
Bessel and Volatility-Stabilized Processes

Irina Goia

Submitted in partial fulfillment of the

requirements for the degree

of Doctor of Philosophy

in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2009



c© 2009

Irina Goia

All Rights Reserved



ABSTRACT

Bessel and Volatility-Stabilized Processes

Irina Goia

The work in this thesis expands the study of volatility-stabilized

processes introduced in [17]. Using their representation as time-

changed Bessel processes and a multidimensional version of the

skew-product decomposition theorem, we derive the conclusion

that the vector of market weights is a multidimensional Jacobi

diffusion. The Dirichlet distribution is proved to be the invariant

distribution of this diffusion. The fact that the marginals of this

vector process are one-dimensional Jacobi diffusions having the

Beta distribution as an invariant distribution provides new proofs

for limiting behavior results for the individual market weights al-

ready established in [17]. Using the spectral representation of the

transition density of a one-dimensional diffusion, we establish a

series representation involving Jacobi polynomials for the tran-

sition density of the individual market weights, thus answering

one of the open questions in [17]. Using techniques pioneered

by M. Yor, we establish the joint distribution of the coordinates

of the volatility-stabilized process. We carry out the computa-

tion of the moments of these coordinates, as well as that of the

moments of the individual market weights. Finally, we discuss
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connections with the Cox-Ingersoll-Ross process and present the

correct version of a theorem attempted by Gouriéroux on the

one-dimensional Jacobi diffusion. We conclude with a discussion

of several lines of potential future work.
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1. Introduction to Volatility-Stabilized

Processes

1.1. The cumulative volatility of a financial market and its connection

to arbitrage. The aim of this section is to explain how volatility-stabilized

processes appear as natural objects of study within the field of Stochastic Port-

folio Theory. This is a branch of Mathematical Finance pioneered by Fernholz

in the monograph [15], and more recently studied in-depth by Banner, Fernholz,

Karatzas, and Kardaras in the series of papers [3], [17], [18], [19].

In what follows we define the excess growth rate of a portfolio of stocks

driven by a multidimensional Brownian motion and further explain how the

excess growth rate of the market portfolio provides a measure of the intrinsic

volatility available in the market at any given time.

Consider a financial market driven by a multidimensional Brownian motion:

(1.1) dXi(t) = Xi(t)

[
bi(t)dt +

d∑

k=1

σik(t)dWk(t)

]
, i = 1, . . . , n.

The quantity Xi(t) stands for the value of the ith stock at time t and W1(·), . . . , Wd(·)
are d independent standard Brownian motions. We shall assume d ≥ n.

The vector valued process b(·) = (b1(·), . . . , bn(·)) of rates of return and the

(n × d) matrix valued process σ(·) = {σij(·)}1≤i≤n, 1≤j≤d of volatilities are as-

sumed to satisfy the condition

(1.2)

∫ T

0

n∑

i=1

(
|bi(t)|+

d∑

k=1

σ2
ik(t)

)
dt <∞ a.s.
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for every T > 0. This condition is part of the definition of a solution of a

stochastic differential equation, as presented in [30, p. 285]. All the processes

of this model are defined on a complete probability space (Ω,F , P ) and are

adapted to a given filtration F = {F(t)}0≤t≤∞ with F(0) = {∅, Ω} modulo P .

This filtration satisfies the usual conditions of right continuity and augmentation

by P−negligible sets.

Under the assumption (1.2), Itô’s rule allows us to write formula (1.1) in the

equivalent form:

(1.3) d (log Xi(t)) = γi(t)dt +
d∑

k=1

σik(t)dWk(t), i = 1, . . . , n,

where

(1.4) γi(t) := bi(t)−
1

2
aii(t), aij(t) =

n∑

k=1

σik(t)σjk(t).

Here a(·) = {aij(·)}1≤i,j≤n = σ(·)σt(·) is the variance/covariance matrix-valued

process and γi(·) will be further referred to as the “growth rate” of the ith asset.

As pointed out in [29, p. 4], the terminology “growth rate” is justified by the

a.s. property

(1.5) lim
T→∞

1

T

(
log Xi(T )−

∫ T

0

γi(t)dt

)
= 0,

which is guaranteed to hold when all the eigenvalues of the variance/covariance

matrix a(·) are bounded away from infinity; see the right-hand side of condition

(1.18). In plain English, the growth rate of an asset is the implicit rate of return

that it produces.

In the context of this model, a portfolio rule is an F−progressively measurable

process π(·) = (π1(·), . . . , πn(·)) defined on [0,∞) × Ω and with values in the
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simplex

△n
+ = {(x1, . . . , xn) ∈ R

n| xi ≥ 0 for every i and

n∑

i=1

xi = 1}.

The quantity πi(t) is interpreted as the proportion of wealth invested in the ith

asset at time t.

To a portfolio rule π(·) we associate a value process Zπ(·), with the convention

that at any time t, a fraction πi(t) of Zπ(t) is invested in asset i. Hence

(1.6)
dZπ(t)

Zπ(t)
=

n∑

i=1

πi(t)
dXi(t)

Xi(t)
= bπ(t)dt +

d∑

k=1

σπk (t)dWk(t), where

(1.7) bπ(t) :=

n∑

i=1

πi(t)bi(t), σπk (t) :=

n∑

i=1

πi(t)σik(t) for k = 1, . . . , d,

(1.8) and aππ(t) :=

d∑

k=1

(σπk (t))
2 =

n∑

i=1

n∑

j=1

πi(t)aij(t)πj(t)

are, respectively, the rate-of-return coefficients, the volatility coefficients and

the variance of the portfolio.

Using the multidimensional Itô formula again as in (1.3), we are able to write

(1.9) d (log Zπ(t)) = γπ(t)dt +
d∑

k=1

σπk (t)dWk(t),

with γπ(t) :=
∑n

i=1 πi(t)γi(t)+γπ∗ (t) being the growth rate corresponding to the

portfolio rule π(·). The quantity

(1.10) γπ∗ (t) :=
1

2

(
n∑

i=1

πi(t)aii(t)−
n∑

i=1

n∑

j=1

πi(t)aij(t)πj(t)

)

is non-negative, and is strictly positive if πi(t) > 0 holds a.s. for all i = 1, . . . , n

and t ≥ 0. These details are provided in Proposition 1.3.7 in [15]. It is natural
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to call γπ∗ (·) the excess growth rate of the portfolio π(·); it is going to play a key

role in our further exposition.

Alternatively, the excess growth rate (1.10) can be written as

(1.11) γπ∗ (t) =
1

2

n∑

i=1

πi(t)τ
π
ii(t),

where we have denoted by τπij(·) the variances/covariances of the portfolio π(·),
namely

τπij(t) :=

n∑

k=1

(
σik(t)− σπk (t)

)(
σjk(t)− σπk (t)

)
, 1 ≤ i, j ≤ n.

The derivation of this alternative expression can be found in Lemma 1.3.6 of

[15, p. 20].

One of the main problems in Mathematical Finance, and implicitly in Sto-

chastic Portfolio Theory, is the detection and study of riskless opportunities to

make a profit, also known as arbitrages. We say that a portfolio rule π(·) is

a relative arbitrage opportunity relative to a portfolio rule ρ(·) over the time

horizon [0, T ] if

(1.12) P
[
Zπ(T ) ≥ Zρ(T )

]
= 1 and P

[
Zπ(T ) > Zρ(T )

]
> 0

hold whenever the two portfolio rules start with the same initial fortune Zπ(0) =

Zρ(0) = z. If instead of (1.12) we have

(1.13) P
[
Zπ(T ) > Zρ(T )

]
= 1,

we say that π(·) is a strong arbitrage opportunity relative to ρ(·).
The market portfolio is the natural choice for a reference portfolio with respect

to which relative arbitrage in the market (1.1) is going to be studied. The market
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portfolio is defined by the relative capitalizations

(1.14) µi(t) =
Xi(t)

X1(t) + · · ·+ Xn(t)
, i = 1, . . . , n

and amounts to owning the entire market in proportion to the initial fortune

z > 0. Indeed, from (1.6), it follows that

dZµ(t)

Zµ(t)
=

d
(
X1(t) + · · ·+ Xn(t)

)

X1(t) + · · ·+ Xn(t)

and hence

(1.15)

Zµ(t) =
z

x

(
X1(t) + · · ·+ Xn(t)

)
, 0 ≤ t <∞ with x := X1(0) + · · ·+ Xn(0).

The excess growth rate of the market portfolio provides a measure of the

amount of available volatility in the market at any given time. If this available

volatility is great enough over a period of time, it can be exploited by certain

types of portfolios to outperform the market portfolio. The representative result

in this direction is Proposition 3.1 from [17], which we restate below:

Proposition 1.1. Suppose there exists a continuous, strictly increasing function

Γ : [0,∞)→ [0,∞) with Γ(0) = 0, Γ(∞) =∞ and such that

(1.16) Γ(t) ≤
∫ t

0

γµ∗ (s)ds <∞, (∀) 0 ≤ t <∞

holds almost surely. Then, with the entropy function S(x) := −∑n
j=1 xj log xj

and for any time horizon [0, T ] that satisfies:

Γ−1
(
S
(
µ(0)

))
=: T∗ < T <∞

there exists a sufficiently large real number c > 0 such that the portfolio rule

πi(t) =
cµi(t)− µi(t) log µi(t)

c−∑n
j=1 µj(t) log µj(t)

i = 1, . . . , n
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is a strong arbitrage opportunity relative to the market portfolio; in particular,

P
[
Zπ(T ) > Zµ(T )

]
= 1.

A natural candidate for the excess growth rate of the market portfolio that

satisfies the hypotheses of the above Proposition is the power function γµ∗ (s) =

ksα, with α ≥ 0. A key feature of an abstract market based on volatility-

stabilized processes is that its cumulative volatility, as measured by the excess

growth rate of the corresponding market portfolio, is constant through time:

γµ∗ (s) = k for every s and some k > 0.

Market diversity, discussed in [19], is another sufficient condition that guar-

antees the existence of relative arbitrage opportunities. We are going to state

next the main result on market diversity and arbitrage. In the following sec-

tion we are going to explain how volatility-stabilized markets do not satisfy the

diversity condition and yet they do exhibit relative arbitrages, as ensured by

Proposition 1.1.

We consider again the market model (1.1), but instead of condition (1.2) we

require that

(1.17)

n∑

i=1

∫ T

0

(
bi(t)

)2
dt <∞ (∀) T ∈ (0,∞)

and

(1.18) ε||ξ||2 ≤ ξtσ(t)σt(t)ξ ≤M ||ξ||2 (∀) t ≥ 0 and ξ ∈ R
n.

By ξt and σt(·) we have denoted vector and matrix transposes, respectively.

For a portfolio rule π(·), we introduce the order-statistics notation

(1.19) max
1≤i≤n

πi(t) =: π(1)(t) ≥ π(2)(t) ≥ · · · ≥ π(n)(t) =: min
1≤i≤n

πi(t)
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for the weights πi(t), ranked at time t from largest π(1)(t) to smallest π(n)(t).

We say that the market (1.1) is weakly diverse on the time horizon [0, T ] if

for some δ ∈ (0, 1) we have almost surely

(1.20)
1

T

∫ T

0

µ(1)(t)dt < 1− δ.

A diversity-weighted portfolio is a portfolio with weights

(1.21) π
(p)
i (t) :=

(
µi(t)

)p
∑n

j=1

(
µj(t)

)p (∀) i = 1, . . . , n,

where µi(t) represent the weights of the market portfolio and p is a constant in

the interval (0, 1).

We now state the main result on market diversity leading to relative arbitrage:

Proposition 1.2. Suppose that a market of the form (1.1) has drift and volatil-

ity coefficients that satisfy conditions (1.17) and (1.18), and that it is weakly

diverse on the time horizon [0, T ], in the sense that it satisfies condition (1.20)

a.s.. Then, starting with initial capital Zµ(0), the value process Zπ(p)
(·) of the

diversity-weighted portfolio (1.21) satisfies

P
[
Zπ(p)

(T ) > Zµ(T )
]

= 1 provided that T ≥ 2

pεδ
log n.

(Here δ is the constant from the definition of weak-diversity (1.20) and ε is the

constant from condition (1.18).)

With Propositions 1.1 and 1.2 at hand, it is natural to study the relationship

between the excess growth rate criterion and market diversity. An important

inequality in this direction, established in [19], is the following:

(1.22)
ε

2

(
1− π(1)(t)

)
≤ γπ∗ (t) ≤M

(
1− π(1)(t)

)
, 0 ≤ t ≤ ∞.
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Here ε and M are the constants from (1.18), γπ∗ (t) is the excess growth rate

corresponding to portfolio rule π and π(1)(t) is defined as in (1.19).

By integrating the left hand side of inequality (1.22) it is easy to see that

if the market (1.1) satisfies the strong non-degeneracy condition captured by

the left hand side of (1.18), then the requirement (1.16) of Proposition 1.1 is

satisfied with Γ(t) = γ∗t and γ∗ = εδ
2
. Hence strong arbitrage opportunities

relative to the market portfolio do exist.

Conversely, when the right-hand side of (1.18) is satisfied, then (1.16) with

Γ(t) = γ∗t for some γ∗ in (0, M) leads to the weak diversity condition (1.20) for

δ = γ∗
M

.

1.2. The representation of stock prices in terms of Bessel processes

in a volatility-stabilized market and related results. In this section we

introduce the system of stochastic differential equations that characterize the

volatility-stabilized process and derive, following the exposition in [17], the key

fact that the stock prices are time-changed Bessel processes. This result con-

stitutes the motivation and starting point upon which the work in this thesis is

based.

We will give a brief overview of the existing results on volatility-stabilized

markets from [17], and emphasize that such markets are neither diverse nor

do they satisfy the upper bound of condition (1.18) (boundedness away from

infinity of the variance/covariance matrix). In particular, the property (1.5) for

the quantities (1.4) is not guaranteed for such processes.

Consider the following system of SDEs:

(1.23) d
(
log Xi(t)

)
=

α

2µi(t)
dt +

1√
µi(t)

dWi(t), i = 1, . . . , n
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for some given number α ≥ 0, or equivalently

(1.24)

dXi(t) =
1 + α

2

(
X1(t) + · · ·+ Xn(t)

)
dt +

√
Xi(t)

(
X1(t) + · · ·+ Xn(t)

)
dWi(t).

We know from the work of Bass and Perkins (2002) that the system (1.24) of

stochastic differential equations admits a weak solution, and that this solution

is unique in distribution. The state-process X(·) = (X1(·), . . . , Xn(·)) of this

solution will be our volatility-stabilized process; it takes values in (0,∞)n. Using

Itô’s rule, it follows that

(1.25) dXi(t) = Xi(t)

(
1 + α

2µi(t)
dt +

1√
µi(t)

dWi(t)

)
.

In [17] the core of the exposition is devoted to the case α = 0. The model

(1.23) assigns both big variances and big growth rates to the smallest stocks,

but in a manner that makes the overall market performance remarkably stable.

Using the notation of the previous section

(1.26) σik(t) =
δik√
µk(t)

, γi(t) =
α

2µi(t)
.

Straightforward computations give constant variance and growth rates for the

resulting market, namely:

(1.27) aµµ(t) = 1, γµ∗ (t) = γ∗ :=
n− 1

2

and

(1.28) γµ(t) =

n∑

i=1

µi(t)
α

2µi(t)
+ γµ∗ (t) ≡ (1 + α)n− 1

2
=

mn

4
− 1

2
=: γ > 0.

Here we have defined m := 2(1 + α).
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From (1.6) and (1.25) it follows that

(1.29) dZµ(t) = Zµ(t)
n∑

i=1

(
1 + α

2
dt +

√
µi(t)dWi(t)

)
or

(1.30) dZµ(t) = Zµ(t)

(
n(1 + α)

2
dt + dB(t)

)
.

Here B(t) :=

n∑

i=1

∫ t

0

√
µi(s)dWi(s), 0 ≤ t < ∞ is a one-dimensional Brownian

motion, because it is a continuous local martingale and its quadratic variation

is exactly 〈B〉(t) = t, so the conclusion follows by P. Lévy’s theorem.

It follows that Zµ(t) = Zµ(0) exp(γt + B(t)), where γ is the constant from

(1.28). Recalling (1.15) we get that

(1.31) X(t) = X1(t) + · · ·+ Xn(t) = X(0) exp(γt + B(t)), 0 ≤ t <∞.

Setting x := X(0), we introduce the continuous, strictly increasing time

change

(1.32) Λ(t) :=

∫ t

0

(
X(s)

4

)
ds =

x

4

∫ t

0

exp(γs + B(s))ds, 0 ≤ t <∞

and the process

(1.33) Ŵi(t) =

∫ Λ−1(t)

0

√
Λ′(u)dWi(u), 0 ≤ t <∞

for i = 1, . . . , n. We see that 〈Ŵi, Ŵj〉(t) = tδij , so the processes Ŵ1(·), . . . , Ŵn(·)
are independent Brownian motions, by P. Lévy’s characterization. From Itô’s

rule we obtain from (1.25)

(1.34) d
√

Xi(t) =
X(t)(1 + 2α)

8
√

Xi(t)
dt +

1

2

√
X(t)dWi(t),
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and with the notation of (1.32), (1.33) this equation can be rewritten as

(1.35)
√

Xi(t) =
√

Xi(0) +

∫ t

0

(m− 1)dΛ(s)

2
√

Xi(s)
+ Ŵi

(
Λ(t)

)
, i = 1, . . . , n.

Define Ri(·) :=
√

Xi

(
Λ−1(·)

)
. After a change of variable formula (1.35) becomes

(1.36) Ri(t) =
√

Xi(0) +

∫ t

0

(m− 1)ds

2Ri(s)
+ Ŵi(t), 0 ≤ t <∞.

This is exactly the stochastic differential equation for a Bessel process of dimen-

sion m. For m integer greater or equal than 2, the Bessel process of dimension

m can be thought of as the radius of an m−dimensional Brownian motion
(
B1(·), . . . , Bn(·)

)
, that is R2(·) :=

m∑

i=1

B2
i (·).

It is checked readily that the squared Bessel process Qi(·) :=
(
Ri(·)

)2
=

Xi

(
Λ−1(·)

)
satisfies the equation

(1.37) dQi(t) = mdt + 2

√(
Qi(t)

)+
dŴi(t).

General theorems (see Proposition 2.13 in [30, p. 291] and Proposition 3.20

in [30, p. 309]) ensure that this stochastic differential equation has a pathwise

unique strong solution for any Qi(0) ≥ 0 and m ≥ 0. For m taking non-integer

values, the corresponding solution is still going to be called the squared Bessel

process of dimension m.

We also make the important observation that the m−dimensional Bessel pro-

cesses R1(·), . . . , Rn(·) are independent, being adapted to the filtrations of the

independent Brownian motions Ŵi(t). A comprehensive survey on Bessel pro-

cesses can be found in Chapter 11 of [49]. A more concise exposition can be

found in [10]; several key properties are discussed in this paper, including the
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additivity property and the Laplace transform. The additivity property estab-

lishes that the sum of two squared Bessel processes of dimensions m1 and m2

respectively, is a squared Bessel process of dimension m1 + m2. As in (1.37),

m1 and m2 may be integers or not. It follows that

(1.38) X
(
Λ−1(t)

)
=

n∑

i=1

Xi

(
Λ−1(t)

)
=

n∑

i=1

R2
i (t) =: R2(t), 0 ≤ t <∞

where R2(·) is a squared Bessel process of dimension mn.

The representations

(1.39) Xi(T ) = R2
i

(
Λ(T )

)
, i = 1, . . . , n and X(T ) = R2

(
Λ(T )

)

are the starting key for the results to be presented in the next chapters. Ex-

pression (1.32) then becomes 4Λ(T ) =
∫ T
0

R2
(
Λ(s)

)
ds, which translates into

(1.40) Λ−1(t) = 4

∫ t

0

ds

R2(s)
.

Combining some of the equalities above, Fernholz and Karatzas obtain in

[17, p. 19] a new proof of the Lamperti representation (its classic proof can be

found in [10], and extensive generalizations are discussed in [27]). In particular,

putting together (1.31) and (1.39) one gets that

(1.41) R2
(
Λ(t)

)
= x exp(γt + B(t))

and further on, using (1.32), we deduce that

(1.42) R2

(
x
4

∫ t
0

exp(γs + B(s))ds

)
= x exp(γt + B(t)).
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Using the new Brownian motion B̃(·) := 1
2
B(4·), this last equality can also

be written in the form

(1.43)

R

(
x

∫ θ

0

exp
(
2(2γs + B̃(s))

)
ds

)
=
√

x exp
(
2γθ + B̃(θ)

)
, 0 ≤ θ <∞.

From an intuitive point of view, it is useful to note that the volatility-

stabilized process model (1.23) exhibits a striking similarity with a classic Black-

Scholes market model consisting of n stocks that can be represented as geomet-

ric Brownian motions. According to the Lamperti representation (1.42), the

prices of these stocks can be represented as time-changed squared Bessel pro-

cesses, with the time change being intrinsic to each stock. By contrast, in the

volatility-stabilized market the stock prices are time-changed squared Bessel

processes, with the time change depending on the entire market and being the

same for each stock. In both cases, the clock represented by the time change

captures the real life activity, when changes in stock prices occur. The mathe-

matical models capture the fact that these times can be thought of as intrinsic

to each company or extrinsic and depending on general economic news.

With the representations (1.39) and (1.40) at hand, the limiting behavior of

the volatility-stabilized process X(·) is studied in [17]. We recall two of the

main results of this paper:

Proposition 1.3. For the model (1.23) the long-term growth rate for the entire

market and for the biggest stock are computed as

(1.44) lim
t→∞

(
1

t
log X(t)

)
= lim

t→∞

(
1

t
log X(1)(t)

)
= γ a.s.
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For the model (1.23) with α > 0, we have for every i = 1, . . . , n

(1.45) lim
t→∞

(
1

t
log Xi(t)

)
= γ a.s.

For the model (1.23) with α = 0, we have for every i = 1, . . . , n

(1.46) lim sup
t→∞

(
1

t
log Xi(t)

)
= γ, lim inf

t→∞

(
1

t
log Xi(t)

)
= −∞ a.s.

lim
t→∞

(
1

t
log Xi(t)

)
= γ in probability.

Here γ is the constant from (1.28).

A key ingredient in the proof of Proposition 1.3 is the law of large numbers

for the Bessel clock Λ−1(t), to be found in [61]:

Theorem 1.4. If
(
R(ν)(t), t ≥ 0

)
is a Bessel process with dimension d > 2 (and

index ν := (d/2)− 1 > 0) starting at R(ν)(0) 6= 0, we have

(1.47)
1

log t

∫ t

0

ds
(
R(ν)(s)

)2 −→t→∞

1

d− 2
=

1

2ν
a.s. and in Lp

(1.48)
√

log t

(
1

log t

∫ t

0

ds
(
R(ν)(s)

)2 −
1

d− 2

)
law−→
t→∞

N,

where N is a centered Gaussian variable with variance σ2 = 1/(2ν3).

The second result in [17] that characterizes the limiting behavior of the

volatility-stabilized market states that:

Proposition 1.5. For every u ∈ [0,∞), i = 1, . . . , n and δ ∈ (0, 1) we have

lim
u→∞

P
[
µi
(
Λ−1(u)

)
≤ 1− δ

]
= 1− δn−1,

where Λ−1(·) is the inverse of the continuous, strictly increasing process Λ(·) of

(1.32).
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This proposition provides in a straightforward manner the important conclu-

sion that the market (1.23) is not diverse. This amounts to the fact that there

is no number δ ∈ (0, 1) such that

(1.49) P

[
max
1≤i≤n

µi(t) < 1− δ, (∀) 0 ≤ t <∞
]

= 1.

The notions of diversity (1.49) and weak diversity (1.20) are studied at large

in [19], where an example of a market that is weakly diverse but not diverse is

provided.

In light of these examples and recalling the relation between the excess growth

rate and the weak diversity arbitrage criteria discussed in Section 1.1, it is nat-

ural to ask whether the volatility-stabilized market of (1.23) is weakly diverse.

To the best of my knowledge, this is an open question and not one that is easy

to settle.

Another key feature of the volatility-stabilized market is that it does not

satisfy the boundedness away from infinity represented by the right-hand side

of inequality (1.18). In Appendix A we provide an argument for this conclusion

that relies on the Laplace transform of the squared Bessel process. A reference

that includes a derivation of this Laplace transform is the paper [10] by Dufresne.
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2. Bessel and Jacobi Processes

2.1. Preliminaries on Bessel processes. In Section 1.2 we introduced the

squared Bessel process Q(·) of dimension m ≥ 2 started at q ≥ 0, as the unique

strong solution of the stochastic differential equation:

(2.1) dQ(t) = mdt + 2
√

Q(t)dB(t), Q(0) = q.

In the literature on Bessel processes, the parameter ζ := (m/2)− 1 ∈ [0,∞)

is known as the index of the Bessel process. The Bessel process of index ζ ,

R(ζ)(·) is defined as R(ζ)(t) :=
√

Q(t), where Q(·) is governed by (2.1) with

m ≡ 2(1 + ζ). A direct application of Itô’s rule shows that

(2.2) dR(ζ)(t) = dB(t) +

(
ζ +

1

2

)
dt

R(ζ)(t)
.

Let P
(ζ) be the law of the Bessel process with index ζ ≥ 0 and starting point

R(0) > 0 on the canonical space C(R+, R+), where R(ζ)(t)(ω) = ω(t). By

E
(ζ) we denote expectations under P

(ζ). Let Rζ(t) = σ{R(ζ)(s), s ≤ t} be the

filtration generated by the Bessel process of index ζ . The process B(·) is a

standard one-dimensional Brownian motion under
(
P

(ζ), (Rζ(t))t≥0

)
.

From here onwards, we shall write R(·) for R(0)(·), that is, for the process

R(·) that satisfies the stochastic differential equation

(2.3) R(t) = R(0) + B(t) +
1

2

∫ t

0

ds

R(s)
, 0 ≤ t <∞.

Let us fix now a real constant γ ≥ 0, and re-write (2.3) as

(2.4) R(t) = R(0) +

(
B(t)− γ

∫ t

0

ds

R(s)

)
+

(
γ +

1

2

)∫ t

0

ds

R(s)
.
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A comparison of the formula (2.4) with (2.2) with suggests that, under a

Girsanov change of measure, R(·) can be regarded as a Bessel process of index

γ. This is the key idea of the proof that follows.

We start by introducing the exponential process:

(2.5) Z(t) := exp

(
γ

∫ t

0

dB(s)

R(s)
− γ2

2

∫ t

0

ds

R2(s)

)
, 0 ≤ t <∞.

Standard theorems in stochastic calculus ensure that Z(·) is a positive local

martingale and a supermartingale.

From the initial equation (2.3) satisfied by the Bessel process, it follows that

(2.6)
dR(s)

R(s)
=

dB(s)

R(s)
+

ds

2R2(s)
,

so (2.5) becomes

(2.7) log Z(t) = γ

∫ t

0

dB(s)

R(s)
− γ2

2

∫ t

0

ds

R2(s)
= γ

∫ t

0

dR(s)

R(s)
− γ + γ2

2

∫ t

0

ds

R2(s)
.

By Itô’s rule

(2.8) d (log R(t)) =
dR(t)

R(t)
− dt

2R2(t)
,

so from formulas (2.7) and (2.8) together we get

(2.9) log Z(t) = γ

(
log

(
R(t)

R(0)

)
+

1

2

∫ t

0

ds

R2(s)

)
− γ + γ2

2

∫ t

0

ds

R2(s)
=

= γ log

(
R(t)

R(0)

)
− γ2

2

∫ t

0

ds

R2(s)

and hence

(2.10) Z(t) =

(
R(t)

R(0)

)γ
exp

(
−γ2

2

∫ t

0

ds

R2(s)

)
.
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Next we are going to show that (Z(t))t≥0 is a true (P(0), (R0(t))t≥0) mar-

tingale. The argument builds upon ideas in [58]. First we recall that a local

martingale (X(t))t≥0 for which

(2.11) E

[
sup

0≤s≤t
|X(s)|

]
<∞

for every t > 0, is a martingale. This criterion can be found in [44, p.16].

The random variable Z(t) is bounded from above by
(
R(t)
R(0)

)γ
, so it suffices to

verify that

(2.12) E
(0)

[
sup

0≤s≤t
(R(s))γ

]
<∞, for every t > 0.

The inequality above calls for an application of Doob’s maximal inequality;

see Chapter 2 of [49] for a general discussion of martingale inequalities. Doob’s

maximal inequality for Bessel processes has been studied by J. L. Pedersen in

[47]. Inequality (2.12) follows from the main result of [47], which we state below:

Theorem 2.1. Let (R(t))t≥0 be a Bessel process of dimension d > 0 started at

R(0) ≥ 0. The maximal inequality

(2.13)

E

[
max
0≤t≤τ

(
R(t)

)p
]
≤
(

p

p− (2− d)

) p
2−d

E

[(
R(τ)

)p]− p

p− (2− d)

(
R(0)

)p

holds for all p > (2−d)∨0 and all stopping times τ with respect to the filtration

generated by the Bessel process (R(t))t≥0, satisfying the inequality

(2.14) E

[
τ

p
2

]
<∞.

(Recall the notation a ∨ b := max(a, b)).

Since the exponential process Z(·) of (2.5) is a (P(0),R0(t)) martingale, we

can apply Girsanov’s theorem to obtain that under a change of measure a Bessel
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process of index 0 becomes a Bessel process of index γ and for any R0(t) mea-

surable random variable X

(2.15) E
(γ)[X] = E

(0) [XZ(t)] .

Throughout the notes, we shall use the formal equality

(2.16) E[1{X∈dx}Y ] = E[Y |X = x] · P[X ∈ dx]

for arbitrary random variables X and Y , as a shorthand for

(2.17) E[Y 1A(X)] =

∫

A

E[Y |X = x] · P[X ∈ dx], A ∈ B(R).

From (2.15), (2.16), (2.10) we have then

(2.18)

P
(γ)[R(t) ∈ dr] = E

(γ)[1{R(t)∈dr}] = E
(0)

[
1{R(t)∈dr}

(
r

R(0)

)γ
exp

(
−γ2

2

∫ t

0

ds

R2(s)

)]
=

= E
(0)

[(
r

R(0)

)γ
exp

(
−γ2

2

∫ t

0

ds

R2(s)

) ∣∣∣R(t) = r

]
· P(0)[R(t) ∈ dr].

But the transition probabilities of the Bessel process of index γ are known as

(2.19)

P
(γ)[R(t) ∈ dr] =

r

t

(
r

R(0)

)γ
e−

r2+R2(0)
2t Iγ

(
rR(0)

t

)
dr, r > 0, γ ≥ 0;

see the paper [10] by Dufresne for a derivation of these transition probabilities.

Here

(2.20) Iv(z) =
(z

2

)v ∞∑

k=0

(z2/4)k

k!Γ(v + k + 1)

is the modified Bessel function of the first kind. Hence, the right-hand side of

(2.18) becomes

(2.21)
r

t

(
r

R(0)

)γ
e−

r2+R2(0)
2t Iγ

(
rR(0)

t

)
=
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=
r

t
e−

r2+R2(0)
2t I0

(
rR(0)

t

)(
r

R(0)

)γ
E

(0)

[
exp

(
−γ2

2

∫ t

0

ds

R2(s)

) ∣∣∣R(t) = r

]

and we are able to deduce the following important formula, first derived by

Marc Yor in 1980 in the paper [58]:

(2.22) E
(0)

[
exp

(
−γ2

2

∫ t

0

ds

R2(s)

) ∣∣∣R(t) = r

]
=

Iγ
I0

(
rR(0)

t

)
.

Now suppose R(·) is a Bessel process of index γ. In the same way as above,

one can deduce that

(2.23) E
(γ)

[
exp

(
−λ

∫ t

0

ds

R2(s)

) ∣∣∣R(t) = r

]
=

I√
2λ+γ2

Iγ

(
rR(0)

t

)
.

For a Bessel process R(·) of index γ, we shall try now to find an explicit

formula for the conditional density P

[∫ t
0
R−2(s)ds ∈ dT

∣∣∣R(t) = r
]

by inverting

the above Laplace transform. Following [56, p. 94] we can write

(2.24) I|γ|(r) =

∫ ∞

0

e−
γ2u
2 θr(u)du thus

(2.25) I√
2λ+γ2(r) =

∫ ∞

0

e−λue−
γ2u
2 θr(u)du for r > 0,

where by [56, p. 42] we have

(2.26) θr(u) :=
re

π2

2u√
2π3u

∫ ∞

0

e−
y2

2u e−r cosh y(sinh y) sin
(πy

u

)
dy.

Therefore

(2.27) P
(γ)

[∫ t

0

ds

R2(s)
∈ dT

∣∣∣R(t) = r

]
=

e−
γ2T

2 θ rR(0)
t

(T )

Iγ(
rR(0)
t

)
dT,

and we deduce the joint probability density

(2.28)

P
(γ)

[∫ t

0

ds

R2(s)
∈ dT, R(t) ∈ dr

]
=

r

t

(
r

R(0)

)γ
e−

r2+R2(0)
2t e−

γ2T
2 θ rR(0)

t

(T )dTdr.
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This leads to the computation of the marginal distribution

(2.29)

P
(γ)

[∫ t

0

R−2(s)ds ∈ dT

]
=

∫ ∞

0

r

t

(
r

R(0)

)γ
e−

r2+R2(0)
2t e−

γ2T
2 θ rR(0)

t

(T )drdT,

and, by Bayes’s rule, to the conditional distribution

(2.30) P

[
R(t) ∈ dr

∣∣∣
∫ t

0

ds

R2(s)
= T

]
=

rγ+1e−
r2

2t θ rR(0)
t

(T )dr
∫∞
0

ργ+1e−
ρ2

2t θ ρR(0)
t

(T )dρ
.

The function θr(·) of (2.26) is often encountered in the literature in connection

with the joint distribution of Brownian motion with drift and the integral of its

exponential. The classical result in this direction, derived by M. Yor in [57], is

the following:

Theorem 2.2. Let

B(µ)(t) = B(t) + µt, A(µ)(t) =

∫ t

0

exp (2B(µ)(s))ds,

where B(·) is a standard one-dimensional Brownian motion. Then for t > 0

fixed, µ > 0 and x ∈ R, the joint distribution of these two random variables

(2.31)

P
[
A(µ)(t) ∈ du, B(µ)(t) ∈ dx

]
= exp

(
µx− µ2t

2

)
θex/u(t) exp

(
−1 + e2x

2u

)
dudx

u
.

The original proof of this result can be found in [57]; a different proof based

on Schrödinger operators, Green’s functions and the Feyman-Kac formula can

be found in [43].

We conclude this section with two computations that will play a key role in

the proofs of the main results. The first of these propositions can be found in

[43, p. 320], and in [42, p. 91].
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Proposition 2.3. With ac(x) = argcosh(x) for x ≥ 1, we have

(2.32)

∫ ∞

0

e−xrθr(t)
dr

r
=

1√
2πt

exp

(
−ac(x)2

2t

)
for any t > 0.

Proof. Integrating both sides of (2.31) with respect to u yields

(2.33)
P
[
B(µ)(t) ∈ dx

]

dx
=

e−
(x−µt)2

2t√
2πt

= eµx−
µ2t
2

∫ ∞

0

exp

(
−1 + e2x

2u

)
θ ex

u
(t)

du

u
,

or equivalently:

(2.34)
e−

x2

2t√
2πt

=

∫ ∞

0

exp

(
−1 + e2x

2u

)
θ ex

u
(t)

du

u
=

∫ ∞

0

θr(t)e
−r coshxdr

r

which is exactly the desired proposition. �

Proposition 2.4. For R(·) a Bessel process of index γ starting at R(0) and

C(t) :=

∫ t

0

ds

R2(s)
,

the following equality holds:

(2.35)

∫ ∞

0

P
(γ) [C(t) ∈ dc, R(t) ∈ dr] dt =

=
r√
2πc

(
r

R(0)

)γ
exp

(
− 1

2c

[
c2γ2 +

(
log

r

R(0)

)2
])

dcdr =

=
r√
2πc

exp

(
− 1

2c

(
log

r

R(0)
− cγ

)2
)

dcdr.

Proof. Using formula (2.28) for the joint density of C(t) and R(t), we get
∫ ∞

0

P
(γ) [C(t) ∈ dc, R(t) ∈ dr] dt =

= r

(
r

R(0)

)γ
e−

γ2c
2

(∫ ∞

0

e−
r2+R2(0)

2t θ rR(0)
t

(c)
dt

t

)
dcdr .
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After a change of variable, the above expression becomes

r

(
r

R(0)

)γ
e−

γ2c
2

∫ ∞

0

e−
(r2+R2(0))u

2rR(0) θu(c)
du

u
,

and using Proposition 2.3 this is just

r√
2πc

(
r

R(0)

)γ
e−

γ2c
2 exp


−

[(
r2+R2(0)
2rR(0)

)]2

2c


.

It is straightforward to check that

argcosh

(
r2 + R2(0)

2rR(0)

)
= log

(
r

R(0)

)
,

which concludes the proof. �

2.2. The skew-product decomposition of Bessel processes, the mul-

tidimensional Jacobi process and its connection to the volatility-

stabilized market. In a rather oversimplified way, skew-product decompo-

sitions of stochastic processes can be thought of as an analogue of polar coordi-

nates. The classical result in this direction concerns an n-dimensional (n > 1)

Brownian motion (B(t), t ≥ 0) starting at x 6= 0. Then

(2.36) B(t) = |B(t)| ·Θ“

R t

0
ds

|B(s)|2

”

where (Θ(u), u ≥ 0) is a standard Brownian motion on Sn−1 independent of

(|B(t)|, t ≥ 0). This result can be found in [32] or [54].

In this section we consider a family of squared Bessel processes Q1(·), . . . , Qn(·)
of dimensions δ1, . . . , δn, respectively, as in (1.37). Then Q(·) :=

∑n
i=1 Qi(·) is a

squared Bessel process of dimension δ :=
∑n

i=1 δi. Let the clock C(·) be defined

as C(t) :=
∫ t
0

ds
Q(s)

, t ≥ 0 and let α(u) be its inverse, defined as

(2.37) α(u) := inf{t ≥ 0| C(t) > u}, 0 ≤ u <∞.
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In [53], Warren and Yor obtain an analogue of the representation (2.36) by

establishing that

(2.38)
Qi(t)

Q(t)
= Yi(C(t)), 0 ≤ t <∞, i = 1, . . . , n,

where Yi(·) are one-dimensional diffusions taking values in the interval [0, 1],

independent of the clock C(·) and satisfying the following stochastic differential

equations

(2.39) dYi(t) =
(
δi − δYi(t)

)
dt + 2

√
Yi(t)(1− Yi(t))dBi(t), i = 1, . . . , n

for suitably correlated Brownian motions B1(·), . . .Bn(·). Because Y1(u)+ · · ·+
Yn(u) = 1, these diffusions are not independent, but rather negatively corre-

lated, with quadratic covariations

(2.40) d〈Yi, Yj〉(t) = −4Yi(t)Yj(t)dt,

as it will be transparent from the representations that are going to be obtained

in the end of Section 5.2.

Various results on Jacobi processes can be found in [20], [24], and [25]. Due

to the fact that they take values in the interval [0, 1], such processes are most

useful to model dynamic bounded variables, such as probabilities or exchange

rates as in [38]. We also note that the Jacobi process exhibits mean-reversion:

as the process approaches the boundary points 0 and 1 respectively, the diffusion

term becomes small and the drift becomes positive and negative respectively,

forcing the process to stay within the interval. Feller’s test for explosions (see

[30, p. 348]) can be applied to the Jacobi diffusion to make the above statement

mathematically rigorous.

Our goal is to generalize the result of Warren and Yor by establishing that

the entire vector (Y1(·), . . . , Yn(·)) is a multidimensional diffusion, which we
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are going to refer to as the multidimensional Jacobi process. We are going

to derive another system of stochastic differential equations satisfied by the

process (Y1(·), . . . , Yn(·)) that will make transparent the correlation structure of

the Brownian motions B1(·), . . . , Bn(·) from (2.39). The proofs of these results

are to be found in Section 5.2, where instead of Bessel processes we are going

to use the more general Cox-Ingersoll-Ross process for the derivation of the

multidimensional Jacobi process.

We are now ready to derive the key fact that the vector of market weights

(µ1(·), . . . , µn(·)) (defined by formula (1.14)), of the volatility-stabilized market

(1.23) is a multidimensional Jacobi process. Indeed, according to (1.39) and

(1.40) the individual market weights have the following representation

(2.41) µi(T ) =
Xi(T )

X(T )
=

R2
i (Λ(T ))

R2 (Λ(T ))
, i = 1, · · · , n.

The skew-product decomposition of Bessel processes from Proposition 1 in [53],

tells us that

R2
i (t) = R2(t)Yi

(∫ t

0

R−2(s)ds

)
, 0 ≤ t <∞.

Letting t← Λ(T ), we get that

R2
i (Λ(T )) = R2 (Λ(T ))Yi

(∫ Λ(T )

0

R−2(s)ds

)
,

which together with formula (1.40) shows that

(2.42) µi(T ) = Yi

(
T

4

)
, i = 1, · · · , n.
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3. The Laws and Moments of Stock Prices and

Market Weights

3.1. The spectral representation of the transition density of a diffu-

sion with applications to the one-dimensional Jacobi process. One of

the main open questions in [17] is to compute the distributions of the market

weights, µi(t), i = 1, . . . , n for the volatility-stabilized market model. In this

section we provide an answer to this question using the knowledge from Section

2.2 that each µi(·) is a one-dimensional diffusion. We start by discussing the

spectral representation of the transition density of a one-dimensional diffusion

(dX(t) = b(X(t))dt + σ(X(t))dB(t)) following the exposition in [32].

Consider a diffusion over a finite closed interval I = [l, r], with σ2(x) contin-

uous and positive on I and with l and r exit or reflecting boundaries. We recall

that a boundary point l is an exit boundary if starting at it, it is impossible

to reach any interior state b, no matter how near b is to l. Formally we write

limbցl limxցl P (Tb < t|X0 = x) = 0 for all t > 0. As usual, Tb is the first hitting

time of the level b by our diffusion. A boundary point l is reflecting if the speed

measure assigns the value 0 to {l}.
We recall that the scale function and speed density of our diffusion are given

by the following expressions:

(3.1) s(x) = exp

(
−
∫ x

x0

2b(y)

σ2(y)
dy

)
and m(x) =

1

σ2(x)s(x)
.

Intuitively, m(x) gives the time that X(t) takes to exit a small interval centered

at x. See [12, p. 227] for a mathematical explanation of this intuition.



27

With f(x) bounded and continuous on (l, r) the function

(3.2) u(t, x) := Ex [f(X(t))]

satisfies the Kolmogorov backward differential equation:

(3.3)
∂u

∂t
=

1

2

1

m(x)

∂

∂x

(
1

s(x)

∂

∂x

)
u = Lu,

with the initial condition u(0, x) = f(x), and boundary condition u(t, l) = 0 if

l is an exit boundary and u′(t, l) = 0 if l is reflecting and similarly at the right

boundary r. A derivation of this equation can be found in [32, p. 214].

We try to find a solution of equation (3.3) using the method of separation of

variables . Writing u(t, x) = c(t)φ(x) and substituting this into (3.3) gives

(3.4)
c′(t)

c(t)
=

(Lφ)(x)

φ(x)
.

This equality can hold if and only if for some constant λ,

(3.5)

{
c′(t) = −λc(t)

(Lφ)(x) = −λφ(x).

From the specified boundary conditions we also get that φ(l) = φ(r) = 0 if l

and r are exit points.

It can be easily checked that the boundary value problem
{

(Lφ) (x) = −λφ(x)

φ(l) = φ(r) = 0
(3.6)

is of elliptic type: (Lφ) (x) = 1
2
σ2(x)φ′′(x) + b(x)φ′(x) and because of the as-

sumption at the start of this section, that σ is continuous, positive, and defined

on a finite closed interval, it follows that 1
2
σ2 is bounded away from zero by a

positive constant, hence elliptic. An overview of the spectral theory of elliptic

operators can be found in Chapter 6 of [40]. It follows that the operator L has a
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set of eigenvalues (λk)k≥0, 0 ≤ λ0 < λ1 < · · · < λk, λk →∞, and corresponding

eigenfunctions {φk(x)}k≥0 that are solutions of equation (3.6). The solution of

the parabolic equation (3.3) can be represented as an infinite series:

(3.7) u(t, x) =
∞∑

k=0

cke
−λktφk(x)

where the constants ck are to be determined so that the initial conditions are

satisfied.

We further note that the family of eigenfunctions {φk(x)}k≥0 constitutes an

orthogonal set with respect to the speed density m(x). Indeed

(3.8) −λj

∫ r

l

m(x)φi(x)φj(x)dx =

∫ r

l

m(x)φi(x)(Lφj)(x)dx =

=
1

2

∫ r

l

φi(x)

(
∂

∂x

(
1

s(x)

∂

∂x
φj(x)

))
dx = −1

2

∫ r

l

φ
′
i(x)φ

′
j(x)

1

s(x)
dx =

= −
∫ r

l

m(x)(Lφi)(x)φj(x)dx = −λi

∫ r

l

m(x)φi(x)φj(x)dx.

It follows that

(3.9)

∫ r

l

m(x)φi(x)φj(x)dx = 0 for i 6= j,

hence the conclusion.

From the orthogonality of the family {φk(x)}k≥0 we are able to deduce that

(3.10) ck = πk

∫ r

l

m(y)f(y)φk(y)dy, k = 0, 1 . . .

where

(3.11) f(x) := u(0, x) and πk :=
1∫ r

l
m(y)φ2

k(y)dy
.
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Denote by pt(x, y) the transition density of the diffusion X(t), that is P
x [X(t) ∈ dy]

= pt(x, y)dy. For f(·) defined as f(x) := 1[l,r](x), equality (3.2) combined with

the representation (3.7), in conjunction with (3.11), helps us deduce the equality

(3.12)

∫ r

l

pt(x, y)dy =

∞∑

k=0

e−λktπkφk(x)

(∫ r

l

m(y)φk(y)dy

)
.

Dividing by (r−l) and letting the interval (l, r) shrink to y we obtain formally

the spectral representation of the transition density:

(3.13) pt(x, y) = m(y)
∞∑

k=0

e−λktφk(x)φk(y)πk.

Now let Y (·) be a Jacobi process satisfying the stochastic differential equation

(3.14)

dY (t) =
(
δ1 − (δ1 + δ2)Y (t)

)
dt + η

√
Y (t)(1− Y (t))dB(t), Y (0) = y0 ∈ (0, 1).

The spectral decomposition of the Jacobi process has been derived by E. Wong

in [55]. We recall it here following the presentation of [25]. The eigenvalues are

given by:

(3.15) λk = (δ1 + δ2)k +
η2

2
k(k − 1), k = 0, 1 . . .

and the eigenfunctions are known to be the Jacobi polynomials (see Chapter 22

of [1]), which have the following expression:

(3.16) Pk(y) =




Γ
(
k + 2δ1

η2

)(
2k + 2δ1+2δ2

η2
− 1
)

Γ
(

2δ1
η2

)
Γ
(

2δ2
η2

)

k!Γ
(

2δ1+2δ2
η2

+ k − 1
)

Γ
(

2δ1+2δ2
η2

)
Γ
(

2δ2
η2

+ k
)




1
2

·

·
k∑

i=0

(−1)i
(

k

i

)Γ
(

2δ1+2δ2
η2

+ k + i− 1
)

Γ
(

2δ1
η2

+ i
) yi.
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It is shown in [24] that the Jacobi process, the Ornstein-Uhlenbeck process

(3.17) dY (t) = b(Y (t)− β)dt +
√

c dW (t)

and the square-root process

(3.18) dY (t) = b(Y (t)− β)dt +
√

c1Y (t) + c0 dW (t)

are the only one-dimensional diffusions whose infinitesimal generator have poly-

nomial eigenfunctions.

• In the particular case of the volatility-stabilized market presented in Section

1.2, the parameters η, δ1, and δ2 take the following values

(3.19) η = 2, δ1 = m, δ2 = m(n− 1).

We recall that n represents the number of stocks in the market and m is the

dimension of each individual Bessel process that appears in the expression of

stocks. The Jacobi polynomials of (3.16) and the corresponding eigenvalues of

(3.15) take the form below, which we are going to use for the rest of this section.

(3.20) λk = k(nm + 2k − 2), k = 0, 1 . . .

(3.21) Pk(y) =




Γ
(
k + m

2

) (
2k + nm

2
− 1
)
Γ
(
m
2

)
Γ
(
m(n−1)

2

)

k!Γ
(
nm
2

+ k − 1
)
Γ
(
nm
2

)
Γ
(
m(n−1)

2
+ k
)




1
2

·

·
k∑

i=0

(−1)i
(

k

i

)
Γ
(
mn
2

+ k + i− 1
)

Γ
(
m
2

+ i
) yi.

Furthermore the local drift and volatility coefficients are then given as

(3.22) b(y) = m(1− ny), σ(y) = 2
√

y(1− y),
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and a straightforward calculation leads to

(3.23) s(y) =
(
2ny(1− y)n−1

)−m
2 and m(y) = 2

nm
2

−2y
m
2
−1(1− y)(n−1)m

2
−1.

(We have made the choice x0 = 1
2

in the expression of the scale function (3.1).)

• To have an explicit expression for the spectral representation of the Jacobi

process we need to compute the quantity πk of (3.11), where the expression of

m(y) and Pk(y) are to be found in (3.23) and (3.21), respectively.

It can be checked through direct computation (and is worth doing as a sanity

check) that the Jacobi polynomials are indeed eigenfunctions of the infinitesimal

generator corresponding to the Jacobi stochastic differential equation (3.14).

This sanity check amounts to verifying that the second equation of the system

(3.5) is satisfied when L = 1
2
σ2(y) ∂2

∂y2
+b(y) ∂

∂y
(σ(y) and b(y) are given in (3.22)),

when φ is the polynomial Pk from (3.21), and when λ is the eigenvalue λk from

(3.20), so we are left to check that the Jacobi polynomial of (3.21) is a solution

to the Jacobi ordinary differential equation:

(3.24) 2y(1− y)P
′′
k (y) + m(1− ny)P

′
k(y) = −k(nm + 2k − 2)Pk(y).

We further give an overview of the steps required to compute the quantity

πk from (3.11). The computational details for arbitrary m ≥ 2 are provided in

Appendix B and a different proof for the case m = 2 is provided in Appendix

C.

The family of polynomials {Pk(y)}k≥0 given by formula (3.21) is orthogonal

with respect to the speed measure m(y) (See Appendix B for proof.):

(3.25)

∫ 1

0

m(y)Pk(y)Pl(y)dy = 0 for k 6= l.
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In addition, the Jacobi polynomials satisfy the recurrence below:

(3.26) Pk+1(y) = (aky + bk)Pk(y)− ckPk−1(y), k = 0, 1, . . .

The exact values of the coefficients ak, bk, ck, are relevant to the derivation of

πk. Multiplying (3.26) by ak−1Pk−1 we get

(3.27) ak−1Pk+1Pk−1 = ak−1(aky + bk)PkPk−1 − ak−1ckP
2
k−1.

Writing (3.26) with k − 1 instead of k and then multiplying by akPk we get

(3.28) akP
2
k = ak(ak−1y + bk−1)PkPk−1 − ck−1akPk−2Pk.

Taking the difference between equalities (3.27) and (3.28), multiplying it by

m(y), integrating from 0 to 1 and using the orthogonality relation (3.25) we get

(3.29) ak

∫ 1

0

m(y)P 2
k (y)dy = ak−1ck

∫ 1

0

m(y)P 2
k−1(y)dy.

Denoting Ik :=
∫ 1

0
m(y)P 2

k (y)dy, we next find out that

(3.30) Ik =
I0a0

ak

k∏

l=1

cl .

To simplify notation we write Pk(y) = pkQk(y), where the polynomial Qk(y)

is defined as

(3.31) Qk(y) :=

k∑

i=0

(−1)i
(

k

i

)
Γ
(
mn
2

+ k + i− 1
)

Γ
(
m
2

+ i
) yi,

and the constant pk is defined so that the above polynomial equality holds, when

Pk(y) is given by formula (3.21).

We observe that the family of polynomials {Qk(y)}k≥0 satisfies a recurrence

relation similar to (3.26):

(3.32) Qk+1(y) =

(
akpk
pk+1

y +
bkpk
pk+1

)
Qk(y)− ckpk−1

pk+1

Qk−1(y).
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Defining Ak := akpk

pk+1
, Bk := bkpk

pk+1
, Ck :=

ckpk−1

pk+1
, we get that the coefficients of

interest ak and ck are expressed as

(3.33) ak =
Akpk+1

pk
, ck =

Ckpk+1

pk−1

and after a few more algebraic manipulations, the integral Ik turns out to be

(3.34) Ik =
I0A0

Ak
· p

2
k

p2
0

k∏

l=1

Cl .

The values of the coefficients A1, . . . , Ak and C1, . . . , Ck are derived in Appendix

B:

(3.35) Ak = −
(
mn
2

+ 2k
) (

mn
2

+ 2k − 1
)

m
2

+ k

(3.36) Ck =
k
(
k − 2 + mn

2

) (
2k + mn

2

) (m(n−1)
2

+ k − 1
)

(
k + m

2

) (
2k − 2 + mn

2

) .

It follows that the product
∏k

l=1 Cl can be expressed as follows:

(3.37)

k∏

l=1

Cl =
k!
(
mn
2

+ 2k
)

mn
2

Γ
(
m
2

+ 1
)
Γ
(
mn
2

+ k − 1
)
Γ
(
m(n−1)

2
+ k
)

Γ
(
mn
2
− 1
)
Γ
(
m(n−1)

2

)
Γ
(
k + m

2
+ 1
) .

A few more computations lead to the rather striking conclusion

(3.38)
A0

Ak
· p

2
k

p2
0

k∏

l=1

Cl .

Hence Ik = I0 and πk = π0. The same conclusion is obtained for the special case

m = 2 in Appendix C using a method that does not rely on the orthogonality

property and recurrence relation satisfied by the Jacobi polynomials. Hence

(3.39) πk = π0 =
Γ
(
mn
2

)

2
mn
2

−2Γ
(
m
2

)
Γ
(
m(n−1)

2

) .
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• Putting together formulas (3.13), (3.20), and (3.23) we obtain the final

expression for the spectral representation of the transition density of the Jacobi

process:

(3.40) pt(x, y) =
y

m
2
−1(1− y)

(n−1)m
2

−1Γ
(
mn
2

)

Γ
(
m
2

)
Γ
(
m(n−1)

2

)
∞∑

k=0

e−k(nm+2k−2)tPk(x)Pk(y) ,

where Pk(y) is the Jacobi polynomial, as it appears in formula (3.21). In par-

ticular, the transition density for the ith market weight µi(T ) of the volatility

stabilized market, appearing in formulas (2.41) and (2.42), is represented as:

(3.41)

P [µi(T ) ∈ dy]

dy
=

y
m
2
−1(1− y)

(n−1)m
2

−1Γ
(
mn
2

)

Γ
(
m
2

)
Γ
(
m(n−1)

2

)
∞∑

k=0

e−k(nm+2k−2)T
4 Pk

(
µi(0)

)
Pk(y) ,

0 < y < 1, for i = 1, . . . , n.

The work in this section could be further pursued by studying the spectral

theory of the infinitesimal generator L of (5.36) of the multivariate Jacobi pro-

cess. Multivariate Jacobi polynomials do exist in the literature and are a special

kind of multivariate orthogonal polynomials, whose properties are discussed for

example in [11]. It would be interesting to explore the computational prob-

lem as to whether the multivariate Jacobi polynomials form a complete family

of eigenfunctions for the generator of the multivariate process. Moreover, if

the answer would turn out to be affirmative, it would be worth to pursue the

computation of mixed moments of the multivariate Jacobi process (the case of

individual moments will be studied in Section 3.4), in hope of gaining a better

understanding of the transition density of this process.
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3.2. The distribution of a single stock price for the volatility-stabilized

market model. In this section we compute the distribution of an individual

stock price Xi(T ), at a fixed time T > 0, for the volatility-stabilized process
(
X1(·), . . . , Xn(·)

)
of (1.24). This result complements the conclusions on the

asymptotic behaviour of stock prices captured in Proposition 1.3 of Section 1.2.

Using the same notation as in Section 1.2, we write

(3.42) P

[√
Xi(T ) ∈ dri

]
= P [Ri(Λ(T )) ∈ dri] =

=

∫ ∞

0

P [Ri(Λ(T )) ∈ dri| Λ(T ) = t] P [Λ(T ) ∈ dt] =

=

∫ ∞

0

P [Ri(t) ∈ dri| Λ(T ) = t] P [Λ(T ) ∈ dt]

by the law of total probability. But

(3.43) Λ(T ) =
x

4

∫ T

0

eνs+B(s)ds

is the integral of the exponential of Brownian motion with drift; its distribution

is well known, from the work of M. Yor. Theorem 2.2 in Section 2 provides the

expression of this distribution that we are going to use to get the final result of

this section.

From (1.31) and (1.39) it follows that x = R2(0) and ν := γ, where γ is the

constant defined in (1.28). From here onwards to the end of this chapter, we

redefine the constant γ as the index of the Bessel process R(·) :=
√∑n

i=1 R2
i (·).

It follows that γ = mn
2
− 1 and ν = γ

2
.

From (1.40) we know that the process Λ(·) is strictly increasing and admits

an inverse and hence we can write

(3.44) P [Ri(t) ∈ dri| Λ(T ) = t] = P
[
Ri(t) ∈ dri| Λ−1(t) = T

]
=
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= P

[
Ri(t) ∈ dri| C(t) =

T

4

]
,

where

C(t) :=

∫ t

0

ds

R2(s)
.

We need to compute the joint density of Ri(t) and C(t), then the conditional

density P [Ri(t) ∈ dri| C(t) = c].

To this end, we shall evaluate in two different ways the expectation

E
[
f
(
R2
i (t)
)
g (C(t))

]

for arbitrary bounded, measurable functions f(·) and g(·), then equate the two

results.

• In the first instance, we use the skew product representation

R2
i (t) = R2(t)Yi (C(t)) , 0 ≤ t <∞

discussed in Section 2.2, where Yi(·) is a one-dimensional Jacobi diffusion with

values in [0, 1], independent of the process R(·) and satisfying the following

stochastic differential equation:

(3.45)

dYi(t) = m
(
1− nYi(t)

)
dt + 2

√
Yi(t)(1− Yi(t))dBi(t), Yi(0) = yi(0) =

R2
i (0)

R2(0)
.

We denote by p
(i)
c (yi(0), y) the transition density of this process:

(3.46) p(i)
c (yi(0), y) = P [Yi(c) ∈ dy| Yi(0) = yi(0)] .

All this allows us to write:

(3.47) E
[
f
(
R2
i (t)
)
g (C(t))

]
= E

[
f
(
R2(t)Yi (C(t))

)
g (C(t))

]
=

=

∫ ∞

0

∫ ∞

0

E
[
f
(
r2Yi(c)

)
g(c)| R(t) = r, C(t) = c

]
· P [R(t) ∈ dr, C(t) ∈ dc] =
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=

∫ ∞

0

g(c)

∫ ∞

0

(∫ 1

0

f(r2y)p(i)
c

(
R2
i (0)

R2(0)
, y

)
dy

)
P [R(t) ∈ dr, C(t) ∈ dc] .

For r ∈ (0,∞) fixed, consider the change of variable y =
r2i
r2

, r2dy = 2ridri,

for the ‘interior integral’. This gives

(3.48) E
[
f
(
R2
i (t)
)
g (C(t))

]
=

=

∫ ∞

0

g(c)

(∫ ∞

0

1

r2

∫ r

0

f(r2
i )p

(i)
c

(
R2
i (0)

R2(0)
,
r2
i

r2

)
2ridri

)
·P [R(t) ∈ dr, C(t) ∈ dc] =

=

∫ ∞

0

g(c)

∫ ∞

0

2rif(r2
i )

(∫ ∞

ri

1

r2
p(i)
c

(
R2
i (0)

R2(0)
,
r2
i

r2

)
P [R(t) ∈ dr| C(t) = c]

)
dri ·

·P [C(t) ∈ dc] ,

interchanging integrals and conditioning.

• In the second instance, we rely on the law of total probability (conditioning)

at the outset, to obtain:

(3.49) E
[
f
(
R2
i (t)
)
g (C(t))

]
=

∫ ∞

0

∫ ∞

0

f(r2
i )g(c)P [Ri(t) ∈ dri, C(t) ∈ dc] =

=

∫ ∞

0

g(c)

(∫ ∞

0

f(r2
i )P [Ri(t) ∈ dri| C(t) = c]

)
· P [C(t) ∈ dc] .

Let us now equate the two expressions (3.48) and (3.49). Because g(·) is

arbitrary, we deduce

(3.50)

∫ ∞

0

f(r2
i )P [Ri(t) ∈ dri| C(t) = c] =

∫ ∞

0

2rif(r2
i )

∫ ∞

ri

1

r2
p(i)
c

(
R2
i (0)

R2(0)
,
r2
i

r2

)
P [R(t) ∈ dr| C(t) = c] dri.

Because f(·) is also arbitrary, we further deduce from the above

(3.51)
P [Ri(t) ∈ dri| C(t) = c]

dri
=
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= 2ri

∫ ∞

ri

1

r2
p(i)
c

(
R2
i (0)

R2(0)
,
r2
i

r2

)
P [R(t) ∈ dr| C(t) = c] .

The conditional density P [R(t) ∈ dr| C(t) = c] has been expressed in formula

(2.30) of Section 2. Moreover,

(3.52) Λ(T ) =
R2(0)

4

∫ T

0

e
γs
2

+B(s)ds = R2(0)

∫ T
4

0

e2(γs+ B(4s)
2 )ds =

= R2(0)

∫ T
4

0

e2(γs+B̃(s))ds = R2(0)A(γ)(T/4),

by using the notation of Theorem 2.2 and the scaling property of Brownian

motion. Using the main result of Theorem 2.2, the density P [Λ(T ) ∈ dt] can be

expressed as:

(3.53)
P [Λ(T ) ∈ dt]

dt
=

∫ ∞

−∞
θ exR2(0)

t

(
T

4

)
exp

(
γx− (1 + e2x)R2(0)

2t
− γ2T

8

)
dx

t
=

=
1

tRγ(0)
e−

γ2T
8

−R2(0)
2t

∫ ∞

0

θ zR(0)
t

(
T

4

)
exp

(
−z2

2t

)
zγ−1dz,

after the change of variable z = exR(0).

Putting together formulas (3.42), (3.51), (3.53), and (2.30) we obtain the

density of the square root of the ith process Xi(·) at a given time T , as

(3.54)
P

[√
Xi(T ) ∈ dri

]

dri
=

= 2ri

∫ ∞

0

∫ ∞

ri

p
(i)
T
4

(
R2
i (0)

R2(0)
,
r2
i

r2

)
rγ−1

tRγ(0)
e−

γ2T
8

− r2+R2(0)
2t θ rR(0)

t

(
T

4

)
It,T,R(0)(γ − 1)

It,T,R(0)(γ + 1)
drdt,

where

(3.55) It,T,R(0)(γ) :=

∫ ∞

0

θ zR(0)
t

(
T

4

)
e−

z2

2t zγdz,

and the exact expression of θ zR(0)
t

(
T
4

)
follows from formula (2.26).
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With the help of Proposition 2.4, we carry out the sanity check that this

density integrates to 1. Finally, we can express the density of the ith stock,

Xi(T ), as follows:

(3.56)
P [Xi(T ) ∈ dqi]

dqi
=

e−
γ2T

8

Rγ(0)

∫ ∞

0

e−
R2(0)

2t
It,T,R(0)(γ − 1)

It,T,R(0)(γ + 1)

dt

t
·

·
∫ ∞

qi

p
(i)
T
4

(
R2
i (0)

R2(0)
,
qi
q

)
θ√

qR(0)

t

(
T

4

)
e−

q
2t q

γ−1
2 dq.

We note that by using the explicit formula of θ zR(0)
t

(
T
4

)
, we can obtain an

alternate expression for the function It,T,R(0)(γ), namely

(3.57)

It,T,R(0)(γ) =
1

π

√
2

πT

R(0)

t
e

2π2

T

∫ ∞

0

e−
2x2

T sinh x sin

(
4πx

T

)
Jt,R(0),x(γ)dx.

However, this new expression does not simplify its computational complexity.

The quantity Jt,R(0),x(γ) can be computed in terms of the confluent hyperge-

ometric function

F1(a, b, z) :=

∞∑

k=0

(a)k
(b)k

zk

k!
, (a)k := a(a− 1) . . . (a− k + 1)

using Mathematica:

Jt,R(0),x(γ) = 2
γ
2 t

γ+2
2 Γ

(
γ + 2

2

)
F1

(
γ + 2

2
,
1

2
,
R2(0) cosh2 x

2t

)
−

−(2t)
γ+1

2 R(0) coshx Γ

(
γ + 3

2

)
F1

(
γ + 3

2
,
3

2
,
R2(0) cosh2 x

2t

)
.
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3.3. The joint distribution of stock prices for the volatility-stabilized

market model. In this section we compute the joint distribution of stocks, at

a fixed time T , by using the same technique that was employed in Section 3.2

to derive the law of an individual stock. We start by writing:

(3.58) P

[√
X1(T ) ∈ dr1, . . . ,

√
Xn(T ) ∈ drn

]
=

= P [R1(Λ(T )) ∈ dr1, . . . , Rn(Λ(T )) ∈ drn] =

=

∫ ∞

0

P [R1(t) ∈ dr1, . . . , Rn(t) ∈ drn| Λ(T ) = t] · P [Λ(T ) ∈ dt] =

=

∫ ∞

0

P

[
R1(t) ∈ dr1, . . . , Rn(t) ∈ drn

∣∣∣ C(t) =
T

4

]
· P [Λ(T ) ∈ dt] .

Once again, we need to compute the joint distribution

(3.59) P [R1(t) ∈ dr1, . . . , Rn(t) ∈ drn, C(t) ∈ dc] .

We shall compute E [f (R2
1(t), . . . , R

2
n(t)) g (C(t))] in two ways, for bounded mea-

surable f : [0,∞)n → [0,∞), g : [0,∞)→ [0,∞) arbitrary.

• In the first instance, we use the skew product representation

R2
i (t) = R2(t)Yi (C(t)) ,

where (Y1(·), . . . , Yn(·)) is a multidimensional Jacobi diffusion with values in

the open unit simplex ∆n, independent of the process R(·) and satisfying the

following system of stochastic differential equations:

(3.60)

dYi(t) =
(
m−nmYi(t)

)
dt+2

[
(1− Yi(t))

√
Yi(t)dWi(t)− Yi(t)

∑

j 6=i

√
Yj(t)dWj(t)

]
,

Yi(0) =
R2
i (0)

R2(0)
.
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This is exactly the system (5.34) satisfied by a generic multidimensional Jacobi

process, but considered in the special case of a volatility-stabilized model, for

which we have established that the market weights are Jacobi processes as in

(2.42).

We denote by pc

(
R2

1(0)

R2(0)
, . . . , R

2
n(0)

R2(0)
; y1, . . . , yn

)
the transition probability of this

process. All this allows us to write:

(3.61)

E
[
f
(
R2

1(t), . . . , R
2
n(t)

)
g (C(t))

]
= E

[
f
(
R2(t)Y1 (C(t)) , . . . , R2(t)Yn (C(t))

)
g (C(t))

]

=

∫ ∞

0

∫ ∞

0

P [R(t) ∈ dr, C(t) ∈ dc]·E
[
f
(
r2Y1(c), . . . , r

2Yn(c)
)
g(c)| R(t) = r, C(t) = c

]

=

∫ ∞

0

g(c)P [C(t) ∈ dc]

∫ ∞

0

E
[
f
(
r2Y1(c), . . . , r

2Yn(c)
)]
·P [R(t) ∈ dr| C(t) = c] =

=

∫ ∞

0

g(c)P [C(t) ∈ dc]

∫ ∞

0

(∫

∆+
n

f(r2y1, . . . , r
2yn)pc

(
R2

1(0)

R2(0)
, . . . ,

R2
n(0)

R2(0)
; y1, . . . , yn

)
dỹ

)
·

·P [R(t) ∈ dr| C(t) = c] .

• In the second instance we rely on the law of total probability, to write:

(3.62) E
[
f
(
R2

1(t), . . . , R
2
n(t)

)
g (C(t))

]
=

∫ ∞

0

g(c)P [C(t) ∈ dc] ·

·
∫ ∞

0

. . .

∫ ∞

0

f(r2
1, . . . , r

2
n)P [R1(t) ∈ dr1, . . . , Rn(t) ∈ drn| C(t) ∈ dc)] .

By equating the expressions (3.61) and (3.62) and since g is arbitrary, we

deduce

(3.63)∫ ∞

0

∫

∆+
n

f(r2y1, . . . , r
2yn)pc

(
R2

1(0)

R2(0)
, . . . ,

R2
n(0)

R2(0)
; y1, . . . , yn

)
dỹP [R(t) ∈ dr| C(t) = c]

=

∫ ∞

0

. . .

∫ ∞

0

f(r2
1, . . . , r

2
n)P [R1(t) ∈ dr1, . . . , Rn(t) ∈ drn| C(t) = c] .
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In the left hand side of equality (3.63), we make the change of variable

(r, y1, . . . , yn−1) → (r1, . . . , rn), with ri = r
√

yi for i = 1, . . . , n − 1 and rn =
√

r2(1− y1 − · · · − yn−1). The Jacobian of the determinant of this invertible

transformation turns out to be

(3.64)
2n−1r1 · ... · rn

(r2
1 + · · ·+ r2

n)
2n−1

2

,

and hence (3.63) becomes

(3.65)

∫ ∞

0

. . .

∫ ∞

0

dr1 . . . drnf(r2
1, . . . , r

2
n)

2n−1r1 · ... · rn
(r2

1 + · · ·+ r2
n)

2n−1
2

·

·pc
(

R2
1(0)

R2(0)
, . . . ,

R2
n(0)

R2(0)
;

r2
1∑
r2
i

, . . . ,
r2
n∑
r2
i

)
·

·
(

P [R(t) ∈ dr| C(t) = c]

dr

) ∣∣∣
r=
√

P

r2i

=

∫ ∞

0

. . .

∫ ∞

0

f(r2
1, . . . , r

2
n)P [R1(t) ∈ dr1, . . . , Rn(t) ∈ drn| C(t) = c] .

Because f(·) in (3.65) is also arbitrary, we deduce that

(3.66)
P [R1(t) ∈ dr1, . . . , Rn(t) ∈ drn| C(t) = c]

dr1 . . . drn
=

=
2n−1r1 . . . rn

(r2
1 + · · ·+ r2

n)
2n−1

2

· pc
(

R2
1(0)

R2(0)
, . . . ,

R2
n(0)

R2(0)
;

r2
1∑
r2
i

, . . . ,
r2
n∑
r2
i

)
·

·θ√P

r2
i

R(0)

t

(c)

(∫ ∞

0

θ zR(0)
t

(c)e−
z2

2t zγ+1dz

)−1

e−
r2
1+···+r2

n
2t (r2

1 + · · ·+ r2
n)

γ+1
2 .

Putting together formulas (3.53), (3.58), and (3.66), we derive the following

expression for the joint law of the square roots of stocks:

(3.67) P

[√
X1(T ) ∈ dr1, . . . ,

√
Xn(T ) ∈ drn

]
=

=
e−

γ2T
8

Rγ(0)
2n−1r1·...·rn(r2

1+· · ·+r2
n)

γ+2−2n
2 pT

4

(
R2

1(0)

R2(0)
, . . . ,

R2
n(0)

R2(0)
;

r2
1∑
r2
i

, . . . ,
r2
n∑
r2
i

)
·
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·
∫ ∞

0

e−
r2
1+···+r2

n+R2(0)

2t θ√P

r2
i

R(0)

t

(
T

4

)
It,T,R(0)(γ − 1)

It,T,R(0)(γ + 1)

dt

t
,

where γ = mn
2
− 1 and It,T,R(0)(γ) is defined as in formula (3.55).

We note that the expression (3.67) does indeed integrate to 1 and also that

the marginals of this joint distribution coincide with the individual distributions

of stock prices obtained in formula (3.54). One last straightforward change of

variables allows us to write formula (3.67) in the alternative form:

(3.68)

P [X1(T ) ∈ dq1, . . . , Xn(T ) ∈ dqn] =

= e−
γ2T

8

2Rγ (0)

(
q1 + · · ·+ qn

) γ+2−2n
2 pT

4

(
R2

1(0)

R2(0)
, . . . , R

2
n(0)

R2(0)
; q1

P

qi
, . . . , qn

P

qi

)
·

·
∫∞
0

e−
q1+···+qn+R2(0)

2t θ√
P

qiR(0)

t

(
T
4

) It,T,R(0)(γ−1)

It,T,R(0)(γ+1)
dt
t
.

3.4. The moments of stock prices and market weights. In this section we

try to gain a better understanding of the law of the market weights µi(T ) for the

volatility-stabilized market by studying the moments of the one-dimensional Ja-

cobi diffusion at any time T > 0. These moments can be recursively computed

using the fact that the eigenfunctions of the Jacobi diffusion are polynomials

(discussed in Section 3.1). The knowledge of the transition density of the Jacobi

diffusion is not at all needed for the computation of these moments; this comes

in handy, since there is no explicit expression for this density in the current lit-

erature and any attempt to compute moments using the spectral representation

of the density given by formula (3.40) carries a huge computational complexity

in it. Finally, the computations in this section are going to help us derive some

qualitative statements about the behavior of the volatility-stabilized market.
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Let L be the infinitesimal generator of the one-dimensional diffusion

(3.69) dX(t) = b(X(t))dt + σ(X(t))dB(t), X(0) = x

and let h be an eigenfunction of L with corresponding eigenvalue λ:

(3.70) Lh = −λh.

Then, the expectation of h(X(t)) has the following expression

(3.71) E [h(X(t))] = e−λth(x),

under certain ‘technical’ assumptions that will follow naturally from our proof.

This result appears in [20]. As for the proof, a direct application of Itô’s rule

gives that:

(3.72)

dh(X(t)) =

[
1

2
σ2(X(t))h′′(X(t)) + h(X(t))h′(X(t))

]
dt+h′(X(t))σ(X(t))dB(t) =

= −λh(X(t))dt + h′(X(t))σ(X(t))dB(t).

(3.73) or h(X(t)) = h(x)− λ

∫ t

0

h(X(s))ds +

∫ t

0

h′(X(s))σ(X(s))dB(s).

In the case that the stochastic integral
∫ t

0
h′(X(s))σ(X(s))dB(s) is a martingale

(this is guaranteed if E

[∫ T
0

(h′σ)2(X(t))dt
]

< ∞, see [30, p.131]), by taking

expectations in the above equality we get that

(3.74) E [h(X(t))] = h(x)− λ

∫ t

0

E [h(X(s))] ds.

Letting f(t) := E [h(X(t))], we see that f is a solution of the very simple ODE

f
′
(t)+λf(t) = 0, hence f(t) = f(0)e−λt and E [h(X(t))] = e−λth(x), as claimed.

Next, we are going to apply this result for L the generator of a Jacobi diffusion

and for h = Pk, the Jacobi polynomial, expressed as in formula (3.21). Observe

that in this case (h′σ) is a polynomial and because the Jacobi process takes
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values in (0, 1), the quantity (h′σ)2(Y (t)) = 4Y (t)(1−Y (t))P ′
k(Y (t)) is bounded

from above and hence E

[∫ T
0

(h′σ)2(Y (t))dt
]

< ∞ for any T > 0. Introducing

the polynomial Qk(y) as in (3.31) we get that

(3.75) E [Qk(Y (t))] = Qk(Y (0))e−k(mn+2k−2)t.

To ease our exposition, let us introduce the following notation

(3.76) xj := E
[
Y j(t)

]
, Qk(x) =

k∑

j=0

akjx
j , where

(3.77) akj = (−1)j
(

k

j

)
Γ
(
mn
2

+ k + j − 1
)

Γ
(
m
2

+ j
) .

Then it follows that

(3.78)
k∑

j=1

akj
(
xj − yje−k(mn+2k−2)t

)
= ak0

(
e−k(mn+2k−2)t−1

)
,

so we have a recursive formula for the moments xj . Here

dY (t) =
(
m−mnY (t)

)
dt + 2

√
Y (t)(1− Y (t))dB(t), Y (0) = y,

is any of the n one-dimensional marginals of the multidimensional Jacobi process

from Section 2.2. By recalling that the ith market weight µi(T ) can be written

µi(T ) = Y
(
T
4

)
, where the Jacobi process Y satisfies the above equation with

parameters m, n, and starting point Y (0) =
R2

i (0)

R2(0)
, we derive the following mean

and variance formulas:

(3.79) E [µi(T )] =
R2
i (0)

R2(0)
e−mn

T
4 +

1

n

(
1− e−mn

T
4

)

(3.80)

E
[
µ2
i (T )

]
=

m + 2

n(mn + 2)
− 2(m + 2)

n(mn + 4)
e−mn

T
4 +

m(m + 2)

(mn + 2)(mn + 4)
e−2(mn+2)T

4 +
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+
R2
i (0)

R2(0)

2(m + 2)

mn + 4

(
e−mn

T
4 − e−2(mn+2)T

4

)
+

R4
i (0)

R4(0)
e−2(mn+2)T

4 .

(3.81) Var [µi(T )] = e−2mnT
4

(
e−T − 1

) R4
i (0)

R4(0)
+ G(T )− F (T )+

+e−mn
T
4

[
4(n− 2)

n(mn + 4)
+ 2e−mn

T
4

(
1

n
− m + 2

mn + 4
e−T
)]

R2
i (0)

R2(0)
,

where G(T ) and F (T ) are given below as

(3.82) G(T ) =
m + 2

n(mn + 2)
− 2(m + 2)

n(mn + 4)
e−mn

T
4 +

m(m + 2)

(mn + 2)(mn + 4)
e−2(mn+2)T

4

F (T ) =

(
1− e−mn

T
4

)2

n2
.

We note that

n∑

i=1

E [µi(T )] = 1, as expected since

n∑

i=1

µi(T ) = 1, and that for

fixed i, E [µi(T )] is increasing, constant, or decreasing depending on whether

µi(0) =
R2

i (0)

R2(0)
is strictly less, equal, or greater than 1

n
, respectively. Also

(3.83) lim
T→∞

E [µi(T )] =
1

n
and lim

T→∞
E
[
µ2
i (T )

]
=

m + 2

n(mn + 2)
.

The same values of these limits are going to be derived via a different method

in Chapter 4. We also note that the pth moment of the ith market weight is a

polynomial of degree p in
R2

i (0)

R2(0)
.

Lastly, we note that the leading coefficient e−2mnT
4

(
e−T − 1

)
of Var [µi(T )] is

negative, so it is worth posing the question for what value of the ratio
R2

i (0)

R2(0)
is

the variance of the ith market weight maximized.

We write Var [µi(T )] = PT
(
R2

i (0)

R2(0)

)
, where

(3.84) PT (x) = A(T )x2 + B(T )x + G(T )− F (T ).
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In Appendix 5, by using standard calculus methods, we show that for any T >

0, the vertex of the quadratic PT (x) has positive x coordinate that is actually

greater than 1
2
. Using some more calculus, we are going to conclude in Appendix

5 that for any T > 0 the ordering of the variances of the market weights at time

T is the same as the ordering of the set of initial data {R1(0), . . . , Rn(0)}.
Finally, we show how knowledge of the moments of a Jacobi diffusion can help

towards the computation of moments of stock prices for the volatility stabilized

market, by using formula (3.54) obtained in Section 3.2.

For fixed i, let Mp := E [Xp
i (T )]. Using formula (3.54), Mp has the following

expression:

(3.85) Mp =

∫ ∞

0

2r2p+1
i

∫ ∞

0

∫ ∞

ri

p
(i)
T
4

(
R2
i (0)

R2(0)
,
r2
i

r2

)
·

· rγ−1

tRγ(0)
e−

γ2T
8

− r2+R2(0)
2t θ rR(0)

t

(
T

4

)
It,T,R(0)(γ − 1)

It,T,R(0)(γ + 1)
drdtdri.

By making the change of variables (ri, r)→ (j, r), j =
r2i
r2

, we get the following

simpler expression for Mp:

(3.86) Mp =

[∫ 1

0

jp · p(i)
T
4

(
R2
i (0)

R2(0)
, j

)
dj

]
· e

− γ2T
8

Rγ(0)
·

·
∫ ∞

0

e−
R2(0)

2t
It,T,R(0)(2p + γ + 1)It,T,R(0)(γ − 1)

It,T,R(0)(γ + 1)

dt

t
.

The integral ∫ 1

0

jp · p(i)
T
4

(
R2
i (0)

R2(0)
, j

)
dj

represents the pth moment of a Jacobi diffusion, whose computation we have

discussed. For p = 1 and p = 2 we have the explicit formulas (3.79) and (3.80).

In particular, formula (3.86) implies that at any time T , the ordering of the

pth moments of the stocks is the same as the ordering of the pth moments of the
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market weights. For p = 1, we have seen that this is just the ordering of the set

of initial data {R1(0), . . . , Rn(0)}.
Of possible further interest could be the study, for fixed i, of the monotonicity

of Mp with respect to time T .
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4. The Invariant Distribution of the

Multidimensional Jacobi Process

4.1. The one-dimensional case: new proofs for existing results. The

aim of this section is to establish the invariant distribution of the multidimen-

sional Jacobi diffusion (Y1(·), . . . , Yn(·)) of Section 2.2. We will first discuss the

invariant distribution of a one-dimensional Jacobi diffusion and explain how the

ergodic theorem for one-dimensional difussions allows us to recover existing re-

sults. Next we will prove existence and uniqueness of an invariant density for

the multidimensional process, followed by a discussion of the Dirichlet distri-

bution, the multivariate analogue of the Beta distribution, which through one

last computation, turns out to be the invariant density of the multidimensional

Jacobi process.

A general one-dimensional diffusion (dX(t) = b(X(t))dt + σ(X(t))dW (t)) tak-

ing values in an interval with possibly infinite endpoints l and r is known to

have good ergodic properties if

(4.1) V (x) :=

∫ x

x0

exp

(
−2

∫ y

y0

b(v)

σ2(v)
dv

)
dy −→ ±∞ as x −→ l, r

and

(4.2) H :=

∫ ∞

−∞
exp

(
2

∫ x

x0

b(v)

σ2(v)
dv

)
dx

σ2(x)
<∞.

Condition (4.1) guarantees that the time to return to any bounded set is

finite with probability one and condition (4.2) assures that this time has finite

expectation. A detailed discussion about these results and related ones can be
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found in Chapter 6 of [12]. Under these assumptions, the ergodic theorem states

that for any measurable function h(·), such that E[h(ξ)] <∞, the following limit

(4.3)
1

T

∫ T

0

h(Xt)dt −→
T→∞

∫ ∞

−∞
h(x)f(x)dx = E[h(ξ)]

holds with probability one. Here the function

(4.4) f(x) :=
1

Hσ2(x)
exp

(
2

∫ x

x0

b(v)

σ2(v)
dv

)

is the invariant density of the process and ξ is a random variable with density

function f(·).
Now a straightforward computation shows that for a Jacobi diffusion satisfy-

ing the stochastic differential equation

(4.5) dY (t) =
(
δ1 − δY (t)

)
dt + η

√
Y (t)(1− Y (t))dB(t), Y (0) = y0 ∈ (0, 1)

the invariant probability density function f(·) takes the form

(4.6) f(y) =
Γ
(

2δ
η2

)
y

2δ1
η2 −1

(1− y)
2(δ−δ1)

η2 −1

Γ
(

2δ1
η2

)
Γ
(

2(δ−δ1)
η2

) , 0 < y < 1,

which corresponds to the Beta distribution on the interval [0, 1].

Also, it is straightforward to check that condition (4.1) is satisfied. This

amounts to verifying that the improper integrals

(4.7)

∫ 1
2

0

y
− 2δ1

η2 (1− y)
2(δ1−δ)

η2 dy and

∫ 1

1
2

y
− 2δ1

η2 (1− y)
2(δ1−δ)

η2 dy

are divergent. For the verification it is useful to recall that in the volatility-

stabilized model η = 2, δ1 = m and δ = mn, where m, n ≥ 2.

The first and second moments of a Beta distribution with parameters m
2

and
m(n−1)

2
can be easily computed as 1

n
and m+2

n(mn+2)
, respectively. This allows us to
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recover the conclusion (3.83), which was derived by direct computation of the

first and second moments of the market weights at any fixed time.

Also, if X is a random variable having a Beta distribution with parameters

m
2

and m(n−1)
2

, it can be easily verified that

(4.8) E[X−1] =
mn− 2

m− 2
= n +

n− 1
m
2
− 1

.

This, together with the ergodic theorem (4.3), recovers the following limiting

result for the ith market weight of the volatility stabilized model:

(4.9) lim
T→∞

1

T

∫ T

0

dt

µi(t)
= n +

n− 1
m
2
− 1

= n +
n− 1

α
a.s.

Here α > 0 and m > 2 are the constants introduced in Section 1.2, in (1.23)

and (1.28), and n is the number of stocks in the model.

For the volatility-stabilized model described by the system of SDEs (1.23) and

(1.24) of Section 1.2, the variance of the ith stock, aii(t) is exactly 1
µi(t)

, hence

the interest in the average long-term behavior of this quantity. Conclusion (4.9)

is derived in Proposition 6.1 of [17] via a different method that does not rely on

the fact that the market weights are Jacobi processes, as follows:

(4.10)
1

T

∫ T

0

dt

µi(t)
=

4

T

∫ T

0

dΛ(t)

R2
i (Λ(t))

=
log Λ(T )

T

(
4

log u

∫ u

0

ds

R2
i (s)

) ∣∣∣
u=logΛ(T )

For a Bessel process Ri(·) of dimension m the following limit is recalled in

[17, p. 26] from [48, p. 112] and [60]

(4.11) lim
u→∞

(
1

log u

∫ u

0

ds

R2
i (s)

)
=

1

m− 2
a.s.
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This limit also appears in Theorem 1.4 of Section 1.2 in our exposition and

helps one see that

(4.12) lim
T→∞

(
log Λ(T )

T

)
=

mn− 2

4
a.s.,

after recalling beforehand formula (1.40) for the representation of the inverse

clock Λ−1(t). Finally, combining the results described by (4.10) − (4.12) one

recovers the conclusion (4.9).

4.2. The multidimensional case: existence, uniqueness and explicit

computation. Theorem 2.1 in [35] states that for a recurrent diffusion process

there exists an invariant measure and Theorem 3.2 in the same paper ensures

that the invariant measure is unique up to a multiplicative constant.

Our next focus is to prove that the multidimensional Jacobi process is recur-

rent. We recall from (5.34) the system of SDEs satisfied by the multidimensional

Jacobi process (Y1(·), . . . , Yn(·)):
(4.13)

dYi(t) =
(
δi−δYi(t)

)
dt+η

[
(1− Yi(t))

√
Yi(t)dWi(t)−

∑

j 6=i
Yi(t)

√
Yj(t)dWj(t)

]
,

i = 1, . . . , n and the fact that the process takes values in the open unit simplex

∆n, namely, that we have

Y1(t) + · · ·+ Yn(t) = 1,

for every t ≥ 0. A straightforward calculation gives the quadratic variations of

the individual components of the process:

(4.14) d〈Yi〉(t) = η2Yi(t) (1− Yi(t)) dt.
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We start by defining the process P (t) as follows:

(4.15) P (t) :=

n∑

i=1

(
Yi(t)−

δi
δ

)2

.

Also, let Sr be the set of points at Euclidean distance r from the point
(
δ1
δ
, . . . , δn

δ

)
that also lie on the unit simplex ∆n, and let Sr be the first time

that the process (Y1(·), . . . , Yn(·)) hits the set Sr. Our goal is to prove that

Py[Sr <∞] = 1, where y = (y1, . . . , yn) and yi = Yi(0).

A direct application of Itô’s rule gives the following SDE for P(t):

(4.16) dP (t) =

(
−2δP (t) +

n∑

i=1

η2Yi(t) (1− Yi(t))

)
dt+

+2η

n∑

i=1

√
Yi(t)

(
−

n∑

k=1

Y 2
k (t) +

n∑

k=1

δk
δ

Yk(t) + Yi(t)−
δi
δ

)
dWi(t).

Next, the quadratic variation of the process P (·) can be calculated:

(4.17)

d〈P 〉(t) = 4η2




n∑

k=1

Yk(t)

(
Yk(t)−

δk
δ

)2

−
[

n∑

k=1

Yk(t)

(
Yk(t)−

δk
δ

)]2

 dt.

For a sufficiently smooth function g, another application of Itô’s rule gives:

(4.18)
1

2
dg(P (t)) = g′(P (t))

(
−δP (t) +

η2

2
− η2

2

n∑

i=1

Y 2
i (t)

)
+

+η2g′′(P (t))




n∑

k=1

Yk(t)

(
Yk(t)−

δk
δ

)2

−
[

n∑

k=1

Yk(t)

(
Yk(t)−

δk
δ

)]2


 dt+

+(local martingale)

Consider the function f(x) := x−n−1
2n exp( δx

η2
), defined for x ≥ η2(n−1)

2nδ
and let

g be a primitive of this function: g(y) :=
∫ y
y0

f(x)dx. It follows that g′(y) and
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g′′(y) are greater or equal to 0 on the interval
[
η2(n−1)

2nδ
,∞
)

and also the following

differential equation holds for g:

(4.19) g′(x)

(
η2

2
− η2

2n
− δx

)
+ η2xg′′(x) = 0.

For the chosen function g, we are going to show that the drift term in (4.18)

is negative when P (t) ≥ η2(n−1)
2nδ

. This will imply that g(P (t)) is going to be a

local supermartingale for P (t) ≥ η2(n−1)
2nδ

.

We note the following inequalities:

(4.20)

(
n∑

i=1

Yi(t)

)2

≤ n
n∑

i=1

Y 2
i (t) ≤ n

n∑

i=1

Yi(t), hence
1

n
≤

n∑

i=1

Y 2
i (t) ≤ 1,

and

(4.21)

n∑

k=1

Yk(t)

(
Yk(t)−

δk
δ

)2

≤
n∑

k=1

(
Yk(t)−

δk
δ

)2

= P (t).

With the help of these inequalities, it is easily seen that the drift term of

(4.18) is majorized by

(4.22) g′(P (t))

(
−δP (t) +

η2

2
− η2

2n

)
+ η2P (t)g′′(P (t)) = 0,

given our particular choice of g.

Next, we apply the optional sampling theorem to the supermartingale g(P (t))

and the stopping time τ := Sr ∧ Ss, where η2(n−1)
2nδ

≤ r < s <∞:

(4.23) g (P (0)) ≥ Ey [g (P (τ))] = g(r)Py[Sr < Ss] + g(s) (1− Py[Sr < Ss]) .

Rearranging, we obtain:

(4.24) Py[Sr < Ss] ≥
g(s)− g (P (0))

g(s)− g(r)
.

Finally, because g is strictly increasing and lim
s→∞

g(s) = ∞, we reach the

desired conclusion, that Py[Sr <∞] = 1.
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It is a well known fact in elementary probability that the Beta distribution

with parameters 2δ1
η2

and 2(δ−δ1)
η2

can be obtained as a quotient X
X+Y

, where X

and Y are independent random variables with Gamma distributions Γ
(

2δ1
η2

, θ
)

and Γ
(

2(δ−δ1)
η2

, θ
)
, respectively. In addition, the random variables X

X+Y
and

X + Y are independent. We recall that the probability density function of a

Γ(k, θ) variable has the expression

(4.25)
xk−1 exp

(
−x
θ

)

Γ(k)θk
.

In a more general vein, consider a family of independent random variables

X0, X1, . . . , Xq, where Xj has a Γ (vj, θ) distribution, vj > 0. We also consider

the ratios:

(4.26) Yj :=
Xj∑q
i=0 Xi

j = 1, 2, . . . , q,

and seek to determine the joint distribution of Y1, Y2, . . . , Yq.

The joint probability density function of X0, X1, . . . , Xq is

(4.27)

pX0,...,Xq(x0, . . . , xq) =

[
q∏

j=0

Γ(vj)

]−1

θ−
Pq

j=0 vj

[
q∏

j=0

x
vj−1
j

]
exp

(
−1

θ

q∑

j=0

xj

)

where 0 ≤ xj for j = 0, . . . , q.

Making the transformation to the new variables Y0 =
∑q

i=0 Xi, Y1, Y2, . . . , Yq,

we find:

(4.28) pY0,...,Yq(y0, . . . , yq) =

=

[
q∏

j=0

Γ(vj)

]−1

θ−
Pq

j=0 vj




(

y0

(
1−

q∑

j=1

yj

))v0−1 q∏

j=1

(yoyj)
vj−1



 exp

(
−1

θ
y0

)
J,
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where 0 ≤ yj for j = 0, . . . , q and
∑q

j=1 yj ≤ 1, and J is the Jacobian

(4.29) J =
∂(x0, . . . , xq)

∂(y0, . . . , yq)
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1−
q∑

j=1

yj −y0 −y0 ... −yo

y1 y0 0 ... 0

y2 0 y0 ... 0

... ... ... ... ...

yq 0 0 ... y0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= yq0.

Formula (4.28) can be rearranged in the form

(4.30) pY0,...,Yq(y0, . . . , yq) =

[
θ

Pq
j=0 vj

q∏

j=0

Γ(vj)

]−1 [ q∏

j=1

y
vj−1
j

]
y

Pq
j=0 vj−1

0

(
1−

q∑

j=1

yj

)v0−1

exp
(
−y0

θ

)

defined over yj ≥ 0 for j = 0, . . . , q and
∑q

j=1 yj ≤ 1.

Integrating over the variable y0, we obtain the joint density of Y1, Y2, . . . , Yq

as

(4.31) pY1,...,Yq(y1, . . . , yq) =

Γ

0

B

@

q∑

j=0

vj

1

C

A

q∏

j=0

Γ(vj)

[
q∏

j=1

y
vj−1
j

](
1−

q∑

j=1

yj

)v0−1

.

This multivariate density is known in the literature as the Dirichlet distribution.

See [36, p.486], for a more comprehensive discussion on the topic.

Given that the Dirichlet distribution is the multidimensional generalization of

the Beta distribution , which turned out to be the invariant distribution of the

one-dimensional Jacobi process, it is reasonable to conjecture that the Dirichlet

distribution is the invariant distribution of the multidimensional Jacobi process.
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We already know that the multivariate Jacobi process of (4.13) has a unique

invariant measure. If we denote by µ(x), x ∈ ∆n the density of this invariant

measure, it comes in handy to look for µ(x) as a solution to the equation

(4.32) L∗µ = 0,

as pointed in [35, p. 191]. Here L∗ is the adjoint of the infinitesimal generator

L of the multivariate Jacobi process and has the following expression

(4.33) (L∗f) (x) :=
1

2

n∑

i=1

n∑

j=1

∂2

∂xi∂xj
[aij(x)f(x)]−

n∑

i=1

∂

∂xi
[bi(x)f(x)] ,

where we recall that the functions aij(x) and b(x) are given by formula (5.37).

Indeed, if we denote by p(t, y, x) the transition probabilities of some process

that has an invariant density µ(x), it follows that

(4.34) µ(x) =

∫
µ(y)p(t, y, x)dy.

We recall (see [30, p. 282]) that under certain assumptions p(t, y, x) consid-

ered as a function of x and t satisfies the Kolmogorov forward equation

(4.35)
∂p

∂t
= L∗p.

Assuming that the right-hand side of (4.34) is twice differentiable with respect

to x and differentiable with respect to t under the integral sign, the equation

(4.32) follows in a straightforward manner.

Appendix E contains the computational details of the proof that the equation

(4.32) is satisfied under our circumstances, namely when µ(x) is the scaled

density corresponding to a Dirichlet distribution:

(4.36) µ(x) = x
2δ1
η2 −1

1 · · · · · x
2δn
η2 −1

n , x ∈ ∆n.
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We conclude this section with a non-computational proof of the fact that

the Dirichlet distribution is the invariant distribution of the multidimensional

Jacobi process. This proof belongs to J. Dubedat; see [8].

Consider Q1(·), . . . , Qn(·) to be a family of independent squared Bessel pro-

cesses of dimensions δ1, . . . , δn, or more generally a family of independent CIR

processes with parameter sets (δ1, b, η), . . . , (δn, b, η) respectively, as in (5.1).

Also, assume that all these processes start from 0. The process Q(·) := Q1(·) +

· · ·+Qn(·) is also a squared Bessel process or a CIR process. Define the quotient

processes

(4.37) Zi(·) :=
Qi(·)
Q(·) , i = 1, . . . , n.

The assumption that the processes Qi(·) start at 0 guarantees that the random

variables Qi(t) have Gamma distributions Γ
(
δi
2
, t
)

in the case of a Bessel process

and Γ
(

2δi
η2

, η
2(1−e−bt)

2b

)
in the case of a CIR process. Our notation is the same as

in (4.25).

According to the earlier discussion of this subsection (see page 54), for fixed

t, the random vector Z(t) := (Z1(t), . . . , Zn(t)) has a Dirichlet distribution

B((2δ1)/η
2, . . . , (2δn)/η

2) and is independent from Q(t). Since Q(·) is Markov,

this random vector is also independent from the sigma-algebra generated by the

process Q(·) from time t onwards, σ{Q(t + s)s≥0}.
By time inversion, the process Q̂i(·) defined as Q̂i(t) = t2Qi(1/t) is again

a squared Bessel process of dimension δi. The previous argument applied to

Q̂(t) := Q̂1(t)+· · ·+Q̂n(t) shows that the random vector Z(t) is also independent

from the sigma-algebra σ{Q(1/(t−1 +s))s≥0}, hence it is independent of the full

process Q(·). This last argument also applies to CIR processes, after recalling
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from (5.4) that they can be thought of as deterministically time-changed Bessel

processes.

Thus the process Z(·) can be constructed in the interval [t, t+ s] by sampling

Q(t) and an independent Dirichlet distribution to obtain Z(t), and then by

evolving the processes Qi(·) independently up to time t+ s. The random vector

Z(t + s) has again a Dirichlet distribution.

By the skew-product representation from Section 5.2, the process

(Z1(t + s), . . . , Zn(t + s))s≥0

is distributed as a multidimensional Jacobi process (Y1(u), . . . , Yn(u))u≥0 started

from a Dirichlet distribution and time-changed by an independent clock u =

C(s), s = α(u) (see (2.37)), du = dt/Q(t).

For arbitrary test functions f and g

(4.38)

∫
E
µ
[
f
(
Y1(u), . . . , Yn(u)

)]
g(u)du =

= E

[∫
f
(
Z1(t + α(u)), . . . , Zn(t + α(u))

)
g(u)du

]

= E

[∫ ∞

0

f
(
Z1(t + s), . . . , Zn(t + s)

)
g (C(s)) dC(s)

]

=

∫ ∞

0

E
[
f
(
Z1(t + s), . . . , Zn(t + s)

)]
E [g (C(s))] dC(s)

=

(∫
fdµ

)(∫
g(u)du

)
.

By µ we have denoted the Dirichlet distribution. For the last two equalities we

have used the fact that (Z1(t + s), . . . , Zn(t + s))s≥0 has a Dirichlet distribution

and is independent of the full process Q(·), hence also of the clock C(s).
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By disintegration, for fixed u ≥ 0, we have that

(4.39) E
µ
[
f
(
Y1(u), . . . , Yn(u)

)]
=

∫
fdµ,

which in addition to (4.34) is just another way of saying that the Dirichlet dis-

tribution µ is the invariant distribution of the multidimensional Jacobi process.
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5. Extensions to Cox-Ingersoll-Ross (CIR)

Processes

5.1. General facts about Cox-Ingersoll-Ross processes. The process widely

known in the literature as Cox-Ingersoll-Ross has been first introduced and stud-

ied by Feller in [14]. Three decades after Feller’s inauguration, this process has

been studied again in a paper, [7], by Cox, Ingersoll and Ross, as a model for the

term structure of interest rates. It satisfies the following stochastic differential

equation:

(5.1) dX(t) =
(
a− bX(t)

)
dt + η

√
X+(t)dW (t), X(0) = x0.

The parameters a, b, and η are assumed to be positive. This stochastic differen-

tial equation has a unique strong solution for every triplet (a, b, η) and starting

point x0 > 0 (see [30, p. 285]). With the help of Feller’s test (see [30, p. 348]),

it can be seen that the origin is inaccesible if (2a)/η2 ≥ 1. If 0 < (2a)/η2 < 1,

then the origin is instantaneously reflecting, and for a = 0, zero is absorbing

and is hit in finite time almost surely. Thus, the process is always nonnegative,

and the + sign under the square root in (5.1) can be erased.

The CIR process exhibits mean-reversion, a desirable property of interest

rates. For a treatment of interest rate models, including the CIR model, we

refer the reader to Chapter 6 of [37].

The squared Bessel process of (1.37) and (2.1), and the CIR process of (5.1)

share some striking similarities. These common properties are going to allow us

to extend the main result of [53] with only a small amount of additional work.
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Like the squared Bessel process, the CIR process exhibits the additivity

property in the parameter a: if X1 and X2 are CIR processes with parame-

ters (a1, b, η) and (a2, b, η), then X1 + X2 is a CIR process with parameters

(a1 + a2, b, η). As in the case of the squared Bessel process, the additivity prop-

erty helps towards the computation of the Laplace transform of the CIR process,

which has the following expression (see [46]):

(5.2)

E
[
e−λX(t)

]
=

[
1 +

η2λ

2b
(1− e−bt)

]− 2a

η2

·exp

(
−x0λe−bt

(
1 +

η2λ

2b
(1− e−bt)−1

))
,

where X(·) is the process of (5.1). Letting t → ∞ in (5.2), we deduce that

the CIR process X(·) converges weakly to a Gamma distribution with pa-

rameters α = (2b)/η2 and p = (2a)/η2, that is, a distribution with density

αpxp−1e−αx (Γ(p))−1.

We remark that the Laplace transforms of the squared Bessel process and

of the CIR process, as described by formulas (A.4) of Appendix A and (5.2)

respectively, are of the form

(5.3) E
[
e−λX(t)

]
= φ(t, λ)e−xψ(t,λ), X(0) = x.

Markov processes whose Laplace transforms satisfy formula (5.3) can be used

to model branching processes with immigration in continuous time; they have

been studied extensively in [33].

Another key property is that the CIR process X(·) of (5.1) is a squared

Bessel process, time-changed deterministically. (See [21] for this result.) More

precisely, if Q(·) is a squared Bessel process of dimension m, then

(5.4) X(t) := ebtQ

(
η2

4b
(ebt − 1)

)

is a CIR process with parameter set (a, b, η).
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This result combined with the law of large numbers of Theorem 1.4 for the

Bessel process allows us to conclude that

(5.5)

∫ ∞

0

dt

X(t)
=∞, a.s.

A formula for the price of a zero coupon bond in a CIR environment has been

established by H. Geman and M. Yor in [56, p. 84]. The computation of

(5.6) E

[
e−λ

R t
0 X(s)ds

]

relies on several techniques, including the reduction of the CIR process with

arbitrary parameter η to one with η = 2. This latter process is also known

in the literature as the squared radial Ornstein-Uhlenbeck process, because it

can be viewed as the Euclidean norm of a multidimensional Ornstein-Uhlenbeck

process, that is a process satisfying the SDE:

(5.7) dZi(t) = −bZi(t)dt + σdWi(t), Zi(0) = z
(i)
0 , i = 1, . . . , n.

Further techniques in the computation (5.6) include Girsanov change of mea-

sures as in Section 2.1 and the double Laplace transform

(5.8) E

[
exp

(
−a

2
R2(t)− b2

2

∫ t

0

R2(s)ds

)]

for the Bessel process, established by M. Yor in [59].

Our interest in the CIR process has been prompted by the works of Gouriéroux

[23] and [25]. In [25] the authors consider the bivariate CIR process with pa-

rameter set (bβi, b,
√

c)

(5.9) dXi(t) = −b
(
Xi(t)− βi

)
dt +

√
cXi(t)dWi(t), i = 1, 2,



64

where W1(t) and W2(t) are independent standard Brownian motions and b, β1, β2, c

are strictly positive. The following processes are defined

(5.10)

Y1(t) :=
X1(t)

X1(t) + X2(t)
, Y2(t) := X1(t) + X2(t), Y ∗

1 (t) := Y1(τ(t)), t ≥ 0,

where

(5.11) τ(t) =

∫ t

0

Y2(u)du.

The authors of [25] proceed to claim that Y ∗
1 (·) is a Jacobi process satisfying

the equation:

(5.12)

dY ∗
1 (t) = −b(β1 + β2)

(
Y ∗

1 (t)− β1

β1 + β2

)
dt +

√
cY ∗

1 (t) (1− Y ∗
1 (t))dW ∗

1 (t),

followed by the statement that the processes τ(·) and Y1(·) are independent.

The attempted proof of this result is in the spirit of Proposition 1 from [53].

Upon a closer examination, we have found out that the time changes in the

proofs of Gouriéroux and Valéry are not done correctly and the statements

made in [25] are not correct. Below we provide the corrected version of the

result, but we omit the proof, since it is very similar to that of Proposition 1

in [53] and exploits the similarities between the CIR process and the squared

Bessel process.

Theorem 5.1. Let (X1(t), t ≥ 0) and (X2(t), t ≥ 0) be two independent CIR

processes, with parameter sets (a1, b, η) and (a2, b, η), respectively, as in (5.1),

starting at x1 and x2, with x1 + x2 > 0, and let

T = inf {t ≥ 0|X1(t) + X2(t) = 0}.
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Then there exists a Markov process (Y (u), u ≥ 0), also called a Jacobi process,

independent of (X1(t) + X2(t), t ≥ 0), such that

X1(t) =
(
X1(t) + X2(t)

)
· Y
(∫ t

0

ds

X1(t) + X2(t)

)
, for : 0 ≤ t < T.

The process Y (·) is a diffusion on [0, 1] satisfying the following stochastic dif-

ferential equation

(5.13) dY (t) =
(
a1 − (a1 + a2)Y (t)

)
dt + η

√
Y (t)(1− Y (t))dB(t),

for some Brownian motion B(·).

Note that if the process Y ∗
1 (·) from the work of Gouriéroux were a Jacobi

process, representable as Y1(τ(·)), with τ(·) and Y1(·) independent, as claimed,

then an explicit formula for the law of the Jacobi process could be obtained

through lenghty computations. Indeed, the law of τ(·) can be obtained by

inverting the Laplace transform (5.6) and the transition probabilities for the

CIR process are known (see [46]) and can be used to add to the derivation of

the law of Y1(·).
If pt(x0, x) is the density of the CIR process started at x0, then, following [46]

we can write

(5.14) pt(x0, x) = c exp
(
−cx− ce−btx0

)( x

x0e−bt

) q
2

Iq(2c
√

xx0e−bt),

where c := (2b)/(η2(1−e−bt)), q := (2a)/(η2−1) and Iq(·) is the modified Bessel

function of the first kind, as in (2.20).

However, an explicit formula for the law of the Jacobi process is not known

sofar in the literature.



66

5.2. The skew-product decomposition of Cox-Ingersoll-Ross processes

and the multidimensional Jacobi process. The aim of this section is to

discuss a multidimensional generalization of the skew-product decomposition

result of Warren and Yor from [53]. As in Section 2.2, we are going to consider

a family of processes Q1(·), . . . , Qn(·), but this time we are going to assume

that they are CIR processes with parameter sets (δ1, b, η), . . . , (δn, b, η) (as in

(5.1)), instead of Bessel processes of dimensions δ1, . . . , δn. Note that we can

view a squared Bessel process of dimension δ as a CIR process with parameter

set (δ, 0, 2). The clock C(·) and its inverse α(u) are going to be defined as in

Section 2.2. (see formula (2.37))

Theorem 5.1 tells us that

(5.15)
Qi(t)

Q(t)
= Yi(C(t)), i = 1, . . . , n,

where Yi(·) are one-dimensional diffusions taking values in the interval [0, 1],

independent of the clock C(·) and satisfying the following stochastic differential

equations

(5.16) dYi(t) =
(
δi − δYi(t)

)
dt + η

√
Yi(t)(1− Yi(t))dBi(t), i = 1, . . . , n,

for suitably correlated Brownian motions B1(·), . . . , Bn(·). Because Y1(u) +

· · · + Yn(u) = 1, these diffusions are not independent, but rather negatively

correlated, with quadratic covariations

(5.17) d〈Yi, Yj〉(t) = −η2Yi(t)Yj(t)dt i 6= j,

as it will be transparent from the representations that are going to be obtained

in the end of this section.

We are going to establish that the entire vector (Y1(·), . . . , Yn(·)) is a multi-

dimensional diffusion, which we are going to refer to as the multidimensional
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Jacobi process. We are going to derive the system of stochastic differential equa-

tions satisfied by the process (Y1(·), . . . , Yn(·)) and write down its infinitesimal

generator. We shall start by writing

(5.18) Qi(t) = xi + δit− b

∫ t

0

Qi(s)ds + η

∫ t

0

√
Qi(s)dβi(s),

where β1(·), . . . , βn(·) are standard independent Brownian motions. Then

(5.19) Q(t) =
n∑

i=1

xi + δt− b

∫ t

0

Q(s)ds + η

∫ t

0

√
Q(s)dβ(s),

where β(·) is a Brownian motion defined by

(5.20) β(t) :=

n∑

i=1

∫ t

0

√
Qi(s)

Q(s)
dβi(s).

Also define the quotient process

(5.21) ξi(t) :=
Qi(t)

Q(t)
, i = 1, . . . , n.

With aid of Itô’s rule, we can write

(5.22) d

(
1

Q(t)

)
=

(
(η2 − δ) + bQ(t)

)
dt− η

√
Q(t)dβ(t)

Q2(t)
.

Also note the following quadratic covariations:

(5.23) d〈βi, β〉(t) =

√
Qi(t)

Q(t)
dt, d

〈
Qi,

1

Q

〉
(t) = −η2Qi(t)

Q2(t)
dt.

With the help of the stochastic product rule, we find out that

(5.24) dξi(t) =
δi − δξi(t)

Q(t)
dt +

η
√

Qi(t)

Q(t)
dβi(t)−

ηQi(t)

Q(t)
√

Q(t)
dβ(t).
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Using the representation (5.20) for β(t), we derive:

(5.25) dξi(t) =
δi − δξi(t)

Q(t)
dt +

η
√

ξi(t)(1− ξi(t))√
Q(t)

·

·
(
√

1− ξi(t)dβi(t)−
√

ξi(t)

1− ξi(t)

∑

j 6=i

√
ξj(t)dβj(t)

)
.

Introduce the Brownian motions β̂i(·), i = 1, . . . , n, as follows

(5.26) β̂i(t) :=

∫ t

0

√
1− ξi(s)dβi(s)−

√
ξi(s)

1− ξi(s)

∑

j 6=i

√
ξj(s)dβj(s).

We now compute the covariation of two such Brownian motions, for i 6= j.

Writing

(5.27) dβ̂i =
√

1− ξidβi −
√

ξi
1− ξi

√
ξjdβj −

√
ξi

1− ξi

∑

k 6=i,j

√
ξkdβk,

dβ̂j =
√

1− ξjdβj −
√

ξj
1− ξj

√
ξidβi −

√
ξj

1− ξj

∑

k 6=i,j

√
ξkdβk,

we deduce that

(5.28) d〈β̂i, β̂j〉(t) = −
√

ξi(t)ξj(t)

(1− ξi(t)) (1− ξj(t))
.

Introduce the continuous local martingales:

(5.29) Mi(t) :=

∫ t

0

dβi(s)√
Q(s)

, M̂i(t) :=

∫ t

0

dβ̂i(s)√
Q(s)

.

The quadratic variations of Mi(t) and M̂i(t) are 〈Mi〉(t) = 〈M̂i〉(t) =
∫ t
0

ds
Q(s)

and by (5.5), 〈Mi〉(∞) = 〈M̂i〉(∞) = ∞. Hence Mi(·) and M̂i(·) satisfy the
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hypothesis of the Dambis, Dubins, Schwartz theorem (see [30, p. 174]) and we

can conclude that

(5.30) Ni(t) := Mi(α(t)) and N̂i(t) := M̂i(α(t))

are Brownian motions and again by the time change theorem in stochastic

integrals (Proposition 4.8 in [30, p. 176]), it follows that

(5.31) Ni(t) =

∫ t

0

dβi(α(s))√
Q(α(s))

, N̂i(t) =

∫ t

0

dβ̂i(α(s))√
Q(α(s))

.

By introducing the time changed process Yi(u) := ξi(α(u)), formula (5.25)

becomes

(5.32) Y (u) = Y (0) +

∫ u

0

(δi − δY (s))ds + η

∫ u

0

√
Y (s)(1− Y (s))dN̂i(s).

Observe that

(5.33) dN̂i(t) =
√

1− Yi(t)dNi(t)−
√

Yi(t)

1− Yi(t)

∑

j 6=i

√
Yj(t)dNj(t).

Putting together the last two relations, we finally derive the system of sto-

chastic differential equations satisfied by the vector process (Y1(·), . . . , Yn(·)):
(5.34)

dYi(t) =
(
δi−δYi(t)

)
dt+η

[
(1− Yi(t))

√
Yi(t)dNi(t)− Yi(t)

∑

j 6=i

√
Yj(t)dNj(t)

]
,

Yi(0) =
Qi(0)

Q(0)
=

xi∑
xi

.

This shows that not only are the individual Jacobi processes Y1(·), . . . , Yn(·)
diffusions, with infinitesimal generators

(5.35)
η2

2
y(1− y)

∂2

∂y2
+ (δi − δy)

∂

∂y
, 0 < y < 1;
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but the entire vector process (Y1(·), . . . , Yn(·)) is a diffusion with values in the

open unit simplex ∆n and infinitesimal generator

(5.36) L =
1

2

∑

i

∑

j

aij(ȳ)
∂2

∂yi∂yj
+

n∑

i=1

bi(ȳ)
∂

∂yi
.

Here

(5.37) ȳ = (y1, . . . , yn), bi(ȳ) = δi − δyi, aij(ȳ) =

n∑

k=1

σik(ȳ)σjk(ȳ),

where

(5.38) σii(ȳ) = η(1− yi)
√

yi, σik(ȳ) = −ηyi
√

yk (i 6= k), hence

aij(ȳ) =

{
η2yi(1− yi), for i = j

−η2yiyj , for i 6= j.

An alternative approach to the multidimensional Jacobi diffusion has been

derived by Gouriéroux in [23]. In this paper, the authors start directly with the

system of SDEs (5.34) and with the observation that d

(
n∑

i=1

Yi

)
= 0, hence the

system is degenerate and
n∑

i=1

Yi(t) =
n∑

i=1

Yi(0) = 1.
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6. Open Problems and Potential Future Study

In this section we recapitulate some of the open questions from the previous

chapters and also discuss how our results could be used towards settling other

open questions posed in [17]. In the end we list a generalization of the volatility-

stabilized model, as suggested by Karatzas in [28].

As discussed at the end of Section 1.2, it would be a desired fact to estab-

lish that the volatility-stabilized model is not weakly diverse; the central limit

theorem for Bessel processes from (1.48) could be a useful tool in this direction.

At the end of Section 3.4 we have established formula (3.86) for the expecta-

tion of the pth moment of the ith component of the volatility-stabilized process,

E [Xp
i (T )]. From a practical point of view it would be useful to study the mono-

tonicity with respect to time T of this expectation.

On page 13 of Section 1.2 we have described a similarity between a market

modeled by a volatility-stabilized process and one based on the Black-Scholes

market. In light of this similarity, it would be interesting to compare the distri-

bution of the coordinates of the volatility-stabilized process (see formula (3.56))

with the log-normal distribution, in the total variation distance of probability

measures. Formula (3.56) could also be used to compute analytically the price

of a call option E
[
(Xi(T )−K)+] in the volatility-stabilized model. Further on,

it would be interesting to find a means of comparison between this price and

the price of a call option in the Black-Scholes model.

At the end of Section 3.1 we have suggested as an open topic of study, the

spectral theory of the infinitesimal generator L of (5.36) of the multivariate

Jacobi process and the computation of its mixed moments. This could be an

end goal in itself, not requiring knowledge of stochastics, and is also related to

the shortest time to beat the market portfolio in a volatility-stabilized model
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discussed in [17] on pages 11 and 13. More precisely, what is needed is the

computation of

(6.1) E
[
(Y1(T ) . . . Yn(T ))−1]

where (Y1(·), . . . , Yn(·)) is a multidimensional Jacobi process.

To justify this, we denote by Z(T ) the exponential local martingale corre-

sponding to the volatility-stabilized model described by the system on SDEs

(1.23). See page 5 of [17] for a general discussion of the meaning of this process

Z(·). In [28] the following computation is established

(6.2) log

(
1

Z(T )

)
= log

(
X1(T ) . . .Xn(T )

R2
1(0) . . .R2

n(0)

) 1+α
2

+
1− α2

8

n∑

i=1

∫ T

0

dt

µi(t)
.

Here α is the constant from (1.23) and given that we have at hand the joint

distribution of X1(T ), . . . , Xn(T ), it makes sense to start out with the signif-

icantly simpler case α = 1. It follows that the Bessel processes used for the

volatility-stabilized model (see the representations (1.39)) are 4−dimensional

and

(6.3) Z(T ) = R2
1(0) . . .R2

n(0)
(
X1(T ) . . .Xn(T )

)−1
.

The problem of determining the shortest time to guarantee a log-relative-

return with respect to the market portfolio is discussed in a general setting

in [17, p.11]. The authors establish that the quantity E [Z(T )X(T )] is a key

ingredient towards the computation of this shortest time. The quantity X(T )

for the volatility-stabilized model is given in (1.39). Using the joint distribution

of the coordinates of the volatility-stabilized process as it appears in (3.68),

after a change of variable we are able to write

(6.4) E [Z(T )X(T )] = R2
1(0) . . .R2

n(0)E

[
X1(T ) + · · ·+ Xn(T )

X1(T ) · · · · ·Xn(T )

]
=
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=
e−

γ2T
8 R2

1(0) . . .R2
n(0)

2Rγ(0)

∫ ∞

0

∫ ∞

0

q
γ+2−2n

2 e−
q+R2(0)

2t θ√
qR(0)

t

(
T

4

)
It,T,R(0)(γ − 1)

It,T,R(0)(γ + 1)

dt

t
dq·

·
∫

∆n

1

v1 . . . vn
pT

4

(
R2

1(0)

R2(0)
, . . . ,

R2
n(0)

R2(0)
; v1, . . . , vn

)
.

We remark that the above integral over the unit simplex is nothing but the

expectation of the inverse of the product of the coordinates of the multidimen-

sional Jacobi process E

[(
Y1

(
T
4

)
. . . Yn

(
T
4

))−1
]
.

In this context, we also remark that the expectation of the local martingale

Z(T ) can be easily written down through a formula almost identical to (6.4).

A direct proof of the fact that

(6.5) E [Z(T )] < 1

would provide an alternative solution to the relative arbitrage on any time

horizons (formerly) open question for the volatility-stabilized market. This

question appeared in [17] and has been settled recently in [3]. See the paper

[40] for the connection between arbitrage and the inequality (6.5).

An additional thing to study is whether one could recover any of the limiting

results of Proposition 1.3 directly from the distribution of each coordinate of

the volatility-stabilized process (formula (3.56)).

Last, but not least, a study of a generalization of the volatility-stabilized

process has been started by I. Karatzas. The more general version of the system

(1.23) is taken to be

(6.6) d (log Xi(t)) =
α

2 (µi(t))
2β

+
σ

(µi(t))
β
dWi(t), i = 1, . . . , n.
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Appendix A. Proof that the volatility-stabilized

model does not satisfy the upper

bound of condition (1.18)

If the volatility-stabilized market model satisfied the nondegeneracy condi-

tion, then for some M > 0 and every choice of x1, . . . , xn, one would have

(A.1)

n∑

i=1

x2
i

µi(t)
≤M

n∑

i=1

x2
i , (∀)t > 0.

With the choice xi = 1 and xj = 0 for j 6= i, it would follow that 1
M
≤ µi(t)

for every t and some constant M > 1. Letting t be the inverse clock Λ−1(t)

from (1.40) it follows that

(A.2)
1

M
≤ R2

i (t)

R2(t)
.

Recall that Ri(·) and R(·) are Bessel processes of dimension m and mn,

respectively. Taking expectations in the above inequality we get that

(A.3) E
[
exp(−R2(t))

]
≥ E

[
exp(−MR2

i (t))
]
.

If Q(t) is a squared Bessel process of dimension δ, with Q(0) = x, then it is

shown in [10] that

(A.4) E [exp(−λQ(t))] =
exp(− λx

1+2λt
)

(1 + 2λt)
δ
2

.

Hence (A.3) becomes

(A.5)
exp(−R2(0)

1+2t
)

(1 + 2t)
mn
2

≥
exp(−MR2

i (0)

1+2Mt
)

(1 + 2Mt)
m
2
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or, written differently:

(A.6)

(
(1 + 2t)n

1 + 2Mt

)m
≤ exp

(
2MR2

i (0)

1 + 2Mt
− 2R2(0)

1 + 2t

)
.

Since n ≥ 2, taking t→∞ on both sides gives ∞ ≤ 1, a contradiction.
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Appendix B. Some properties of the Jacobi

polynomials

In this Appendix we provide several computational details on Jacobi polyno-

mials, details that have been omitted in Section 3.1.

We start by proving the orthogonality relation for Jacobi polynomials, (3.25).

Let a := m
2

and b := m(n−1)
2

. Then

(B.1)
(
ya(1− y)bP ′

k(y)
)′

= ya−1(1− y)b−1 (y(1− y)P ′′
k (y) + (a− (a + b)y)P ′

k(y)) =

= ya−1(1− y)b−1(−k)
(mn

2
+ k − 1

)
Pk(y),

where the last equality follows from the differential equation (3.24) satisfied by

the Jacobi polynomial. Multiply (B.1) by Pk(y) to obtain:

(B.2)
(
ya(1− y)bP ′

k(y)
)′

Pk(y)+kya−1(1−y)b−1
(mn

2
+ k − 1

)
Pk(y)Pl(y) = 0.

Rewriting this last equality with k and l reversed and then substracting the

two equations we get:

(B.3) Pl(y)
(
ya(1− y)bP ′

k(y)
)′ − Pk(y)

(
ya(1− y)bP ′

l (y)
)′

+

+Pk(y)Pl(y)ya−1(1− y)b−1
(
(k − l)

(mn

2
+ k + l − 1

))
= 0.

Integration by parts shows that

(B.4)

∫ 1

0

Pl(y)
(
ya(1− y)bP ′

k(y)
)′

dy = −
∫ 1

0

P ′
l (y)ya(1− y)bP ′

k(y)dy =

=

∫ 1

0

Pk(y)
(
ya(1− y)bP ′

l (y)
)′

dy

and next the orthogonality property follows as a direct consequence of (B.3)

and (B.4).



77

Next, we go through the main steps of the derivation of the coefficients Ak

and Ck from the recurrence relation

(B.5) Qk+1(y) = (Aky + Bk)Qk(y)− CkQk−1(y),

where the polynomial Qk(y) is defined through formula (3.31). We start by

equating the coefficients yi, on the left and right hand side of (B.5), where i is

any arbitrary integer between 0 and k + 1:

(B.6) (k + 1)k
(mn

2
+ k + i− 1

)(mn

2
+ k + i− 2

)
=

= −Akki
(m

2
+ i− 1

)
+Bkk(k− i+1)

(mn

2
+ k + i− 2

)
−Ck(k− i+1)(k− i).

Regarding formula (B.6) as a polynomial equality in the variable i and iden-

tifying the coefficients of i2, i, and 1 on the left and right hand side respectively,

we get the following system of three equations, with Ak, Bk and Ck being the

three unknowns to be determined:

(B.7)




kAk + kBk + Ck = −k(k + 1)

−k
(
k − 2 + mn

2

)
Bk + kCk = −k

(
mn
2

+ k − 1
) (

mn
2

+ k − 2
)

kAk

(
m
2
− 1
)

+ kBk

(
mn
2
− 3
)
− Ck(2k + 1) = −k(k + 1)(mn + 2k − 3).

Only the values of Ak and Ck are relevant for the computation of the integral

Ik from Section 3.1 and these values captured in the formulas (3.35) and (3.36).
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Appendix C. More computations with the

Jacobi polynomials

In this Appendix we give a different proof, for the case m = 2, that the

quantity πk from Section 3.1 does not depend on n.

The Jacobi polynomial Pk(y) of (3.21) takes the following expression:

(C.1) Pk(y) =

(
2k + n− 1

n− 1

) 1
2

k∑

i=0

(−1)i
(

k

i

)(
n + k + i− 2

n + k − 2

)
yi.

We recall a combinatorial identity (see [52]) that is going to help us express

the Jacobi polynomial in a different form. This identity states that

(C.2)

p∑

j=0

(
p

j

)(
q

j

)
ap−jbj =

p∑

j=0

(
p

j

)(
q + j

j

)
(a− b)p−jbj .

Letting a = y − 1 and b = y we get that

(C.3) Pk(y) = (−1)k
√

2k + n− 1

n− 1

k∑

i=0

(
k

i

)(
n + k − 2

k − i

)
(y − 1)iyk−i.

The Leibniz rule for the higher derivative of a product of two functions implies

that

(C.4)
∂

∂yk
[
yk(y − 1)n+k−2

]
= k!(y − 1)n−2

k∑

i=0

(
k

i

)(
n + k − 2

k − i

)
(y − 1)iyk−i.

Hence we derive the following identity:

(C.5) Pk(y) = (1− y)2−n 1

k!

√
2k + n− 1

n− 1

∂

∂yk
[
yk(1− y)n+k−2

]

Similar equalities for other families of orthogonal polynomials go in the literature

under the name of Rodrigues formula. Letting R := 1
k!

√
2k+n−1
n−1

, formula (C.5)
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combined with integration by parts gives:

(C.6)

∫ 1

0

(1− y)n−2P 2
k (y)dy = R

∫ 1

0

Pk(y)
∂

∂yk
[
yk(1− y)n+k−2

]
dy =

= (−1)kR

∫ 1

0

yk(1− y)n+k−2∂Pk(y)

∂yk
dy =

= (−1)kR

√
2k + n− 1

n− 1
k!(−1)k

(
n + 2k − 2

k

)∫ 1

0

yk(1− y)n+k−2dy.

It is known that (see for instance [39])

(C.7)

∫ 1

0

yk(1− y)n+k−2dy =
Γ(k + 1)Γ(n + k − 1)

Γ(n + 2k)
,

and hence equality (C.6) turns out to be 1
n−1

. So

(C.8) πk =
1

∫ 1

0
m(y)P 2

k (y)dy
=

1

2n−2
∫ 1

0
(1− y)n−2P 2

k (y)dy
=

n− 1

2n−2
,

which is the same quantity that one obtains by letting m = 2 in formula (3.39)

from Section 3.1.
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Appendix D. The moments of the market

weights for the

volatility-stabilized market model:

some calculus details

In this Appendix we study the behavior of the quadratic PT (x) = A(T )x2 +

B(T )x + G(T ) − F (T ) from Section 3.4 by using standard calculus methods.

The coefficients of this quadratic, as functions of T , are given below:

(D.1) A(T ) = e−2mnT
4

(
e−T − 1

)

B(T ) = e−mn
T
4

[
4(n− 2)

n(mn + 4)
+ 2e−mn

T
4

(
1

n
− m + 2

mn + 4
e−T
)]

G(T ) =
m + 2

n(mn + 2)
− 2(m + 2)

n(mn + 4)
e−mn

T
4 +

m(m + 2)

(mn + 2)(mn + 4)
e−2(mn+2)T

4

F (T ) =

(
1− e−mn

T
4

)2

n2
.

In what follows we are going to show that − B(T )
2A(T )

> 1
2

for every T > 0, by

studying the function

(D.2) − B(T )

2A(T )
=

emn
T
4

[
2(n−2)
n(mn+4)

+ e−mn
T
4

(
1
n
− m+2

mn+4
e−T
)]

1− e−T
.

To ease the notation, let:

(D.3) k :=
mn

4
, a :=

1

n
, c :=

2(n− 2)

n(mn + 4)
.

We want to show that:

(D.4) cekT + a− (a + c)e−T − 1

2
+

1

2
e−T > 0 for every T > 0, or that



81

(D.5) f(T ) := cekT + e−T
(

1

2
− a− c

)
>

1

2
− a.

We compute the derivative f ′(T ) = ckekT − e−T
(

1
2
− a− c

)
and note that

1
2
− a− c = ck, hence f ′(T ) = ck

(
ekT − e−T

)
> 0 for T > 0.

Hence f(T ) is strictly increasing on [0,∞) and f(T ) > f(0) = 1
2
− a. Since

the argument x of PT (x) takes values in (0, 1), it is natural to ask next for what

times T , − B(T )
2A(T )

> 1. We want to find T such that

(D.6) cekT + a− (a + c)e−T − 1 + e−T > 0.

Define g(T ) := cekT + e−T (1−a− c). Then g′(T ) = kcekT −e−T (1−a− c). The

equation g′(T ) = 0 has a unique solution T0 in (0,∞), with

(D.7) T0 =
1

k + 1
ln

(
1− a− c

ck

)
.

For T > T0, g′(T ) > 0 and for T < T0, g′(T ) < 0. Hence g(T ) starts at

g(0) = 1 − a, decreases until T0 and then increases, with lim
T→∞

g(T ) = ∞. It

follows that for some unique T1 > T0, g(T1) = 1− a. For T > T1, g(T ) > 1− a

and for T < T1, g(T ) < 1 − a. Hence for T > T1, the vertex of the quadratic

PT (x) has x−coordinate greater than 1 and for T < T1 the same vertex has

x−coordinate in the interval
(

1
2
, 1
)
.

In the first instance PT (x) is increasing on (0, 1), so we conclude that for any

T > T1, the ordering of the variances of market weights at time T is the same

as the ordering of the set of initial data {R1(0), . . . , Rn(0)}.
The same conclusion follows for all times T ≤ T1 if all the market weights at

time 0, µ1(0), . . . , µn(0), are less than V (T ) := − B(T )
2A(T )

. In that case they all

belong to the subdomain on which the quadratic is increasing.

If T ≤ T1 and if some market weight at time 0, say µ1(0), is greater than

V (T ), and hence also than 1
2
, then µ2(0), . . . , µn(0) are all less or equal to 1

2
and
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the market weight with the highest variance at time T is the one for which the

absolute value |V (T )−µi(0)| is minimized, where V (T ) := − B(T )
2A(T )

. We see that

|V (T )− µi(0)| =
{

µ1(0)− V (T ), for i = 1

V (T )− µi(0), for i ≥ 2.

But µ1(0)− V (T ) < V (T )− µi(0), since µ1(0) + µi(0) ≤ 1 < 2V (T ), and hence

the same conclusion follows, that the ordering of the variances of market weights

at time T is the same as the ordering of the set of initial data {R1(0), . . . , Rn(0)}.
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Appendix E. The invariant distribution of the

multidimensional Jacobi process:

some computational details

In this appendix we perform the computations that show that equation (4.32)

is satisfied when the operator L∗ is given by formula (4.34) and the multivariate

density µ is given by formula (4.36). The coeffiecients of the operator L∗ appear

in (5.37) and (5.38). To ease our notation, we define the variables

(E.1) S := x1 + . . . xn−1

P := x
2δ1
η2 −1

1 · · · · · x
2δn−1

η2 −1

n−1 .

Then µ(x) = P (1− S)
2δn
η2 −1

. It follows that

(E.2)
1

2

n−1∑

i=1

∂2

∂x2
i

[aii(x)µ(x)] =
η2

2

n−1∑

i=1

∂2

∂x2
i

[
xi(1− xi)P (1− S)

2δn
η2 −1

]
=

=
η2

2

n−1∑

i=1

[
xi

(
2δn
η2
− 1

)
P (1− S)

2δn
η2 −2 − 4δi

η2
P (1− S)

2δn
η2 −1

+(1− xi)
2δi
η2

(
2δi
η2
− 1

)
P

xi
(1− S)

2δn
η2 −1 − (1− xi)

2δi
η2

(
2δn
η2
− 1

)
P (1− S)

2δn
η2 −2

+xi

(
2δn
η2
− 1

)
P (1− S)

2δn
η2 −2 − (1− xi)

2δi
η2

(
2δn
η2
− 1

)
P (1− S)

2δn
η2 −2

+(1− xi)xi

(
2δn
η2
− 1

)(
2δn
η2
− 2

)
P (1− S)

2δn
η2 −3

]
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=
η2

2

n−1∑

i=1

[
2xi

(
2δn
η2
− 1

)
P (1− S)

2δn
η2 −2 − 4δi

η2
P (1− S)

2δn
η2 −1

+
2δi
η2

(
2δi
η2
− 1

)
P

xi
(1− S)

2δn
η2 −1 −

(
2δi
η2

)2

P (1− S)
2δn
η2 −1

+
2δi
η2

P (1− S)
2δn
η2 −1

−2δi
η2

(
2δn
η2
− 1

)
P (1− S)

2δn
η2 −2

+
2δixi
η2

(
2δn
η2
− 1

)
P (1− S)

2δn
η2 −2

−2δi
η2

(
2δn
η2
− 1

)
P (1− S)

2δn
η2 −2

+
2δixi
η2

(
2δn
η2
− 1

)
P (1− S)

2δn
η2 −2

+xi

(
2δn
η2
− 1

)(
2δn
η2
− 2

)
P (1− S)

2δn
η2 −3 − x2

i

(
2δn
η2
− 1

)(
2δn
η2
− 2

)
P (1− S)

2δn
η2 −3

]
.

Also

(E.3)

1

2

n−1∑

i=1

n−1∑

j 6=i

∂2

∂xi∂xj
[aij(x)µ(x)] = −η2

2

n−1∑

i=1

n−1∑

j 6=i

∂2

∂xi∂xj

[
xixjP (1− S)

2δn
η2 −1

]
=

= −η2

2

n−1∑

i=1

[
2δi
η2

2(δ − δn − δi)

η2
P (1− S)

2δn
η2 −1 − 2δi

η2

(
2δn
η2
− 1

)
(S − xi)P (1− S)

2δn
η2 −2

−
(

2δn
η2
− 1

)
2(δ − δn − δi)

η2
xiP (1− S)

2δn
η2 −2

+xi(S − xi)

(
2δn
η2
− 1

)(
2δn
η2
− 2

)
P (1− S)

2δn
η2 −3

]

= −η2

2

n−1∑

i=1

[(
2

η2

)2

δi(δ − δn)P (1− S)
2δn
η2 −1 −

(
2δi
η2

)2

P (1− S)
2δn
η2 −1
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−2δi
η2

(
2δn
η2
− 1

)
PS(1− S)

2δn
η2 −2

+
2δixi
η2

(
2δn
η2
− 1

)
P (1− S)

2δn
η2 −2

−xi

(
2δn
η2
− 1

)
2(δ − δn)

η2
P (1− S)

2δn
η2 −2

+

(
2δn
η2
− 1

)
2δixi
η2

P (1− S)
2δn
η2 −2

+xi

(
2δn
η2
− 1

)(
2δn
η2
− 2

)
PS(1− S)

2δn
η2 −3 − x2

i

(
2δn
η2
− 1

)(
2δn
η2
− 2

)
P (1− S)

2δn
η2 −3

]
.

Finally

(E.4) −
n−1∑

i=1

∂

∂xi
[bi(x)µ(x)] =

=
2δiδ

η2
P (1− S)

2δn
η2 −1 − δ

(
2δn
η2
− 1

)
xiP (1− S)

2δn
η2 −2

+δi

(
2δn
η2
− 1

)
P (1− S)

2δn
η2 −2 − δi

(
2δi
η2
− 1

)
P

xi
(1− S)

2δn
η2 −1

.

Summing up the expressions (E.2), (E.3) and (E.4), we see that the underlined

terms cancel and we get that

L∗µ =
η2

2
P (1− S)

2δn
η2 −2

[
2

(
2δn
η2
− 1

)
S − 2(δ − δn)

η2
(1− S)

−4(δ − δn)

η2

(
2δn
η2
− 1

)
+

(
2δn
η2
− 1

)(
2δn
η2
− 2

)
S −

(
2

η2

)2

(δ − δn)
2(1− S)

+
2(δ − δn)

η2

(
2δn
η2
− 1

)
S +

(
2δn
η2
− 1

)
2(δ − δn)

η2
S +

4δ

η2

(δ − δn)

η2
(1− S)

−2δ

η2

(
2δn
η2
− 1

)
S +

2(δ − δn)

η2

(
2δn
η2
− 1

)
(1− S)

]
.

The expression in-between the square parenthesis above can be regarded as a

polynomial of degree one in the variable S, and by checking that this polynomial
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takes the value 0 at the points 0 and 1, we conclude that it is identically zero,

hence L∗µ ≡ 0, and this finalizes the proof that the Dirichlet distribution is the

invariant distribution of the multidimensional Jacobi process.
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