. Then A0 · Ei = 0 for all i and l̃k(Lv, Lw) =
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1
det(∆(M))

A0 · Dw = − 1
det(∆(M))

det(∆(M))(avw)Ew · Dw = −avw, since Ei · Dw = 0 if

i 6= w and Ew ·Dw = 1.

The proof here is the same as that given for proposition 9.1 in [NW08].

Corollary 4.8. No edge weight on any leaf is 0.

Proof. We assume that our plumbing diagram is in normal form such that that all

weights on strings are ≤ −2. Then the weight on an edge to a leaf is the determinant

of a matrix of the form 

b11 −1 0 . . . 0

−1 b22 −1 . . . 0

0 −1 b33 . . . 0
...

...
... . . . ...

0 0 0 . . . bnn


where bii ≤ 2. Determinants of such matrices are never 0.

4.4 Unnormalized and maximal splice diagrams

We now introduce two more diagrams associated to a given plumbing diagram of a

rational homology sphere, which we will call the unnormalized splice diagram Γ̃(M)

and the maximal splice diagram ∆̃(M).

Definition 4.9. The unnormalized splice diagram Γ̃(M) is a tree, with the same

graph structure as the splice diagram Γ(M), but it has no signs at nodes, and the

weights at edges are defined to be d̃ve = det(∆(Mve)).

The unnormalized splice diagram forgets the sign at each vertex, but remember

the sign of det(∆(Mve)).

Definition 4.10. The maximal splice diagram ∆̃(M) of a manifoldM with plumbing

diagram ∆(M) has the same underlying graph as the graph of the plumbing diagram
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∆(M). On edges one adds decorations as in the construction of a unnormalized splice

diagram from the plumbing diagram ∆(M).

Where the maximal splice diagram has a string of vertices, the unnormalized splice

diagram has a single edge.

We will in the rest of this section see how the splice diagram can be obtained

from the unnormalized splice diagram, and how the unnormalized splice diagram

can be obtained from the maximal splice diagram if they both arise from the same

plumbing diagram. We will also see that the maximal splice diagram is equivalent to

the plumbing diagram.

To get the unnormalized splice diagram from the maximal splice diagram, one

removes the vertices of valence two and removes the decoration on edges next to

vertices of valence one.

We have following theorem from appendix 1 of [NW05a] concerning maximal splice

diagrams.

Theorem 4.11. For any pair of vertices vi and vj in a maximal splice diagram ∆̃(M),

let lvivj
be the product of all the weights adjacent to, but not on, the shortest path from

vi to vj in ∆̃(M). Then the matrix L = (lvivj
) satisfies 1

det(∆(M))
L = −A(∆(M))−1.

Proof. We need to order the vertices of ∆(M) to give a matrix representation of the

intersection form A(∆). We construct the ordering the following way. As the first

vertex, take the vertex in ∆ corresponding to vi in ∆̃. Let the second vertex be the

one adjacent to the first in ∆, along the shortest path in ∆ between the first vertex

and the vertex in ∆ corresponding to vj in ∆̃. Continue choosing vertices this way

until we reach the vertex corresponding to vj. Let k be the number in the ordering

of the vertex corresponding to vj. Removing the chain of vertices from 1 to k gives

us s disjoint plumbing diagrams ∆1, . . . ,∆s. We order the vertices of ∆(M) minus

the string from 1 to k such that if u, v are vertices in ∆l ordered nu < nv, then there

does not exist a vertex w not in ∆s, such that nu < nw < nv. In this ordering we get



CHAPTER 4. SPLICE DIAGRAMS 42

that

−A(∆) =



b1 −1 0

−1 b2 −1
. . . −1

−1 bk

C

−A(∆1) 0

Ct 0
. . . 0

0 −A(∆s)



.

The matrix C consists of entries of 0 except for a single−1 above each of the−A(∆l)’s.

Furthermore we could have chosen the ordering such that the −1 corresponding to the

l’th such entry occurs above the−A(∆l) in the nl’th row, and that n1 ≤ n2 ≤ · · · ≤ ns.

The (1, k) minor of −A(∆) is then given by

−1 b2

. . .

−1 bk−1

−1

C ′

−A(∆1) 0

Ctk 0
. . . 0

0 −A(∆k)



.

We can add multiples of the k − 1 column to clear the (k − 1)’th row of C ′, then

continue by using the (k− 2)’nd column to clear the (k− 2)’nd row, and so on. Thus

one can clear C ′. Since we chose n1 ≤ n2 ≤ . . . ns we get that after clearing C ′, the
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(1, k)’th minor is the following

−1 b2

. . .

−1 bk−1

−1

0

−A(∆1) ∗ ∗

Ctk 0
. . . ∗

0 −A(∆s)



.

It is now easy to see that the determinant of the (i, k)’th minor is given by the

expression (−1)1−k∏s
l=1 det(∆s). To get the (1, k)’th entry of the adjoint matrix of

−A(∆) we have to multiply this number by (−1)1+k. But notice that
∏k

l=1 det(∆l) is

equal to the product of all the weights adjacent to but not on the path from vi to vj

in the maximal splice diagram ∆̃(M). Hence the adjoint matrix of −A(∆) is L, and

the theorem follows.

Corollary 4.12. Let ∆̃(M) be the maximal splice diagram of M , and Γ̃(M) be a

unnormalized splice diagram of M , both obtained from the same plumbing diagram.

Let vi and vj be two vertices of Γ̃(M). Define l̃ij to be the product of all edge weights

adjacent to but not on the shortest path from vi to vj. Then l̃IJ = lij, where lij is as

defined in Theorem 4.11.

Proof. The products are the same, since the edge weights at vertices of valence dif-

ferent from two in ∆̃(M) are the same as the corresponding edge weights in G̃(M),

and no edge weight on vertices of valence two are going to be adjacent to the shortest

path between two vertices that do not have valence two.

Lemma 4.13. Let Γ̃(M) be an unnormalized splice diagram of the rational homology

sphere graph manifold M . Then Γ̃(M) has the same underlying graph as Γ(M). For

each node v, dve = |d̃ve| and εv = sign(∆(M))
∏

e sign(d̃ve), where the product is taken

over all edges at v.
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Proof. That the graph has the same form and dve = |d̃ve| is clear from the construc-

tions. The last statement follows from Theorem 4.11, Lemma 4.7, and Corollary

4.12.

Example 4.14. Let M be a graph manifold with the following plumbing diagram

−3◦−2◦
RRRRRRR

0◦
lllllll
RRRRRRR

−2◦
RRRRRRR

−2◦
lllllll −2◦

RRRRRRR
−2◦

RRRRRRR
−2◦

lllllll −2◦
2◦ −2◦ −2◦ −5◦

lllllll
RRRRRRR

−2◦−3◦
lllllll −4◦

RRRRRRR
−2◦

lllllll
0◦

lllllll
RRRRRRR

−1◦
lllllll
RRRRRRR

−2◦
lllllll −2◦

RRRRRRR
−2◦

lllllll −3◦
RRRRRRR

−2◦
lllllll −3◦

RRRRRRR
−3◦

lllllll −2◦−2◦ .

det(I) = 229108050 and the maximal splice diagram of M is

◦
◦

167974425
2RRRRRRR ◦

3
61379775

lllllll
3

46390200
RRRRRRR

◦
106840800

3RRRRRRR ◦ −9

−14989575lllllll ◦
2

137749125RRRRRRR

◦
45707175

4RRRRRRR ◦−27

−10466875lllllll ◦
◦
131850

1411◦
92025

3290◦
52200

5169◦
−45
−1421475lllllll
−275
−875412

RRRRRRR ◦
◦−1818450

−117
lllllll ◦−50

−3269043
RRRRRRR ◦

2
12546675

lllllll

◦
−5982750

−31lllllll
8

17420850RRRRRRR ◦
3
4863400lllllll
5

26207352RRRRRRR

◦
44461350

3
lllllll ◦

5
52789950RRRRRRR ◦16400227

5
lllllll ◦

2
127657701RRRRRRR

◦
136784700

2
lllllll ◦

2
140949000RRRRRRR ◦8183609

3 lllllll ◦
◦ .

One then easily see that the unnormalized splice diagram is

◦
◦

3
lllllll

3 RRRRRRR

◦
4RRRRRRR ◦
◦131850 5169 ◦

−45

−14989575llllllllllllll

−275

−3269043 RRRRRRRRRRRRRR

◦
◦
−5982750 −117

llllllllllllll
8 RRRRRRR ◦

3
lllllll

5 RRRRRRR

◦
3 lllllll ◦ ◦ 5

lllllll ◦ .
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Finally we obtain the splice diagram which is

◦
	

3
lllllll

3 RRRRRRR

◦
4RRRRRRR ◦
	131850 5169 ◦

45

14989575mmmmmmmmmmmmmm

275

3269043
QQQQQQQQQQQQQQ

◦
	
5982750 117

llllllllllllll

8 RRRRRRR 	
3

lllllll

5 RRRRRRR

◦
3lllllll ◦ ◦ 5

lllllll ◦ .
If we have an edge between two nodes in an unnormalized splice diagram that

look like:

...
v0
◦

ñ01
MMMMMMMM

ñ0k0qqqqqqqq
r̃0 r̃1

v1
◦
ñ11

qqqqqqqq

ñ1k1
MMMMMMMM ...
.

Then we define the unnormalized edge determinant D̃ associated to an edge to be

D̃ = r̃0r̃1 − Ñ0Ñ1 (4.2)

where Ñi =
∏ki

j=1 ñij. It is clear that D = sign(r̃0) sign(r̃1)D̃.

4.5 The ideal generator condition

The following section is basically the same as appendix 2 in [NW05a], the only differ-

ence is the definition of splice diagram used, and that we do not demand our manifolds

to be negative definite plumbings. Let Γ be a splice diagram, not necessarily coming

from a manifold. If v, w are two nodes of Γ, recall that lvw is the product of all the

edge weights adjacent to, but not on, the path from v to w. Define l′vw the same

way, except that the product does not include the weights at v and w. We assume

that empty products are 1. Let v be an node of Γ and e an edge at v, and Γve the

connected component of Γ− e not containing v. One defines the ideal generator dve

associated to v and e to be the positive generator of the following ideal in Z

〈l′vw|w is a leaf of Γve〉. (4.3)
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Definition 4.15. A splice diagram Γ is said to satisfy the ideal condition, if for every

node v and every edge e at v, the edge weight dve is divisible by the ideal generator

dve.

Proposition 4.16. If M is a rational homology sphere graph manifold, then Γ(M)

satisfies the ideal condition.

To prove this, we will first find a nice topological description of the ideal generator.

It is actually this topological description of the ideal generator which will make the

ideal generator important to the proof of the second Main Theorem.

Theorem 4.17. Let M be a rational homology sphere graph manifold, v be a node

of Γ(M), and e an edge at v. Then dve = |H1(M/M ′
v;Z)|, where M ′

v is the connected

component containing Mv of M cut along the torus corresponding to e.

First we prove that this implies the ideal condition. Notice that M/M ′
v is the

same as M ′
v′/∂M

′
v′ where M ′

v′ is the other connected component of M cut along the

torus corresponding to e. We defined the edge weight dve to be |H1(Mve)| where

Mve is M ′
v′ with a solid torus glued in the boundary. Let K ⊂ Mve be the knot

corresponding to the core of the solid torus we glued into M ′
v′ to make Mve. Then

Mve/K = M ′
v′/∂M

′
v′ , and hence the ideal condition follows from the theorem and the

fact that H1(M ′
v′)→ H1(M ′

v′/K) is surjective by the long exact sequence in homology.

We are going to prove Theorem 4.17 by induction. We start the proof by a

computational lemma.

Lemma 4.18. Let v′ be the node connected to v by e, denote the edges at v′ not equal

to e by ei for i = 1, . . . , n. Suppose that the ideal generator di is known at the edge ei

at v′. Then

dve =
n

gcd
i=1

(
di

n∏
j 6=i

dj

)
, (4.4)

where dj = dv′ei
.
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The splice diagram looks like

Γ =
...

v
◦

R R R R R

m m m m m
dve dv′e

v′
◦
d1

rrrrrrrrrr d2

mmmmmmmmmm

dn RRRRRRRRR ...

Proof. di is the generator of the ideal 〈l′v′w|w is a leaf of Γ in Γv′ei
〉, and hence the

ideal 〈l′vw|w is a leaf of Γ in Γve〉 is generated by the elements di
∏n

j 6=i dj, and the

statement follows.

Proof of Theorem 4.17. Assume our splice diagram looks like the one above. Let

M ′
i = Mv′ei

, then di = |H1(M ′
i)|. Let Ki ⊂ M ′

i be the core of the solid torus glued

into the connected piece Mi to get M ′
i . Let di = |H1(M ′

i/Ki)|. We want to show

that the di’s satisfy the inductive formula of Lemma 4.5, and therefore are the ideal

generators.

If we cutM along the tori corresponding to the edges e and ei for i = 1, 2 . . . , n, we

then get that the piece containing the node v′ is a S1 bundle over S, homeomorphic

to S2 with n + 1 punctures. Let f be a fiber of this fibration, and let qe, q1, . . . , qn

be the restriction of a section of the bundle to the boundary pieces corresponding to

edges e, ei, . . . , en respectively. Remember that M ′
i is gotten from Mi by gluing in a

solid torus, identifying the meridian with f . This implies

H1(M ′
i) = H1(Mi)/〈[f ]〉. (4.5)

so the order of H1(Mi)/〈[f ]〉 is di. This gives us that

H1(M ′
v′)/〈[f ]〉 =

n⊕
i=1

H1(Mi)/〈[f ]〉 (4.6)

has order d1d2 . . . dn.

By definition di = |H1(Mi)|/〈[f ], [qi]〉, so the order of [qi] ∈ H1(Mi)/〈[f ]〉 is di/di.

Hence the element [q1]+[q2]+· · ·+[qn] ∈ H1(Mv′)/〈[f ]〉 has order lcm(d1/d1, . . . , dn/dn).

Now

H1(M/Mv) = H1(Mv′)/〈[f ], [qe]〉 = H1(Mv′)/〈[f ], [q1] + · · ·+ [qn]〉 (4.7)
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since qe∪q1∪· · ·∪qn is a boundary. Hence |H1(M/Mv)| = |H1(Mv′)/〈f〉|/ lcmi(di/di).

This is the same as

d1d2 . . . dn

lcm(d1/di, . . . , dn/dn)
=

n

gcd
i=1

(
di

n∏
j 6=i

dj

)
(4.8)

which proves the theorem.

Definition 4.19. We say that an edge weight r of a splice diagram sees a vertex v

(or edge e) of the splice diagram if, when we delete the node which r is adjacent to,

the vertex v (or the edge e) and the edge which r is on are in the same connected

component.

Remark 4.20. Given a vertex v on any edge e between nodes, one of the edge weights

at e sees v and the other does not see v. Let us introduce the following notation. Let

v be a vertex of Γ and let v′ be a node of Γ, where v 6= v′. Then let rv′(v) be the

unique edge weight at an edge adjacent to v′ which sees v. Likewise let dv′(v) be the

unique ideal generator associated to v′, which sees v.

Definition 4.21. We say that an edge weight rv sees an edge weight rv′ if rv sees v′

and rv′ 6= rv′(v). Likewise for ideal generators.

Proposition 4.22. Let v be a node of a splice diagram Γ of a manifold M . Let rv

be a edge weight adjacent to v and let dv be the corresponding ideal generator. Then

rv and dv are divisible by every ideal generator they see. Moreover if rv and dv see a

node v′ and n, n′ are edge weights at v′ and n, n′ 6= rv′(v), then gcd(n, n′) | rv, dv.

Proof. We first observe that it is enough to show the proposition only for dv, since

dv | rv by 4.16. Let e be the edge dv is on.

We will show this by induction on the number of edges between v and v′. If e

is adjacent to v′, then dv is the generator of an ideal I, which can be generated by

elements, each of which is divisible by the product of all but one of the edge weights

at v′ not on e. But this implies that each of the elements in the generating set is
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divisible by either n or n′, and hence each the elements is divisible by gcd(n, n′), and

therefore dv is divisible by gcd(n, n′).

Assume by induction that if there are k edges between v′′ and v′ then dv′′(v′) are

divisible by gcd(n, n′). Assume that there are k+1 edges between v and v′. Let di for

i ∈ 1, . . . , k be dev(v′) on the vertex ṽ on i’th edge between v and v′, then by induction

gcd(n, n′) | di for all i. Remember that dv is the generator of the ideal

〈l′vw|w is a leaf of Γve〉. (4.9)

where l′vw is the product of the edge weights adjacent to but not on the path from v

to w. Now there are two types of leaves w: the leaves w where the path between w

and v goes through v′, and the one where the path does not go through v′. In the

first case, n | l′v′w or n′ | l′vw or both, so in this case gcd(n, n′) | l′vw. In the second case

one of the di’s will divide l′vw. This implies that gcd(n, n′) | l′vw for all w, and hence

gcd(n, n′) divides the generator of the ideal dv. The following illustrates how Γ looks

in the first and the second case of the induction. In the first case, the path to w can

also pass through the edges with n or n′.

...
v
◦

MMMMMMMM

qqqqqqqq
rve ____ v′◦

n
xxxxxxxxx n′

qqqqqqqq

MMMMMMMM ...

MMMM
w
◦ ,

...
v
◦

MMMMMMMM

qqqqqqqq
rve ____ ◦ di

LLLLLLL ____ v′◦
n qqqqqqqq

n′ MMMMMMMM ...

LLLL
w
◦ ,

The statement about dv being divisible by ideal generators it sees follows from a

similar argument as above.



Chapter 5 50

Chapter 5

The main results

5.1 Determining the decomposition graph from the

splice diagram

In this section we will show that the splice diagram almost determines the decom-

position graph (associated to the JSJ decomposition) of a graph manifold. In fact it

turns out that the only additional information we need to determine the decomposi-

tion graph G(M) from the splice diagram Γ(M) is |H1(M)|.

The underlying graph of G(M) is obtained from Γ(M) by removing all leaves, i.e.

by removing all vertices of valence one and the edges leading to them. By definition

of Γ(M), its nodes correspond to Seifert fibered pieces in the JSJ-decomposition of

M , and each edge between two nodes corresponds to a gluing along a torus. Hence

Γ(M) without leaves has the shape of the decomposition graph.

We start to recover the information encoded in G(M) by giving a formula for the

orbifold euler characteristic.

Proposition 5.1. Let v be a node in the splice diagram Γ(M) of the manifold M .
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Then

χorbv = 2− n(v) +
∑
e

1

dve
(5.1)

where n(v) is the valence of v and the sum is taken over all edges leading to leaves.

Proof. The node v corresponds to a Seifert fibered piece Mv, and each leaf of v

corresponds to a singular fiber of Mv. Thus taking the sum in (2.6) over singular

fibers is the same as taking the sum over edges at v leading to leaves.

The negative intersection matrix −A(∆(Mve)) has numbers bi ≥ 2 on the diagonal

and −1 adjacent to diagonal entries and 0 elsewhere since e leads to a leaf. We use

the following algorithm to diagonalize −A(∆(Mve)). If the matrix is n× n, we clear

the −1 at the (n, n − 1) entry by adding − 1
ann

times the n’th row to the (n − 1)’st

row. Then we clear the −1 at (n−1, n) by adding − 1
ann

times the n’th column to the

(n− 1)’st column. In the n’th row and n’th column, only the diagonal entry remains.

We then proceed to clear the (n− 1, n− 2) and (n− 2, n− 1) entries the same way.

This then continues until the matrix is diagonal. Call this matrix D.

The (ii)’th entry of D is [bi, bi−1, . . . , b1], which is defined to be the continued

fraction

[bi, bi−1, . . . , b1] = bi −
1

bi−1 −
1

bi−2 − . . .

. (5.2)

Then dve = |det(∆(Mve))| = |[bn, bn−1 . . . , b1][bn−1, bn−2, . . . , b1] · · · [b1]|. The denom-

inator of the reduced fraction expression of [bi, , bi−1, . . . , b1] is the numerator of the

reduced fraction expression of [bi−1, , bi−2, . . . , b1]. This implies that dve is equal to the

numerator of the reduced fraction expression of |[bn, , bn−1, . . . , b1]|. We call this algo-

rithm for diagonalizing the intersection matrix diagonalizing by continued fractions.

It follows from Theorem 2.23 that the numerator of [bn, bn−1, . . . , b1] is equal to α,

where α is the first part of the Seifert invariant of the singular fiber corresponding to

the leaf at e. So dve = α since α > 0.
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We now have that

χorbv = χv −
∑
e

(1− 1

dve
) = χv − l(v) +

∑
e

1

dve
. (5.3)

where l(v) is the number of singular fibers, which is the same as the number of

leaves at v. The base surface is a sphere since M is a rational homology sphere, so

χv = 2− r(v) where r(v) is the number of boundary components, which is the same

as the the number of edges leading to other nodes. The formula then follows since

l(v) + r(v) = n(v).

We next prove a lemma relating the fiber intersection number to the edge deter-

minant.

Lemma 5.2 (Unnormalized edge determinant equation). Assume that we have an

edge in our splice diagram between two nodes. Let T be the torus corresponding to

the edge and p the intersection number in T of Seifert fibers from each of the sides of

T . Let d = det(∆(M)). Then

p =
D̃

d
. (5.4)

Proof. Let the numbers on the edges be as in

...
v0
◦

n01
MMMMMMMM

n0k0rrrrrrrr
r0 r1

v1
◦
n11

qqqqqqqq

n1k1 LLLLLLLL ...
,

and let Ni =
∏ki

j=1 nij for i ∈ {0, 1}.

We start by proving the formula under the additional assumption that there is no

edge of weight 0 adjacent to the nodes, except possibly r0 and r1.

Let Hi be a fiber at the i’th node for i = 0, 1. Let Li ⊂ T 2 be a simple curve

which generates ker(H1(T 2,Q) ↪→ H1(Mi,Q)) where Mi is the piece of M gotten

by cutting along the torus corresponding to the edge, including Mvi
. Since M is a

rational homology, sphere the Meyer Vietoris sequence gives us that H1(T 2,Q) ∼=
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H1(M0,Q)
⊕

H1(M1,Q). H1(Mi,Q) ∼= H1(T 2,Q)/Li by the long exact sequence.

Finally H1(Mi/T
2) = H1(M/Mi+1) is a finite group, since H1(M) is finite. This

implies that L0 and L1 are linearly independent, so L0 · L1 6= 0, where · denotes the

intersection product in T 2.

We have the following relation

aiHi = bi0L0 + bi1L1 (5.5)

for some ai, bi0, bi1 ∈ Z, since L0, L1 are linearly independent in H1(T 2,Q) = Q2 and

hence a basis. We also note that Li · Li = 0.

We now want to compute the linking numbers lk(Hi, Hj) for i, j ∈ {0, 1}. Let

Ci ⊂ Mi be such that ∂Ci = Li. This implies that aiHi = bi0∂C0 + bi1∂C1. Then

one can compute lk(Hi, Hj) as lk(Hi,
1
aj

(bj0∂C0 + bj1∂C1)), but this is the same as

computing Hi • ( 1
aj

(bj0C0 + bj1C1)), where • denotes the intersection number in M .

Now C0 lives in M0 and C1 in M1, so when one computes H0 • ( 1
aj

(bj0C0 + bj1
1
c1
C1)),

it is only the C0 part that matters, since H0 is inM0, and therefore does not intersect

surfaces in M1. This means that lk(H0, Hj) = H0 • ( 1
aj
bj0C0).

T 2 has a collar neighborhood in M0, so when we want to compute lk(H0, H0) we

can assume that the push-off of one of the copies of H0 in T 2 lives in this collar

neighborhood. In other words if the collar neighborhood is (0, 1]× T 2, then the push

off is s×H0 for some s ∈ (0, 1]. Over the collar neighborhood C0 is just (0, 1]× L0,

so

H0 • (
1

a0

b00C0) = (s×H0) • (
1

a0

b00((0, 1]× c0L0))

= H0 · (
1

a0

b00L0)

=
1

a0

(b00L0 + b01L1) · ( 1

a0

b00L0)

=
1

a2
0

b01b00(L1 · L0).

So we get that lk(H0, H0) = 1
a2
0
b01b00(L1 · L0). By a similar calculation one gets that

lk(H0, H1) = 1
a0a1

b01b10(L1 · L0) and lk(H1, H1) = 1
a2
1
b10b00(L1 · L0).
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Recall that the linking number of two fibers is also given by the inverse intersection

matrix as in the proof of Lemma 4.7. Then by Corollary 4.12 and Theorem 4.11 we

get that lk(Hi, Hj) =
lij

det(∆(M))
.

Returning to our situation, we then get the following equations for the linking

numbers using the notation from above. lk(H0, H0) = N0r0
d

, lk(H1, H1) = N1r1
d

and

lk(H0, H1) = N0N1

d
. Combining this with our other equations for the linking numbers

we get

N0r0

d
=

1

a2
0

b01b00(L1 · L0) (5.6)

N1r1

d
=

1

a2
1

b10b11(L1 · L0) (5.7)

N0N1

d
=

1

a0a1

b01b10(L1 · L0). (5.8)

It follows from (5.8) that the bij 6= 0, since Ni 6= 0 by our assumptions. So we can

divide the product of (5.6) and (5.7) by (5.8), this gives us.

r0r1

d
=

1

a0a1

b00b11(L1 · L0) (5.9)

Let us now compute p, which is equal to H0 ·H1 by definition

H0 ·H1 =
1

a0

(b00L0 + b01L1) · 1

a1

(b10L0 + b11L1)

=
1

a0a1

(b01b10L1L0 + b00b11L0L1)

=
r0r1 −N0N1

d

=
D̃

d

Here we use (5.8), (5.9) and the definition of D̃.

We have now proved the the equality

dp = r0r1 −
k0∏
i=1

n0i

k1∏
j=1

n1j (5.10)

whenever nij 6= 0. Now this is an equation concerning minors of the negative in-

tersection matrix −A(∆(M)) of M . We want to see what happens if we vary the
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diagonal entries of −A(∆(M)). We are especially interested in what happens when

we change nij. Let a be an entry on the diagonal of −A(∆(M)) which lies in the

minor n0l. Replacing a with any integer b, we get a new matrix −A(∆(Mb)), which is

the intersection matrix of the graph manifold Mb one gets from a plumbing diagram

with the weight a replaced by b. Computing d = det(∆(Mb)) by expanding by the

row which include b, gives the equation d = bA + B. Then d can only be zero for at

most one value of b, since d = bA + B is a nonzero linear equation in b, and has a

nonzero value for b = a. Hence Mb is a rational homology sphere for almost all b.

Mb has splice diagram which locally look like

...
v0
◦

nb
01

MMMMMMMM

nb
0k0

rrrrrrrr
rb
0 rb

1
v1
◦
nb

11
qqqqqqqq

nb
1k1

LLLLLLLL ...
,

The only weights of the splice diagram of Mb which are different from the weights

from the splice diagram ofM , are n0l and r1, since none of the others see the the entry

of −∆(M)b which we have changed. Again nb0l = bA01 +B01 and n01 = aA01 +B01, so

nb0l = 0 for at most one value of b. So for almost all b, we have the following equation

dbp = r0r
b
1 − nb0l

k0∏
i=1
i 6=l

n0i

k1∏
j=1

n1j. (5.11)

Let Ñl =
∏k0

i=1
i 6=l

n0i

∏k1
j=1 n1j. We get that rb1 = bA1 + B1 and the above equation

becomes

(bA+B)p = r0(bA1 +B1)− (bA01 +B01)Ñl. (5.12)

This is equivalent to

b(Ap− A1r0 + A01Ñj) = Bp−B1r0 +B01Ñj. (5.13)

Since this is true for almost all b, it implies that

Ap− A1r0 + A01Ñj = Bp−B1r0 +B01Ñj = 0. (5.14)



CHAPTER 5. THE MAIN RESULTS 56

But this implies that equation (5.13) holds for any value of b. So the equation dp = D

(5.10) holds even if we change the diagonal entries of −∆(M), and in particular, it

holds if some nij = 0. Since we are only interested in rational homology spheres, for

which d 6= 0, we divide (5.10) by d to get our result.

We call this method to derive the general result from a result with restrictions on

the splice diagram, by working with the equation as an equation of determinant of

matrices, variation of diagonal entries

Corollary 5.3 (Edge determinant equation). For an edge between nodes in the splice

diagram for a rational homology sphere graph manifold M , we get

p =
|D|

|H1(M)|
, (5.15)

where p is the intersection number in the torus corresponding to the edge of a fiber

from each of the sides of the torus, and D is the edge determinant associated to that

edge.

Proof. This result follows from the previous result and the relation between D and

D̃ and that |det(∆(M))| = |H1(M)| by taking absolute value.

A consequence of the edge determinant equation is that no node in the splice

diagram can have more than one adjacent edge weight of value 0. This is because

we know that no leaf has edge weight 0, so if we have a node with at least two

adjacent edge weights of value 0, the edge determinant of an edge with 0 on would be

0r1 − ε0ε10N1 = 0, and then the edge determinant equation implies that p = 0. But

p = 0 means that the fibers from each side of the torus corresponding to the edge

have intersection number 0, so we could extend the fibration over T 2. The nodes v0

and v1 correspond to a single Seifert fibered piece, which would not be cut in the JSJ

decomposition.

Next we need a formula for computing the rational euler class of the Seifert fibered

pieces of our graph manifold, using only information from the splice diagram and the
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order of the first homology group. Consider a node in our splice diagram, as in Fig.

1 below, where everything to the left is leaves

v1
◦
m11

qqqqqqqq

m1ll KKKKKKKK ...
◦
...

v
◦

n1
KKKKKKKK

nkssssssss

r1

s1
lllllllllllllllllllllll

rk

sk

RRRRRRRRRRRRRRRRRRRRRRR ...
◦

vk

◦
mk1

ssssssss

mklk
MMMMMMMM ...

Figure 1 .

We let N =
∏k

j=1 nj and let Mi =
∏li

j=1mij.

Proposition 5.4. Let v be a node in a splice diagram decorated as in Fig. 1 above

with ri 6= 0 for i 6= 1, and let ev be the rational euler number of Mv. Then

ev = −d
( εs1

ND1

∏k
j=2 rk

+
k∑
i=2

εiMi

riDi

)
(5.16)

where d = |H1(M)| and Di is the edge determinant associated to the edge between v

and vi.

Proof. We start by proving a formula for ev using an unnormalized splice diagram,

and then show that the relation between unnormalized and normalized splice diagram

will give us our result.

We first assume that r1 6= 0 and prove the formula under that hypothesis.

Let Γ(M) be a unnormalized splice diagram, looking like the above. It is con-

structed from the plumbing diagram ∆, which looks like Fig. 2 below around the

node v.
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−b1a1◦
KKKKKKKK

c1
◦

qqqqqqqq

KKKKKKKK

ssssssss
...

−b1(a1−1)◦
J

J
J

J
−c1m1◦

t
t

t
t

−b11◦
SSSSSSSSSSS

−c11◦
lllllllllll

...
b◦

SSSSSSSSSSS

lllllllllll
...

−bl1◦
t

t
t

t
−ck1◦

J
J

J
J

−bl(al−1)◦
ssssssss

−ckmk◦
KKKKKKKK

−blal◦
ck
◦

ssssssss

MMMMMMMM ...

Figure 2 ,

where bij, cij ≥ 2.

We want to compute det(−∆), so we look at the negative intersection matrix

−A(∆) of ∆, which we can write like

−A(∆) =



b −1 0 . . . −1 . . . −1 . . . −1 . . .

−1 b11 −1 . . . 0 . . . 0 . . . 0 . . .

0 −1 b12 . . . 0 . . . 0 . . . 0 . . .
...

...
... . . . ...

...
...

−1 0 0 . . . b21 . . . 0 . . . 0 . . .
...

...
...

... . . . ...
...

−1 0 0 . . . 0 . . . c11 . . . 0 . . .
...

...
...

...
... . . . ...

−1 0 0 . . . 0 . . . 0 . . . c21 . . .
...

...
...

...
...

... . . .


Let us describe the matrix more explicitly. If we delete the b-weighted vertex

v ∈ ∆ we get l components on the left and k components on the right. Let Bi be the



CHAPTER 5. THE MAIN RESULTS 59

negative intersection matrix of the i’th component to the left. It is of the form

Bi =



bi1 −1 . . . 0 0

−1 bi2 . . . 0 0
...

... . . . ...
...

0 0 . . . biai−1
−1

0 0 . . . −1 biai


.

Likewise we let Ci be the negative intersection matrix of the i’th component to the

right.

Ci =



ci1 −1 . . . 0 0 . . .

−1 ci2 . . . 0 0 . . .
...

... . . . ... ...
...

0 0 . . . cimi −1 0

0
...

0
...

. . .

. . .

−1

0
Di


Where theDi is the matrix of the intersection form of the plumbing diagram consisting

of the vertex weighted ci and every vertex to the right of this vertex connected to it.

We do not care how Di looks.

−A(∆) has b in its upper left corner, followed by the Bi’s and the Ci’s along the

diagonal. The first row and column has a −1 in the column/row corresponding to

the upper left corner of a Bi or Ci, and all other entries 0.
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−A(∆) =



b −1 0 . . . −1 −1 −1

−1

0
B1

... . . .

−1 Bl
−1 C1

. . .

−1 Ck


We will diagonalize the matrix to compute det(−∆) = det(−A(∆)). We first

diagonalize everything except for the first row and column. We use the diagonalization

by continued fractions we used in the proof of 5.1 to diagonalize each Bi. By starting

with the with the last column of Bi we assures that we never use the first row or

column of Bi. This assures us that it does not change the matrix outside the Bi

block, since the rows and columns we use have zeros outside Bi. The first entry of

the block after diagonalising it will then be

βi = bi1 −
1

bi2 −
1

bi3 − . . .
We can also diagonalize the Ci’s in the same way. We will denote the first entry of

the diagonalization of Ci by γi

To get the matrix completely diagonal we have to remove the copies of −1 in the

first row and the first column corresponding to each Bi (or Ci). We remove it by

adding 1
βi

( 1
γi
) times the first row of Bi (Ci) to the first row. This changes the the

first entry by subtracting 1
βi

( 1
γi
). Notice that γi 6= 0 by the assumption that ri 6= 0,
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since ri = det(Ci). After doing this for all Bi and Ci, we get that the first entry of

the diagonalized matrix is

b−
l∑

i=1

1

βi
−

k∑
i=1

1

γi
. (5.17)

We are not interested in γi itself but only part of it, so we make the following

definition

ξi =
1

ci1 −
1

ci2 −
1

ci3 − . . .

− 1

γi

We then get that first entry of the diagonalized matrix is

b−
l∑

i=1

1

bi1 −
1

bi2 −
1

bi3 − . . .

−
k∑
i=1

1

ci1 −
1

ci2 −
1

ci3 − . . .

+
k∑
i=1

ξi.

Now we know that

−ev = b−
l∑

i=1

1

bi1 −
1

bi2 −
1

bi3 − . . .

−
k∑
i=1

1

ci1 −
1

ci2 −
1

ci3 − . . .

by arguments of Walter Neumann in the proof of theorem 4.1 in [Neu97]. So if

d = det(A(∆)) we get that

d = (−ev +
k∑
i=1

ξi)
l∏

i=1

det(B1)
k∏
i=1

det(Ci). (5.18)

But we also know that ni = det(Bi) and ri = det(Ci), so we get the following formula.

d = (−ev +
k∑
i=1

ξi)
l∏

i=1

ni

k∏
i=1

ri = (−e(v) +
k∑
i=1

ξi)N
k∏
i=1

ri. (5.19)
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Let ej denote the edge in Γ(M) between v and vj, then sj = |H1(Mvjej
)| by defi-

nition. The plumbing diagram ∆vjej
of this Mvjej

) corresponds to ∆ with everything

after cjmj
removed. We can now calculate det(∆′) as above, and get that

det(∆)vjej
= pj(−ev +

k∑
i=1
i 6=j

ξi)N
k∏
i=1
i 6=j

ri (5.20)

where

pj = det


ci1 −1 . . . 0

−1 ci2 . . . 0
...

... . . . ...

0 0 . . . cimi


But it follows from the proof of theorem 4.1 in [Neu97] that pj is the fiber intersection

number for the edge. By definition det(∆vjej
) = sj. So by combining (5.19) and (5.20)

we get that

−ξj =
sj

pjN
∏k

i=1
i 6=j

ri
− d

N
∏k

i=1 ri
=

sjrj − dpj
pjN

∏k
i=1 ri

.

By using that pj =
eD
d
we get

−ξj = d
sjrj − D̃j

D̃jN
∏k

i=1 ri
= d

NMj

∏k
i=1
i 6=j

ri

D̃jN
∏k

i=1 ri
=
dMj

rjD̃j

So plugging this into (5.19) we get

ev = −d
( 1

N
∏k

j=1 rk
+

k∑
i=1

Mi

riD̃i

)
(5.21)

= −d
( D̃1

ND̃1

∏k
j=1 rk

+
k∑
i=1

Mi

riD̃i

)
(5.22)

= −d
(r1s1 −N

∏k
j=2 rkM1

ND̃1

∏k
j=1 rk

+
k∑
i=2

Mi

riD̃i

)
(5.23)

= −d
( s1

ND̃1

∏k
j=2 rk

+
k∑
i=2

Mi

riD̃i

)
(5.24)
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This proves the formula if r1 6= 0.

For the r1 = 0 case we use the variation of diagonal entries we used in the proof of

5.2 on (5.24) multiplied by
∏k

i=1 D̃i

∏k
i=2 rk, the only difference is that the equations

are now polynomial instead of linear, but they still only have finitely many solutions

which is what we use. One gets the equation which holds for all values of b. We

get our formula by dividing this equation by
∏k

i=1 D̃i

∏k
i=2 ri, which is not 0 by our

assumption on the ri’s.

We saw earlier that ε = sign(d)
∏l

i=1 sign(ni)
∏k

i=1 sign(ri), we get that d

N
Qk

i=1 ri
=

ε|d|
|N |

Qk
i=1|ri|

.

Using that Di = sign(ri) sign(si)D̃ and εi = sign(Mi) sign(si) sign(d), so we also

get that d Mi

ri eDi
= |d| εj |Mi|

|ri|Di
, which proves the proposition.

From Corollary 5.3 and Propositions 5.1 and 5.4 we get the information needed

to make the decomposition graph.

5.2 Proof of the First Main Theorem

In the previous section we saw that the splice diagram and the order of the first

homology group contains enough information to construct the decomposition graph

of M . It therefore also lets us construct the decomposition matrix (as defined in

section 2.3). By Theorem 3.7, M will be a singularity link if the decomposition

matrix is negative definite.

Theorem 5.5. Let M be a rational homology sphere graph manifold, with splice

diagram Γ. Then M is a singularity link if and only if all edge determinants are

positive and Γ has no negative decorations at nodes.

Proof. We start by proving the only if direction. Let ∆(M) be the normal form

plumbing diagram for M . Since M is a singularity link, A(∆(M)) is negative definite
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as we saw in Theorem 3.5, and hence −A(∆(M)) is positive definite. This implies

that that det(∆) = det(−A(∆)) > 0. Furthermore, all the edge weights in the unnor-

malized splice diagram Γ̃(M) from ∆(M) are positive, since they are determinants of

−A restricted to a subspace. Then from Lemma 4.13, we have that Γ is the same as

Γ̃(M); in particular, all signs at nodes are positive. Since all edge weights of Γ̃(M)

and det(∆(M)) > 0, the unnormalized edge determinant equation (5.4) shows that

each unnormalized edge determinant D̃e is positive. It then follows that the edge

determinant De is positive, since D̃e = De because Γ̃(M) and Γ are the same.

For the other implication, first notice that no edge weight is 0. If we had an edge

weight of 0, then it had to be on a edge between nodes, but the edge determinant of

this edge would be 0r1 − ε0ε1N0N1 = −N0N1 < 0.

Let d = |H1(M)|. We proceed by induction in the number of nodes of Γ. If Γ

only has one node, then M is Seifert fibered and the reduced plumbing matrix is a

1 × 1 matrix, with the rational euler number e of M as its entry. By Proposition

5.4, e = −d ε

N
Qk

j=0 rk
. But N, rk, d are all greater than 0 by definition, and ε = 1 by

assumption, so e is negative. Hence the reduced plumbing matrix is negative definite.

Assume that there are n nodes in Γ. Let v be an end node of Γ, meaning a node

of the form

◦
...

v
◦

n1
KKKKKKKK

nlssssssss
r s v′◦

m1
ssssssss

mk KKKKKKKK ...
◦ .

Such nodes always exist since Γ is a tree. Then the reduced plumbing matrix is of

the form
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ev

1
p

0 . . .

1
p

ev′

0
. . .

...


If we set N =

∏l
i=0 ni and M =

∏k
i=0mi we get by Proposition 5.4 that

ev = −d εs

DN

where D is the edge determinant of the edge between v and v′. This means that the

matrix look like 
−εsd
DN

1
p

0 . . .

1
p

ev′

0
. . .

...


By a row and column operation we get the matrix to the form

−εsd
DN

0 0 . . .

0 ev′ +
εDN
p2sd

0
. . .

...

 =
(
−εsd
DN

)
⊕


ev′ +

εNd
Ds

. . .

 ,

since 1
p2

= d2

D2 . Since s, d,N are positive by definition and D, ε are positive by

assumption, the reduced plumbing matrix is negative definite if the matrix
ev′ +

εNd
Ds

. . .


is negative definite. Now

ev′ +
εNd

Ds
= − d

Ms
−

k∑
i=0

εiMi

riDi

− εNd

Ds
+
εNd

Ds
= − d

Ms
−

k∑
i=0

εiMi

riDi

= ẽv′
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But ẽv′ is the rational euler number of the Seifert fibered piece corresponding to v′ in

the manifold M ′ which is the manifold one gets by cutting M along the edge between

v and v′, and gluing in a solid tori in the piece containing v′. Then the matrix
ẽv′

. . .


is the reduced plumbing matrix for the manifold M ′. But since the splice diagram of

M ′ is the same as Γ except that it has a leaf instead of the node v, it only has n− 1

nodes. By induction, the reduced plumbing matrix of M ′ is negative definite, so the

reduced plumbing matrix of M is negative definite, and then by Theorem 3.7, M is

the link of a complex surface singularity.

5.3 Graph orbifolds

To prove the second main theorem about universal abelian covers we need to extend

our notions and results about graph manifolds to graph orbifolds. In the proof of the

theorem we will do induction on the size of the splice diagram of a graph manifold

M . Topologically, this means we have to cut our manifold along a torus and glue in

solid tori to get some smaller manifolds, for which the statement holds by induction

and whose universal abelian cover contribute pieces to the universal abelian cover of

M . The problem is that we do not always get manifolds when we glue in the solid

torus. Already in the simple case of the plumbing diagram

−2◦
RRRRRRR

−2◦
lllllll−3◦ −3◦−2◦

lllllll −2◦
RRRRRRR

,

the spaces one gets by gluing in the solid tori if one cuts along the central edge are

not manifolds.
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Fortunately the space we get when glue in the solid torus is not that bad; it

happens to be a graph orbifold.

Definition 5.6. Let M be a 3-dimensional orbifold. We call M a graph orbifold if

there exist a collection of disjoint smoothly embedded tori Ti ⊂ M , such that each

connected component of M −
⋃
Ti is an S1 orbifold bundle over an orbifold surface.

It is clear that if a connected component ofM−
⋃
Ti is smooth, then it is a Seifert

fibered manifold. Hence if M is smooth it is a graph manifold.

We want to define the splice diagram of a rational homology sphere graph orbifold.

But to do this we have to consider which homology theory we are going to use.

Remember that if M is smooth then πorb1 (M) = π1(M), where πorb1 (M) is the orbifold

fundamental group defined by Thurston (see e.g. [Sco83]). So in the case of smooth

manifolds, orbifold coverings and coverings are the same. We need to study abelian

orbifold coverings, for which the interesting homology group is then Horb
1 (M). For

our purposes it is enough to define Horb
1 (M) as the abelianization of πorb1 (M); to make

it clear that it governs the abelian covers. It should be mentioned that there exists

a de Rham theorem for orbifold cohomology with rational coefficients, stating that

H∗orb(X;Q) ∼= H∗(X;Q). So an orbifold is a rational homology sphere as an orbifold

if and only if its underlying space is a rational homology sphere. Orbifolds also satisfy

Poincare duality with rational coefficients. See e.g. [ALR07] for these results.

Next we look at the decomposition of a graph orbifold M into fibered pieces. To

have a unique decomposition we do it the following way. Consider orbifold curves, Kj,

that is curves along which M is not a manifold. Remove a solid torus neighborhood

Nj of each orbifold curve Kj, such that M ′ = M −
⋃m
j=1 Nj is a graph manifold with

m torus boundary components. We then take the JSJ decomposition of M ′, and

glue the Nj’s back in the pieces of the JSJ decomposition of M . This gives us our

decomposition of M into fibered pieces. It is unique since the JSJ decomposition of

M ′ is unique.

To define the splice diagram Γ(M) of a graph orbifold M , take a node for each
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connected component of M −
⋃n
i=1 Ti, where the set {Ti} comes from the decompo-

sition we defined above. Connect two nodes in Γ(M) if the corresponding connected

components of M −
⋃n
i=1 Ti are glued along a torus. Add a leaf at a node for each

singular fiber of the S1-orbifold bundle over the orbifold surface Σ, this is the same

as adding a leaf for each point in Σ which does not have trivial isotropy group.

To add decorations to Γ(M) we do the same as in the splice diagram, except that

where previously we used the first singular homology group, we now use the first

orbifold homology group. That is, to get decorations on an edge we cut M along the

corresponding torus, glue in a solid torus in the same way as for manifolds, and take

the order of the first orbifold homology group. At nodes we put the sign of the linking

number of two non singular fibers of the S1 fibration corresponding to the node.

Let us take a closer look at the orbifold curves. In any 3-dimensional orbifold M ,

an orbifold curve K ⊂M is a embedding of S1 such that there exists a neighborhood

NK of K with NK −K is smooth. Now NK can be chosen to be topologically a solid

torus, and in this case Horb
1 (NK) = Z ⊕ Z/pZ. We call p the orbifold degree of K.

Another way to view NK is as a S1 fibration over a disk Dα with one orbifold point

where the isotropy group is Z/αZ. Then NK is defined by a integer β which tells you

how many times the fibers over the non orbifolds points wrap around the singular

fiber. If gcd(α, β) = 1 then NK is in fact smooth, and K is not an orbifold curve,

but a singular fiber of the Seifert fibration in a neighborhood of K. In general, a

calculation shows that if K is a orbifold curve of degree p, then gcd(α, β) = p. In

general if α and β are we will given denote NK by T(α,β), and by abuse of notation Tp

will denote a solid torus neighbourhood of a degree p orbifold curve.

Next consider how NK is glued to M ′ = M −NK . We have a collar neighborhood

U = (0, 1] × T 2 of ∂(M ′). The fibration of NK → Dα gives a fibration ∂NK → S1,

and this again gives a fibration of ∂U which can be extended to all of U . The image

of a meridian NK in ∂U defines a simple closed curve transverse to the fibration. By a

meridian of NK we mean a simple closed curve of the boundary that is transverse to
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the fibration and has homology class of finite order in Horb
1 (NK). The fibration on U

and the simple closed curve transverse to the boundary uniquely describe a way to glue

in a solid torus in the boundary of U to make it a Seifert fibered manifold, we call this

manifoldMK . Note that the gluing maps ϕ : ∂M ′ → ∂NK and ϕ′ : ∂M ′ → ∂(S1×D2)

are the same, and it is therefore also clear that as topological spaces M and MK are

the same.

Proposition 5.7. Let K ⊂M be an orbifold curve of degree p in a rational homology

sphere orbifold M . Then |Horb
1 (M)| = p|Horb

1 (MK)|.

Proof. The Meyer-Vietoris sequence of the cover of M by M ′ and NK yields

0→ Z2 i∗−→ Horb
1 (M ′)⊕ Z⊕ Z/pZ→ Horb

1 (M)→ 0 (5.25)

after observing that Horb
1 (NK) = Z ⊕ Z/pZ. The initial zero occurs since M is a

rational homology sphere, hence Horb
2 (M) has to be finite, and therefore has zero

image in Z2. We likewise get the exact sequence

0→ Z2 i′∗−→ Horb
1 (M ′)⊕ Z→ Horb

1 (MK)→ 0 (5.26)

from the Meyer-Vietoris sequence of MK by the cover of M ′ and S1 ×D2. Now i∗ =

(i′∗, g) where the image of g is in {0}×Z/pZ from the way we constructed MK above.

We have the maps π : Horb
1 (M ′)⊕Z⊕Z/pZ→ Horb

1 (M ′)⊕Z given by π(a, b, c) = (a, b)

and f∗ : Horb
1 (M)→ Horb

1 (MK), the map induced on orbifold homology groups by the

homeomorphism f : M →MK which is the identity on the complement of NK . Note

that f |M ′ : M ′ →M ′ is the identity and f |NK
: NK → S1 ×D2 induces the map from

Z
⊕
Z/pZ to Z given by (b, c) = b, so we have the following map of short exact

sequences

0 // Z2
i∗ //

∼=
��

Horb
1 (M ′)⊕ Z⊕ Z/pZ //

π

��

Horb
1 (M) //

f∗
��

0

0 // Z2
i′∗ // Horb

1 (M ′)⊕ Z // Horb
1 (MK) // 0

. (5.27)
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Using the snake lemma on (5.27) we get the following short exact sequence.

0→ Z/pZ→ Horb
1 (M)→ Horb

1 (MK)→ 0 (5.28)

and since this is a short exact sequence of finite abelian groups, the order of the group

in the middle is the product of the order of the other two groups.

With the underlying topological manifold of a graph orbifold M , we mean the the

unique manifold structure on the underlying topological space of M .

Corollary 5.8. Let M be a rational homology sphere graph orbifold and M be its

underlying topological manifold. Then |Horb
1 (M)| = P |H1(M)|, where P is the product

of the degrees of all orbifold curves in M .

Remember how we defined that edge weight sees a vertex of a splice diagram in

4.19.

Corollary 5.9. The splice diagram Γ(M) is equal to the splice diagram Γ(M) except

if an edge weight sees a leaf corresponding to an orbifold curve of M , it is multiplied

by the degree of the orbifold curve.

Proof. If an edge weight r sees a leaf then the orbifold curve corresponding to that

leaf is in the orbifold piece whose order of the first homology group gives r.

Corollary 5.10. Assume that we have an edge in Γ(M) between two nodes. Let T be

the torus corresponding to the edge and p the intersection number in T of non-singular

fibers from each of the sides of T . Let d = |Horb
1 (M)|, then

p =
|D|
d

(5.29)

where D is the edge determinant of that edge.

Proof. Since T is in the smooth part of M , the fiber intersection number is the same

in M and M ′, and hence the same in M . The equation holds in M by Proposition

5.3 and, since each term of D sees each orbifold curve once, it holds in M .
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Corollary 5.11. Let v be a node in a splice diagram decorated as in Fig. 1 with

ri 6= 0 for i 6= 1. Let ev be the rational euler number of the S1 fibered orbifold piece

corresponding to v. Then

ev = −d
( εs1

ND1

∏k
j=2 rk

+
k∑
i=2

εiMi

riDi

)
(5.30)

where d = |Horb
1 (M)| and Di is the edge determinant associated to the edge between

v and vi.

Proof. Since the rational euler number associated to the node is the same in M and

M and the formula holds in M by proposition 5.4, it follows for M by noticing that

the same orbifold degrees show up in the numerator and the denominator.

5.4 Proof of the Second Main Theorem

Let Γ(M) be the splice diagram for a Seifert fibered manifold M , which has Seifert

invariant (0; (1, b), (α1, β1), . . . , (αn, βn)). Γ(M) look likes

◦
...

v
◦

α1
KKKKKKKK

αn−2

αn

αn−1 KKKKKKKK ◦

◦
◦ ,

and by Proposition 5.4 the sign of the rational euler number is equal to minus the sign

at the node of the splice diagram. So from the splice diagram, we can read off the αi’s

and the sign of the rational euler number. But this is exactly the information that

determines the universal abelian cover of M . By Theorem 3.12 the universal abelian

cover of M is homeomorphic to the Brieskorn complete intersection
∑

(α1, . . . , αn),

provided e < 0. If e > 0 one has to compose the universal abelian cover of −M

with a orientation reversing map, since reversing orientation multiplies e by −1. The

case e = 0 does not occur for a rational homology Seifert fibered manifold. We will

generalize this result to graph manifolds, but to do so we need to prove it for graph

orbifolds.
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An S1-fibered orbifold will also have a splice diagram of the above form. In this

case it still true that the universal abelian cover is
∑

(α1, . . . , αn). The proof in

[Neu83b] for Seifert fibered manifolds also holds in the case of S1-fibered orbifolds,

since it does not rely on the fact that gcd(αi, βi) = 1.

This will prove the base case of our induction, i.e. splice diagram with 1 node if

α 6= 0. To prove it in general we need the following lemma.

Lemma 5.12. Let π1 : M → M1 and π2 : M → M2 be universal abelian orbifold

covers such that deg(π1) = deg(π2) = d and both M1 and M2 have an orbifold curve

of degree p. Let L(n,m1) and L(n,m2) be orbifold quotients of S3 by Z/nZ which

contain orbifold curves of degree p. Then the universal abelian cover of L(n,m1)#pM1

is homeomorphic to L(n,m2) #pM2, where #p means taking connected sum along a

B3 that intersects the orbifold curve of degree p. The degree of the cover is nd/p.

Proof. We are going to prove the lemma by constructing the universal abelian cover

of L(n,mi) #pMi, and observing that it is determined by M,n, d and p.

Let B3
p ⊂ Mi be the ball which we are going to remove to take connected sum.

The subscript p indicates that an orbifold curve of degree p passes through it. Let

M ′
i = Mi − B3

p and S2
p = ∂M ′

i . Then π−1(M ′
i) = M̃i is connected submanifold

of M and π1|fMi
: M̃i → Mi is an abelian cover. Now πi restricted to a connected

component of ∂M̃i is the p-fold cyclic branched cover of S2, hence the number of

boundary components of M̃i is d/p. So clearly M̃i is homeomorphic to M with

d/p balls removed, and hence does not depend on Mi and πi. If we then look at

S2
p = ∂(L(n,mi)−B3

p) then the preimage under the universal abelian cover of pi : S3 →

L(n,mi) of L(n,mi) − B3
p is S3 with n/p balls removed. Let M̃ be the manifold

constructed in the following way. Take n/p copies of M̃i and d/p copies of S3 with

n/p balls removed. Then glue each of the M̃i to each of the S3’s exactly once, to

form M̃ . Since πi and the universal abelian cover map from S3 to L(n,mi) agree on

boundary components, we get an abelian cover π̃i : M̃ → L(n,mi) #pMi of degree

nd/p, by letting π̃i be equal to πi on each of the M̃i components and to the pi on the
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S3 components.

Using the Meyer-Vietoris sequence we get that |Horb
1 (L(n,mi) #pMi)| = nd/p

hence π̃i : M̃ → L(n,mi) #pMi is the universal abelian cover. This proves the lemma

since the homeomorphism type of M̃ only depends on M,n, d and p.

Remark 5.13. The above lemma is not true if we took connected sum along spheres

with different degrees of the orbifold points, e.g L(6, 3) #3 L(6, 3) has universal abelian

cover S1 × S2, but the universal abelian cover of L(6, 3) #L(6, 3) has first homology

group of rank 25. The splice diagram can not see which orbifold curve we are going

to take connected sum along, which forces us to make an additional assumption on

our graph orbifolds in the theorem below. (Alternatively, one could make a new

definition of splice diagram, where at leaves of weight zero one specifies the degree

of the orbifold curve in the solid torus corresponding to the leaf. The theorem would

then hold for all graph orbifolds with this alternative splice diagram).

Theorem 5.14. LetM andM ′ be two rational homology sphere graph orbifolds having

the same splice diagram Γ, and assume that all solid tori corresponding to leaves of

weight zero do not have orbifold curves. Then M̃ is homeomorphic to M̃ ′, where

π : M̃ →M and π′ : M̃ ′ →M ′ are the universal abelian orbifold covers.

Proof. We will prove the theorem by inductively constructing M̃ only using informa-

tion from the splice diagram.

For the case with one node, this almost follows from Theorem 3.12, since every

one-node graph orbifold is an S1 fibered orbifold, if there is no edge weight of 0. So

we have to consider the case of a one-node splice diagram with an edge weight of 0.

We saw in the discussion after Corollary 5.3 that a node can have at most one edge

weight of 0.

Let M be a orbifold with the following splice diagram
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◦
...

v0
◦

n1
KKKKKKKK

nkssssssss
0 ◦

◦ .

We will show that this orbifold is S3 connect-summed along smooth S2’s with the

orbifold quotients of S3 by Z/niZ acting as subgroups of O(4). We denote the quo-

tients by L(n1, q1), . . . , L(nk, qk), where the pair (ni, qi) is the Seifert invariant of the

i’th singular fiber.

The criterion of a leaf with edge weight zero means that the fibers of the piece

corresponding to the central node bound a meridional disc in the solid torus Z corre-

sponding to that leaf. Take two fibers F1 and F2 and a simple path p between them

in the boundary of Z. Then the region B ⊂ Z bounded by all the fibers intersecting

p and the meridional discs bounded by F1 and F2 is a ball. We can now extend B

to the boundary of the solid torus L corresponding to the leaf of weight ni. So by

this, part of the boundary of B is an annulus of fibers in ∂L. Now L
⋃
B is a solid

torus glued to a ball along a [0, 1] × k where k is a knot which is a representative

of a non trivial homology class of the boundary of L. Clearly L
⋃
B has boundary

S2. Another way to see this is that the boundary is an annulus together with 2 discs.

L
⋃
B includes a singular fiber, so it is not a ball, therefore, the S2 is a separating

sphere, and M = (L
⋃
B)#((M − L)

⋃
B).

We will investigate what L
⋃
B is. The complement of B in Z is a ball. So gluing

this ball to L
⋃
B we get the same orbifold as if we glued L to Z, and since Z does

not have any singular fibers it is a quotient of S3 with a orbifold curve having Seifert

invariant (ni, qi).

By doing this for each leaf with non zero weight, we get that M is a connected

sum of the various S3 quotients L(n1, q1), . . . , L(nk, qk) and a central piece M ′. It

remains to show that M ′ is homeomorphic to S3. If we glue a ball into M − L
⋃
B

to make the closed manifold M ′, we see that M ′ is Z glued to a solid torus, and the

gluing map is the same as when we glued Z to M − Z. Since the weight of the leaf
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corresponding to Z was zero, the manifold which the edge weight where defined to

be the order of the first homology group of is S1 × S2, since it is the gluing of two

solid tori. This implies that a fiber of T 2 = ∂(M − Z) is a generator of H1(T 2) and

is glued to a meridian of Z, and that a simple closed curve c corresponding to the

other generator is glued to a longitude of Z. But gluing two solid tori according to

the gluing of M and Z described above creates a S3.

To show that the universal abelian cover ofM is determined by the splice diagram,

we do induction in the number of S3 quotients in M , i.e. the number of leaves of the

splice diagram of M . If there is only one S3 quotient, then S3 connect sum L(n, q) is

just L(n, q), so the universal abelian cover of M is just S3 and the covering map has

degree n, hence determined by the splice diagram.

Let M ′ be the connected sum of S3 with L(n1, q1), . . . , L(nk−1, qk−1). Then M ′

has splice diagram as follows

◦
...

v0
◦

n1
KKKKKKKK

nk−1ssssssss
0 ◦

◦ .

So the induction assumption is that the universal abelian cover M̃ ′ of M ′ and the

degree for this universal abelian cover d is determined by the splice diagram. We also

have that M = L(nk, qk) #M ′ so by Lemma 5.12 the universal abelian cover of M

is determined by M̃ ′, nk and the degree of the cover M̃ ′ → M ′ (remember in this

case p = 1). But all this information is given by the splice diagram, since the splice

diagram of M ′ is determined by the splice diagram of M .

This completes the one node case. For more than one node we will reduce our

case to one with fewer nodes by cutting along a torus in M corresponding to an

edge joining two nodes in Γ. There are additional complications arising from the

fact that in a covering map π : M̃ → M , the restriction to a connected component

of π−1(T ) → T may not be trivial (unlike the a sphere, which is simply connected).

Moreover, the gluing of T 2 boundary components is not trivial, as it was with S2.

Let us assume thatM has splice diagram Γ with n > 1 nodes. We look at an edge
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e between two nodes of the form

...
v0
◦

n01
MMMMMMMM

n0k0qqqqqqqq
r0 r1

e

v1
◦
n11

qqqqqqqq

n1k1 MMMMMMMM ...
.

Let T 2 ⊂ M be the separating torus, corresponding e. Let M◦
i ⊂ M − T 2 be the

connected component containing Mvi
, and let Mi = M◦

i ∪ T 2. M0 and M1 are graph

orbifolds with one boundary torus each. π|π−1(Mi) : π−1(Mi) → Mi is a (possibly

disconnected) abelian covering. Let M̃i ⊂ π−1(Mi) be a connected component. Then

π|fMi
: M̃i →Mi is a connected abelian covering.

To describe the covering π|fMi
: M̃i →Mi we are going to construct a closed graph

orbifold M ′
i , with Mi ⊂ M ′

i , such that if p : M̃ ′
i → M ′

i is the universal abelian cover,

then p|p−1(Mi) : p−1(Mi)→Mi is equal to π|fMi
: M̃i →Mi, i.e. M̃i = p−1(Mi) and the

maps p|fMi
and π|fMi

agree.

We first look at M ′
0. We will construct it from M0 by gluing a solid torus in the

boundary of M0, in a way we will now explain. M ′
0 has splice diagram

...
v0
◦

n01
MMMMMMMM

n0k0qqqqqqqq
r′0 ◦

.
where every weight on the left is as in the splice diagram of M if it does not see e.

We want to determine r′0 and the other weights that see e, such that the universal

abelian cover has the desired properties.

The components of a non-connected abelian cover are always determined by the

map from Horb
1 of the base space to the abelian group which determines the non-

connected cover. So in our case, M̃0 is determined by Horb
1 (M0) → Horb

1 (M). One

constructsM ′
0 by gluing in a Tp, such that the generator of ker

(
Horb

1 (M0)→ Horb
1 (M)

)
is the curve that got killed, i.e. ker

(
Horb

1 (M0) → Horb
1 (M)

)
= ker

(
Horb

1 (M0) →

Horb
1 (M ′

0)
)
. More precisely, let α be the primitive element such that pα generates

ker
(
Horb

1 (M0) → Horb
1 (M)

)
. Then M ′

0 is given by gluing α to a meridian of Tp and
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a simple closed curve with intersection 1 with the generator to a longitude. This

ensures that M̃0 embeds into the universal abelian cover of M ′
0. We also get that

H1(M ′
0) = Im

(
Horb

1 (M0)→ Horb
1 (M ′

0)
)

= Horb
1 (M0)/ ker

(
Horb

1 (M0)→ Horb
1 (M ′

0)
)

= Horb
1 (M0)/ ker

(
Horb

1 (M0)→ Horb
1 (M)

)
= Im

(
Horb

1 (M0)→ Horb
1 (M)

)
.

We need to know the order of Horb
1 (M ′

o) to calculate the splice diagram of M ′
0, so we

need to determine Im
(
Horb

1 (M0)→ Horb
1 (M)

)
.

We first determine ker(Horb
1 (M0) → Horb

1 (M)), by looking at the Meyer Vietoris

sequence of the covering of M by M0 and M1.

· · · → Horb
2 (M)→ H1(T 2)→ Horb

1 (M0)⊕Horb
1 (M1)→ Horb

1 (M)→ . . . (5.31)

Since we have Poincare duality with rational coefficients, it follows that Horb
2 (M) is

finite, so H2
1 (T 2) = Z⊕Z injects into Horb

1 (M0)⊕Horb
1 (M1). Hence ker(Horb

1 (M0)→

Horb
1 (M)) is equal to the intersection of Horb

1 (M0) with Z ⊕ Z. Since the rational

orbifold homology of M0 is the same as the rational homology of the underlying

topological manifold, it follows that Horb
1 (M0) is rank one. Therefore ker(Horb

1 (M0)→

Horb
1 (M)) = Z, and is generated by a class in the boundary of M0.

Let Q0 ∈ H1(M0) be a representative of the homology class of a section of the

fibration on T 2, and let F0 ∈ H1(M0) be a representative of the class of the fiber of

the Seifert fibered piece corresponding to the node v0 in M0. Then some homology

class T 2 given by r′0Q0 + s0F0 is the class that gets killed when we glue in M1, so it

represents the generator of ker(Horb
1 (M0)→ Horb

1 (M)).

We now have that |Horb
1 (M1)/〈F0〉| = r0 by the definition of splice diagram, since

Horb
1 (M1)/〈F0〉 = Horb

1 (M1/F0). Let |Horb
1 (M1)/〈F0, Q0〉| = d0. Since we have that

Horb
1 (M1)/〈F0, Q0〉 = Horb

1 (M1/∂), Theorem 4.17 implies that d0 is equal to the ideal

generator as defined in Definition 4.5, which is an invariant of the splice diagram.

The proof of Theorem 4.17 also works for graph orbifolds. This implies that the

order of Q0 in Horb
1 (M1)/〈F0〉 is r0/d0. Since r′0Q0 + s0F0 = 0 in Horb

1 (M1) we get

that r′0Q0 = 0 in Horb
1 (M1)/〈F0〉, so r′0 | r0/d0.
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We also have the following map of exact sequences

0 // Z〈F0〉 // Horb
1 (M1) // Horb

1 (M1)/〈F0〉 // 0

0 // Z〈F0〉 //

∼=
OO

(Z× Z)/〈r′0Q0 + s0F0〉 //

OO

Z/(r′0) //

OO

0

and since the left map is an isomorphism and middle map is injective, it follows that

the right map is injective too. Hence r′0 = r0/d0. Also note that Horb
1 (M1, ∂) =

Horb
1 (M,M0) = Horb

1 (M)/ Im
(
Horb

1 (M0) → Horb
1 (M)

)
, so by taking the order of

the groups, we get that d1 = d/|Im
(
Horb

1 (M0) → Horb
1 (M)

)
|. Since Horb

1 (M ′
0) =

Im
(
Horb

1 (M0)→ Horb
1 (M)

)
, one gets that |Horb

1 (M ′
0)| = d/d0.

Now for the other edge weights which see e, we start by determining the edge

weight on an edge ej which connects v0. The fiber intersection number corresponding

to the edge is the same inM andM ′
0, this gives by Theorem 5.2 the following equations

|D|
|Horb

1 (M)|
=

|D′|
|Horb

1 (M ′
0)|

(5.32)

where D is the edge determinant corresponding to ej in M and D′ the edge de-

terminant corresponding ej in M ′. Since |Horb
1 (M ′

0)| = |Horb
1 (M)|/d0 by the above

calculation, we get that |D′| = |D|/d0. The calculation also gave that r′0 = r0/d0, so

the definition of edge determinants implies that the new edge weight has also been

divided by d0. Continuing inductively we see that all edge weights that see e are

divided by d0.

Suppose the curve killed by gluing in the solid torus into M0 is a multiple of a

primitive element. Then we get an orbifold curve in the glued in torus. This is not

a problem if the weight on the edge is non-zero, so let us consider the case when the

edge weight r0 = 0. The curve we kill is the curve that bounds in M1, but r0 = 0

implies that a fiber in ∂M0 bounds in M1, so the curve we kill is a fiber. But fibers

are primitive elements, so we do not get a orbifold curve in this case. This insures

that M ′
1 satisfies the hypothesis of the theorem.

By a similar argument r′1 = r1/d1 where d1 = |Horb
1 (M0, ∂)| = |H1(M,M1)|.
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The previous discussion implies that the splice diagram Γ0 of M ′
0 looks like

...
v0
◦

n01
MMMMMMMM

n0k0qqqqqqqq
r0/d0 ◦

.

and the splice diagram Γ1 for M ′
1 is

◦ r1/d1
v1
◦
n11

qqqqqqqq

n1k1 MMMMMMMM ...
.

All edge weights which see e are gotten from the old weight by dividing by d0 in the

first case and d1 in the second case.

Since d0 and d1 are the ideal generators defined in Definition 4.5, they are com-

pletely determined by Γ. The splice diagrams Γ0 and Γ1 have at most n − 1 nodes

each, hence by induction the universal abelian cover M̃ ′
0 of M ′

o is determined by Γ0

and the universal abelian cover M̃ ′
1 of M ′

1 is determined by Γ1. Since Γ0 and Γ1 are

determined by Γ, this implies that M̃ ′
0 and M̃ ′

1 are determined by Γ, and therefore by

the construction of M ′
0 and M ′

1, we have that M̃0 and M̃1 are determined by Γ.

Next we want to see that the splice diagram determines the number of components

of π−1(M0) and π−1(M1), and which components are glued to which. The deck trans-

formation group of M̃ is H1(M) and its action restrict to deck transformation of the

abelian cover of Mi, given by π|π−1(Mi) : π−1(Mi) → Mi. The group of permutations

of the set of components of π−1(Mi) is given by Horb
1 (M)/ Im(Horb

1 (Mi)→ Horb
1 (M)).

But Horb
1 (M)/ Im(Horb

1 (Mi) → Horb
1 (M)) = Horb

1 (M,Mi), so the number of compo-

nents of π−1(Mi) is the order of Horb
1 (M,Mi), which we have seen before is di, and

only depends on the splice diagram.

The action of H1(M) on M̃ also restricts to π−1(T 2), and we get that the group

of permutations of components of π−1(T 2) is given by Horb
1 (M)/ Im(Horb

1 (T 2) →

H1(M)). This is the same as Horb
1 (M,T 2), and by excision this is Horb

1 (M/T 2). Now

M/T 2 = M1/T
2 ∨M2/T

2, so the group of permutations of components π−1(T 2), is
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given by Horb
1 (M1, T

2) ⊕ Horb
1 (M2, T

2). Let t be a component of π−1(T 2), which is

glued to a component M0i of π−1(M0) and a component M1j of π−1(M1). An element

of the form (1, σ) ∈ H1(M/T 2) then sends t to another t′, which is glued to M0i

and σ(M1i). Since H1(M/M1) acts transitively on the components π−1(M1), we see

that M0i is glued to each component of π−1(M1). Now the argument is symmetric,

a component of π−1(M1) is also glued to each of the components of π−1(M0). By

counting the number of tori in π−1(T 2) we get that a component on the one side is

glued to each component on the other side exactly once.

Finally we need to specify the gluings of components of π−1(M0) to components

of π−1(M1) from the splice diagram. Let M̃0 and M̃1 be components on each of

the sides. To specify the gluing, we show that the splice diagram determines two

distinct essential curves up (to homotopy) in each component T 2
0i of ∂M̃0 and in each

component T 2
1j of ∂M̃1.

We first notice that M̃i is a covering space of a graph orbifold (with boundary),

and hence itself a graph orbifold, Moreover if Fi is a fiber of the base, then π−1(Fi) is

a union of fibers of M̃i. So we take the first simple closed curve to be a fiber of Tij,

hence it is a connected component of the restriction of π−1(F̃i) to Tij, where F̃i is a

fiber of ∂Mi. This insures that the fibers are specified by Γ. Moreover, the Fi in T 2
ij

is identified with the Fi in T 2
ij′ under the action of the deck transformation group.

Given fibers F0 ⊂ T 2
oi and F1 ⊂ T 2

1i, to specify the gluing we need only to know

which curve C1 in T 2
1j is identified with F0, and which curve C0 in T 2

01 is identified

with F1. The rest of the proof consist of showing that C0 and C1 are determined by

Γ.

Let Ñi ⊂ M̃i be the Seifert fibered piece sitting over the Mvi
. Ñi is a piece of the

JSJ decomposition of M̃ and therefore has a rational euler number ẽi. This is the

rational euler number of the closed Seifert fibered manifold one gets by gluing solid

tori into ∂Ñi, in a way specified by the gluings of Ñi to the other pieces of the JSJ

decomposition as described in beginning of Section 5.1. We are going compute ẽi,
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and then use this to specify the other curve in each T 2
ij. To do this we can assume by

induction that a simple closed curve transverse to the fibration is determined in all

the boundary components of Ñi except the boundary components lying over e. But

the fibers and the simple closed curves in all the boundary components lying over e

will be the same. Since we know F̃i, the rational euler number ẽi of Ñi determines a

simple closed curve transverse to the fibration in each of the boundary components

of M̃i.

To compute ẽ0 we will use the relation between ẽ0 and the rational euler number ev0
of Mv0 . This relation is given by Theorem 2.15, which says in our situation that ẽ0 =

b0
f0
ev0 , where b0 is the degree of the covering map restricted to the base of the Seifert

fibered pieces and f0 is the degree of π restricted to the fibers. Now deg(π|fM0
) = b0f0

and deg(π|fM0
) = d

d0
since d0 is the number of components of π−1(M0). This implies

that ẽ0 = d
d0f2

0
ev0 .

To calculate f0 notice that f0 = |Im(Horb
1 (F0)→ Horb

1 (M))|, and since

|Horb
1 (M)/ Im(Horb

1 (F0)→ Horb
1 (M))| = |Horb

1 (M)|/|Im(Horb
1 (F0)→ Horb

1 (M))|

we get that f0 = |Horb
1 (M)|/|Horb

1 (M)/ Im(Horb
1 (F0) → Horb

1 (M))|. We want to cal-

culate |Horb
1 (M)/ Im(Horb

1 (F0)→ Horb
1 (M))|.

Now Horb
1 (M)/ Im(Horb

1 (F0)→ Horb
1 (M)) is equal to Horb

1 (M,F0) = Horb
1 (M/F0),

so we need to find |Horb
1 (M/F0)|. M/F0 isM with the fibers collapsed at the pieceMv0 ;

this is the same as gluing in disks in the fibers of Mv0 . So we glue a disk to a simple

closed curve transverse to the fibration of all the S1–fibered pieces glued toMv0 along

a torus. This implies that Horb
1 (M/F0) =

(
A1×A2×· · ·Ak0×G

)
/ (a1, a2, . . . , ak0 , g),

where the group Aj = Horb
1 (Mv0ej

), where ei is the edge between v0 and the j’th piece

to the right. In particular |Aj| = n0j. Likewise G = Horb
1 (Mv0e). Hence |G| = r0.

The aj ∈ Aj are the elements that correspond to the singular fibers over the disk we

just glued in; in particular Aj/〈aj〉 is the first orbifold homology group of M with

everything except the part across the edge 0j collapsed. Thus |Aj/〈aj〉| is the ideal

generator d0j corresponding to the edge 0j. The same holds for g and G, especially



CHAPTER 5. THE MAIN RESULTS 82

that |G/〈g〉| = d0.

If none of the Aj andG is infinite, i.e., n0j, r0 6= 0, then we get that |Horb
1 (M/F0)| =

(r0

∏k0
j=0 n0j)/ lcm(n01/d01, . . . , n0k0/d0k0 , r0/d0). Instead assume that Al is infinite,

so that all the other groups are finite. We have the following exact sequence

0→ G×
k0∏
j=1
j 6=l

Aj →
(
A1 × · · ·Ak0 ×G

)
/ (a1, . . . , ak0 , g)→ Al/〈al〉 → 0,

where
(
A1 × · · ·Ak0 × G

)
/ (a1, . . . , ak, g) → Al/〈al〉 is projection, and G ×

∏k0
j=1
j 6=l

Aj

is the kernel of this map. This implies that |Horb
1 (M/F0)| = d0lr0

∏k0
j=1
j 6=l

n0j. If G is

infinite we use the same method to show that |Horb
1 (M/F0)| = d0

∏k0
j=1 n0j. In all

cases we see that |Horb
1 (M/F0)| = λ0 only depends on the splice diagram, since the

ideal generators only depend on the splice diagram.

So f0 = |Horb
1 (M)|/|Horb

1 (M/F0)| = d
λ0
, hence ẽ0 =

λ2
0

d0d
ev0 . But the value of ev0

is given by Proposition 5.11, and the formula given there shows that ev0 is d times

a number given by the splice diagram, hence ẽ0 only depends on Γ. We can in the

same way calculate ẽ1 and see that it also only depends on Γ. This implies that the

splice diagram specifies a simple closed curve Ci transverse to the fibration of the

T 2
ij’s, which in particular is not null homologous.

Now the gluing of M̃0 to M̃1 is specified by identifying F0 with C1 and F1 with

C0. But since the Fi’s and the Ci’s are determined by Γ, the gluing is determined by

Γ, and hence M̃ is determined by Γ.
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Chapter 6

Some Corollaries of the Main

Theorems

6.1 Determining when the universal abelian cover

is a rational homology sphere

In this chapter we will give some corollaries of the proof of the second main theorem.

We determine from the splice diagram when the universal abelian cover is a rational

or an integer homology sphere. We begin by recognizing manifolds with integer

homology sphere universal abelian covers.

Corollary 6.1. Let M be a rational homology sphere graph manifold with splice

diagram Γ(M), such that around any node in Γ(M) the edge weights are pairwise

coprime. Then the universal abelian cover of M is an integer homology sphere.

Proof. It is shown in [EN85] that a splice diagram with pairwise coprime edge weights

at nodes is the splice diagram for an integer homology sphere. So given a splice

diagram satisfying the assumption there is a integer homology sphere M ′ with splice

diagram Γ(M), hence M ′ is the universal abelian cover of M by Theorem 5.14.
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This actually gives a way to construct the universal abelian cover for any rational

homology sphere graph manifold that has a splice diagram with pairwise coprime

edge weights at nodes, since [EN85] describes how to construct the integral homology

sphere by splicing, and to construct a plumbing diagram for it in the case where

we have positive decorations at nodes. If we want a construction of the plumbing

diagram when there are negative decorations at nodes, Theorem 3.1 in [Neu89a]

contains a method whereby given a splice diagram Γ(M) as above, one can construct

an unimodular tree ∆(M) which will be the plumbing diagram.

To determine (at least necessary) conditions on the splice diagram for the univer-

sal abelian cover to be a rational homology sphere, we investigate the construction of

the universal abelian cover in Theorem 5.14. Since we construct the universal abelian

cover by induction, there are two places where obstructions to being a rational ho-

mology sphere can arise: in the inductive step, and in the base case.

We start by looking at the base case, that is a splice diagram with one node. We

distinguish between diagrams with an edge weight of 0 and those without. In the

case of an edge weight of 0, we never get rational homology sphere universal abelian

covers. The universal abelian cover X of L(p, q) #L(p′, q′) is p copies of S3 with p′

balls removed, glued to p′ copies of S3 with p balls removed, where the former pieces

are glued to the latter pieces exactly once each. Then a Meyer-Vietoris argument

shows that the rank of the first homology group is (p− 1)(p′− 1). Since the universal

abelian covers of iterated connected sums of lens spaces will contain several copies

of X as connected summands, it is clear that a connected sum of lens space can not

have rational homology sphere universal abelian covers.

This leaves the second case, determining which Seifert fibered, or more precisely,

which S1 orbifold bundles have rational homology sphere universal abelian covers.

By Theorem 3.12 this is the same as determining which links of Brieskorn complete

intersections are rational homology spheres.

Proposition 6.2. Σ(α1, . . . , αn) is a rational homology sphere if and only if one of
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the three following conditions holds.

1. gcd(αi, αj) = 1 for all i 6= j.

2. There exist a single pair k, l, such that gcd(αk, αl) 6= 1.

3. There exist a single triple k, l,m such that gcd(αl, αk) = gcd(αl, αm) = gcd(αm, αk) =

2; for all other indices gcd(αi, αj) = 1.

The first condition is of course the case where Σ(α1, . . . , αn) is a integer homology

sphere, as we saw earlier.

Proof. The if direction follows from [Ham72], where Hamm proves a sufficient condi-

tion for the link of Brieskorn complete intersections of any dimension to be rational

homology spheres. He could only prove the other direction if the number of variables

was at most twice the dimension plus two. We will give a different proof in the case

of surfaces, using the description of the Seifert invariants given in Theorem 3.10.

It follows from Corollary 2.12 that a Seifert fibered manifold is a rational homology

sphere if and only if the rational euler number e is nonzero, and the genus g is zero.

From the formulas of Theorem 3.10 we see that e(Σ(α1, . . . , αn)) 6= 0, so we need only

show that the conditions above are equivalent to the genus being 0. In other words

it is enough to show that the following equation holds if and only if one of the three

conditions does:

0 = 2 + (n− 2)

∏
i αi

lcmi(αi)
−

n∑
i=1

∏
j 6=i αj

lcmj 6=i(αj)
. (6.1)

Let A =
Q

i αi

lcmi(αi)
and Ai =

Q
j 6=i αj

lcmj 6=i(αj)
.

We start by proving the “if” direction. Assume condition 1 holds, then A = 1 and

Ai = 1 for all i ∈ 1, 2, . . . , n, and we get

g = 2 + (n− 2)A−
n∑
i=1

Aj = 2 + (n− 2) +
n∑
i=1

1 = 2 + (n− 2)− n = 0 (6.2)
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Assume that condition 2 holds, and let gcd(αk, αl) = B. Then A = B, Ak = Al = 1

and Ai = B if i 6= k, l. We get

g = 2 + (n− 2)B − 1− 1−
∑
i 6=k,l

B = 2 + (n− 2)B − 2− (n− 2)B = 0 (6.3)

Finally for condition 3, A = 4, Ak = Al = Am = 2 and Aj = 4 if j 6= k, l,m. The

genus is

g = 2 + (n− 2)4− 2− 2− 2−
∑

i 6=k,l,m

4 = (n− 2)4− 4− (n− 3)4 = 0. (6.4)

This conclude the “if” direction.

For the “only if” direction we start by assuming the equation (6.1) holds. Suppose

we have αj, αk, αl, αm, such that gcd(αj, αk) = B and gcd(αl, αm) = C. Notice that

BC | A, B | Al, Am, C | Aj, Ak and BC | Ai for i 6= j, k, l,m. Let A′ = A
BC

, A′j =
Aj

C
,

A′k = Ak

C
, A′l = Al

B
, A′m = Am

B
and A′i = Ai

BC
if i 6= j, k, l,m. A ≥ Ai for all i so clearly

A′ ≥ A′i for i 6= j, k, l,m. If i = j, k then B | A
Ai
, and if i = l,m then C | A

Ai
, so we

also get A′ ≥ A′i.

Hence

0 = 2 + (n− 2)BCA′ − CA′j − CA′k −BA′l −BA′m −
∑

s 6=j,k,l,m

BCA′s

≥ 2 + (n− 2)BCA′ − 2CA′ − 2BA′ −
∑

s6=j,k,l,m

BCA′ = 2 + 2A′(BC − C −B).

(6.5)

Since A′ ≥ 1 this implies that BC − C −B < 0 and hence either B = 1 or C = 1.

We have now proved that gcd(αi, αj) = 1 except that there might be αk, αl, αm

such that gcd(αk, αl) = B and gcd(αk, αm) = C and gcd(αl, αm) = D. Notice that

A = αkαlαm

lcm(αk,αl,αm)
, Ak = αlαm

lcm(αl,αm)
, Al = αkαm

lcm(αk,αm)
, Am = αkαl

lcm(αk,αl)
, and Ai = A for

i 6= k, l,m. The equation becomes

0 = 2 + (n− 2)A− Ak − Al − Am −
∑

s 6=k,l,m

Aj

= 2 + (n− 2)A− Ak − Al − Am −
∑

s 6=k,l,m

A = 2 + A− Ak − Al − Am, (6.6)
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which is excaltly the same equation as if n = 3. But it is known in this case that

either B = C = D = 2 or two of B,C,D is 1, from the article of Hamm [Ham72].

One can also see this directly, if α1 = ds2s3t1, α1 = ds1s3t2, and α3 = ds1s2t3 where

gcd(si, sj) = 1 and gcd(ti, tj) = 1, then the equation becomes 0 = 2+d2s1s2s3−d(s1−

s2−s3). It is clear that d = 1 or 2. If d = 2 then the only solution is s1 = s2 = s3 = 1

since the righthand side is increasing in si. If d = 1 then the only solution is if two

of the si’s are zero, since the righthand side increases if we increase two of the si’s.

Combining this result with an investigation of the inductive step yields a neces-

sary condition on the splice diagram for the universal abelian cover to be a rational

homology sphere. We remember how we defined the notation rv′(v) in 4.20.

Corollary 6.3. Let Γ be the the splice diagram of a manifold M , where the universal

abelian cover of M is a rational homology sphere. Then all edge weights are nonzero,

and there is a special node v ∈ Γ, with the following properties. For all other nodes

v′ ∈ Γ, the weights other than rv′(v) are pairwise coprime, and at most one of these

edge weights is not coprime with rv′(v)/dv′(v). At v all the edge weights satisfy one

of the conditions from Proposition 6.2.

Proof. What we are going to show is that the condition on the splice diagram given

above is equivalent to the absence of cycles in the decomposition graph (or a plumbing

graph) of the universal abelian cover M̃ , and all the pieces of the decomposition

having a base of genus 0. The corollary then follows by Proposition 2.25. That the

decomposition graph must also have no cycles and bases of genus 0 follows from the

relation between plumbing graphs and decomposition graph given in [Neu97].

We saw that, when we cut along an edge e between nodes v0 and v1 in the inductive

construction of M̃ given in the proof of Theorem 5.5, we took d0 pieces v0 and glued

to d1 pieces above v1, where di is the ideal generator at e associated to vi. Each piece

on the one side is glued exactly once to each piece on the other side. Each of these



CHAPTER 6. SOME COROLLARIES OF THE MAIN THEOREMS 88

pieces has a Seifert fibered piece sitting above the corresponding Mvi
. If d0, d1 > 1

then a piece v00 over Mv0 is glued to a piece v10 sitting over Mv1 , then v10 is glued to

a piece v01 sitting over MV0 , and v01 is glued to a piece v11 sitting over Mv1 . Finally

v11 is glued to v00. We have now constructed a cycle in the decomposition graph of

∆(M̃) since each of the vij represent a vertex of ∆(M̃). If one of the di’s is 1, then

we do not get cycles, since we will have only one piece above the appropriate end of

e.

v00
◦

RRRRRRR
v10
◦

RRRRRRR
v01
◦

llllllllllllllll
v11
◦

...
v0
◦

MMMMMMMM

rrrrrrrr
e

v1
◦

qqqqqqqq

LLLLLLLL ...
,

So we now proved that a cycle in the decomposition graph for M̃ occurs if an edge

e in the splice diagram has ideal generators d0 and d1 (associated to each end), such

that both d0 and d1 are not equal to one.

Let M0 and M1 be graph manifolds with universal abelian covers M̃0 and M̃1,

and assume that there are no cycles in M̃i. Let M̃01 be the universal abelian cover of

M01 which is M0 glued to M1 after removing a solid torus from each. Assume that

M̃01 has cycles in its decomposition graph. M̃01 is a number of M̃0 with n0 solid tori

removed glued to M̃1 with n1 solid tori removed, such that each of the first type is

glued to each of the second type. If one of the ni is 1, then M̃01 has no cycles, so

n0, n1 > 1. But ni = di so we are in the situation above.

So there are cycles in the decomposition graph of M̃ if and only if there is an edge

which has both associated ideal generators different from 1.

We need to show that the conditions we stated on Γ are equivalent to the statement

that for each edge one of the ideal generators associated to an end of it is 1.

Suppose there were two nodes v and w of Γ, such that the edge weights at v that

do not see w are not pairwise coprime, and the same with v and w exchanged. On any
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edge e on the string between v and w, the ideal generator associated to either end of

e is then greater than 1 by Proposition 4.22, so we a have cycle in the decomposition

graph. This implies that there can be at least be one node v, such that at all other

nodes, edge weights that do not see v are pairwise coprime. On the other hand, if Γ

satisfies this, then it is not hard to see that all ideal generators that do not see v are

1, since all the edge weight they see at a node are pairwise coprime.

We have so far shown that there are no cycles in the decomposition graph of M̃

if and only if there is a special node v such that at all other nodes the edge weights

that do not see v are pairwise coprime. Next we have to see that our condition on Γ

also gives that all the pieces of the decomposition have genus 0.

Remember that when we do the induction in the proof of Theorem 5.5 and cut

along an edge e between v0 and v1, for be any node v′ in Γ not equal to v0 or v1, the

weight rv′(vi) gets replaced by rv′(vi)/dv′(vi), where vi (i = 0 or 1) is the node not

in the same piece as v′ after cutting. When we cut Γ along its edges, we do it in the

following way. Always choose an edge e to an end node w, that is not the special node

v to cut along. Then after the cutting we get two new pieces. The first corresponds

to the end node w and has a one node splice diagram with as many edges as w had

in Γ, and the edges have the same weights, except rw(v) is divided by dw(v). The

splice diagram of the other piece Γe looks like Γ with the node w replaced by a leaf,

and no edge weight is changed since all the dv′(w) = 1 for any node v′. We then find

an end node of Γe which is not v to cut along, and repeat until we have cut along all

the edges between nodes.

We have now cut Γ into a collection of one-node splice diagrams. Each of these

will contribute at least one Seifert fibered piece to M̃ , (the same one-node splice

diagram may of course contribute with the same Seifert fibered piece of M̃ more than

once). We distinguish the piece corresponding to our special node v. The pieces not

corresponding to v have splice diagrams with the same weights as in Γ, except rw(v)

is replaced by rw(v)/dw(v). Our assumptions on the Γ then imply that all the weights
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are pairwise coprime, except possibly two weights who are pairwise coprime with the

rest, but might have a common divisor. Since the Seifert fibered pieces corresponding

to each of the nodes are the Brieskorn complete intersections defined by the edge

weights, so condition one or two of Proposition 6.2 holds. Then the Seifert fibered

pieces of the decomposition of M̃ corresponding to these nodes are rational homology

spheres.

The special piece of the decomposition of M̃ (corresponding to v, there will in fact

only be one), has genus 0, since the assumption on Γ are equivalent to the Brieskorn

complete intersection being genus 0, by proposition 6.2.

Hence the assumptions on Γ are equivalent to the decomposition graph of M̃

having no cycles, and all the pieces of the decomposition having a base of genus

0.

Remark 6.4. The converse to the corollary does not immediately follow, since having

no cycles and having genus 0 pieces are only two of the three conditions for a graph

manifold to be a rational homology sphere. The last one (as we saw in proposition

2.25) is that the intersection matrix I must have non zero determinant. Proving that

det(I) 6= 0, reduces to a simpler problem since Neumann showed in [Neu97] that,

by doing row and column additions, I becomes the direct sum of the decomposition

matrix and a number of 1× 1 matrices with non zero entries. Hence it is enough to

show that the determinant of the decomposition matrix is non zero. Unfortunately,

I do not have a proof of this yet. Fortunately, in the case of singularity links this is

not needed.

Corollary 6.5. IfM is a rational homology sphere singularity link, then the universal

abelian cover of M is a rational homology sphere if and only if the splice diagram Γ

satisfies the conditions of corollary 6.3.

Proof. We only have to prove that the intersection matrix I, satisfies that det(I) 6= 0.

Note that the universal abelian cover of a singularity link is also a singularity link,

and hence by Theorem 3.5, I is negative definite. Therefore det(I) 6= 0.
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