Historically, a typical application of Lefschetz fibrations
was to compute topologica\ invariants of the total space,
such as Betti numbers, in terms of fibre and vanishing
cycle data [Lefschetz]. wWhat about the symplectic view-
point and “new" (Gromov—Witten or related) invariants?

Symplectic cohomology- Let M be an 2ffine variety,
with Kahler form w = —dd, ¢ an exhausting function
(one can obtain this from a projec:tive compactification
of M). Let ¢* be the Hamiltonian flow of ¢. Given two 4
Lagrangian submanifolds Lo, L1 C M, define

TF (Lo, Ly) = iy HF"(¢'(Lo) 1)

If at least one of the L iS closed, then this is just the
ordinary HF*(LO,Ll). The interesting case is for non-
compact Lk (which have to be suitably nice at infinity;
for instance, ifw: M — Cis a Lefschetz fibration, then
the Lefschetz thimbles & C M qualify).

The “closed string” analogue is symplectic cohomology
[Viterbo, Cieliebak—Hofer-Wysocki—Zehnder]

SH* (M) = lim HF*(¢Y)-

Here HE*($h) is the Hamiltonian oOr fixed-point Floer co-
homology. It is actually better tO think in terms of a suf-
ficiently large sublevel set M={= - P(z) < C}- Pt | OM'
is called the Reeb flow. The chain complex defining
SH*(M) has one generator for each cell of M’ (taking
) as MoOrse function), and a pair of generators for each
periodicC Reeb orbit (lying in adjacent degrees).



Remark: It would seem that all this depends strongly
on the choice of Kihler potential 2, but a suitable defor-
mation invariance property holds. In fact, the natural
framework is the theory of Stein manifolds up to de-
formation, or of noncompact symplectic manifolds with
conical ends up 1o isomorphism [Eliashberg].

Example: M = C1, ¢(z) = |z|2, so M’ is a ball. The
Reeb flow is rotation of the circle bundle dM' = g2ntl
Ccpn. After perturbing, one ends up with n+1 distinct
periodic orbits and their iterates. The chain complex
underlying SH*(M) is
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where

(m) the 0-cell (minimum of ¢ at z = 0)
(p1) the first periodic Reeb orbit
(p2) the second periodic Reeb orbit

(p}) the first periodic Reeb orbit, iterated twice

This means that SH*(C*t1) = 0 (as an aside, if we take
7, — R+l c L, then also HF (L, L) = 0).

The same vanishing result for SH*(M) holds whenever
M is subcritical, namely all critical points of ¢ are nonde-
generate of Morse index < dimcM [Viterbo, Cieliebak].
There is also a relative version of this, which says that - .
SH*(M) remains unchanged under adding handles of di- (|
mension < dimcM [Cieliebak].

Example: If M = T*N is the cotangent bundle of a '
closed oriented n-manifold, then

SH*(M) = Hy—+«(LN),
where LN is the free loop space [Viterbo, Abbondandolo-

Schwarz, Weber] (similarly ﬁ*(T;L,T;L) = H_,(QuyN),
homology of the path space).



Example: SH*(M) successfully distinguishes different
symplectic structures on the same differentiable man-
ifold. For instance, take S to be Ramanujam's affine
algebraic surface, which is contractible but not home-
omorphic to R*. We know SH*(S) # 0 [Seidel-Smith].
Now M = S x S is diffeomorphic to R8, but again

SH*(M) = SH*(S) ® SH*(S) # 0 O):fO

[Oancea]. Now take M = M#sM (boundary connected
sum, or joining the two components by a 1-handle).
Then [Cieliebak]

SH*(§T) = SH*(M) & SH*(M),

but since SH*(M) is potentially infinite-dimensional in
each degree, this is not sufficient to distinguish M and
M (the ring structure might help, but it is again not
known). There are in fact infinitely many examples of
Ramanujam’s type, and again we cannot distinguish be-
tween them at present.

Problem: If M is an affine algebraic variety, with projec-
tive closure Y = M U Z, one should be able to compute
SH*(M) from H*(Y) and the relative Gromov-Witten
invariants of (Y, Z). This can be seen quite clearly in
the example of C*t! above, where the differentials cor-
respond to counting lines in Ccpntl and CP™.



Digression: In the general symplectic or Stein frame-
work, SH*(M) is not algorithmically computable, not
even for simply-connected M. To see that, let ' be a
finitely presented group with a fixed presentation, and
construct from that a manifold N with m(N) = T.
Take T*N and attach two-handles (fattened discs) to
the boundary, killing off the generators of m;. The re-

sulting M satisfies

rank SH"(M) = rank SH"(T*N) =
= rank Ho(LN) = # of conjugacy classes in [

Hence, any algorithm to determine SH™ (M) would solve
the triviality problem for finitely presented groups, con-
tradiction. The same argument implies no-go results for
the algorithmic classification of simply-connected sym-
plectic manifolds with conical ends (and, presumably,
simply-connected closed contact manifolds).



Localizing along a natural transformation: suppose
that we have
A category (linear over some field);

F:A—A functor;
N . F — Idy natural transformation.

By composing with F' on the left and right, we get two
natural transformations
LgN,RpN : F? — F.

Assume that they are equal. Concretely, this means that
Nrpx = F(Nx) & HomA(FzX,FX) for all X. We want
to modify our category in such a way that “all the Nx
become isomorphisms”. Namely, define A as follows:

ObA = Ob A,

Hom 3(Xo, X1) = lim Hom(F*¥Xo, X1),
where the map Homu(F¥Xo,X1) — Homa(F*t1Xo, X1)
is © = z- FF(Nx,) = = Nm(x,); and composition of
morphisms is the direct limit of

HomA(Fle,XQ) X HomA(FkXo,Xl) —
— Hom(F*T X, X5),
(332,:81) py LD Fl(ajl).

Trivial example: A is an algebra (category with one
object), F = Idy, N a central element. Then A =

A[NT1].



Motivating example: Y = Y"t1l a Fano variety, s a
nontrivial section of Xy*. Set M = {s # 0}. Take

A = DCoh(Y),
F=-® jCY?
N = (multiplication with s).

Then A = DCoh(M).

Set Z = s~ 1(0), with 5 : Z — Y the embedding. Take
B = D'Coh(Z) (in the singular case, suitable full sub-
category). Note that for any two objects Xo, X; of A,
we have natural maps

Hom 4(Xo,X1) — Homp(j*Xo, 5" X1),
HomB(j*Xo,j*Xl [n]) = HomB(j*Xl,j*Xo)V —
— Hom (X1, X0)"Y = Hom4(Xo, X1 ® Ky[n + 1])

and these form part of a long exact sequence, whose
connecting homomorphism is composition with Ny, .

To put this more abstractly, recall that for a general cat-
egory A, the Serre functor S, : A — A is characterized by /
Homa(Xo,S4X1) = Homa(X1,Xo)V. If A = DPCoh(Y),
Sy = —Q® Ky[n + 1] by Serre duality. Now Z is Calabi-
Yau, so Sg = [n]. The maps above are actually natural
transformations Idy — j«j3*, 7x5B3* — Sa, and these
form an exact triangle of functors

Idg — jug* — Sa[—n]
*\_’/
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Symplectic counterpart: Let = : M — C be a Lef-
schetz fibration, and consider A = F(M, My ). The Serre
A.-functor 8,4 is induced by a canonical symplectic au-
tomorphism o of (M, M) [Barannikov-Kontsevich]:

In Symp(M), o is isotopic to the identity, and using
that one defines canonical elements of HF*(a(L), L) for J
any object L, which form a natural transformation S —
Id,. With that (and some related higher order algebraic
data), we define the localization A = F(M, M) on the
level of A.-categories. This satisfies 4

H(hom (Lo, L)) = imHF*(a*(Lo), L1) =

= HF (Lo, L1),

because o is closely related to the Reeb flow, at least
on the part of the boundary relevant to our L's. One
expects the connection between “open” and ‘“closed
string” theory to go through Hochschild cohomology of
A.-Ccategories. Hence,

Conjecture: SH*(M) = HH*(A,A).



Trivial example: Projection 7 : M = X xC — C. Then
A and hence A are empty, so HH*(A,A) = 0. On the
other hand, M is subcritical, so SH*(M) = 0.

Trivial example: Given a Lefschetz fibration = : M*t1 —
C, we can enlarge the fibre (on a symplectic or Stein
manifold level) by attaching handles of dimension < n.

any Flbie M,

This does not affect the Lefschetz thimbles, so A and
its Hochschild cohomology remain the same. On the
other hand, it is a subcritical handle attachment from
the point of view of the total space, hence SH*(M) is
equally unchanged.

Example: Take M = C? and =n(z,y) = %+ q(y), q a
generic polynomial of degree m + 1 > 3. On the level
of derived categories, the resulting A = F(M,My) is
equivalent to the category of modules over the path
algebra P, of the directed quiver

1 2 m—1 m
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The Serre functor is periodic up to a shift [Bernstein-
Gelfand-Ponomarev], S™*t! 2 [m —1]. Given N : S — Id,
we have N™'L Rgn1(N) o Rgn2(N)o---0o N : S™tl 5 Id,
which is an element of HH'~™(P,,, Rn) = 0. This implies
that the localized category is zero, hence HH*(A,A) = 0
in accordance with our computation of SH*(C?).

Example: Let Y be a toric Fano manifold, and Z C Y
an anticanonical divisor which is invariant with respect
to the torus action, so Z\ Y is the open torus G =
(C*)"+1. Localizing A = D'Coh(Y) using the result-
ing natural transformation yields A = D*Coh(G), hence
[Hochschild-Kostant-Rosenberg]

HH*(A, ) = HH*(G) = (G, N'TG) =
= C[trlhl, ' 1@ & ’ti:—}-l] ® A(71,... an—{—l)-

Under mirror symmetry, Y corresponds to a Landau-
Ginzburg theory, which is a Lefschetz fibration = : GV —
C with total space GY £ G £ T*(T""1). A is mirror to
the derived category of A = F(M, M), and one expects
A to correspond to the localization A. According to the
conjecture, %

HH*(A,A) = SH*(M) = Hypy -, (LT"T) =
= Clm (T")] ® HX(T™ ).

0



The next step is to give a more concrete construction
of (part of) A. We summarize the analogies established /
by homological mirror symmetry:

sheaves Lagrangian submanifolds

Y,selM(Xy!), Z2=5s"10) | n: M= C

DYCoh(Y) F(M, M)
D®Coh(Z) F (M), generic z
D*Coh(Y \ Z) F(M, M)

For both D?(Z) and F(M.), the Serre functor is [n], in
the latter case because it is a cyclic A,-category. In
the sheaf case, we explained how the localized category
DYCoh(Y \ Z) arose from an exact triangle of functors
based on the restriction D*Coh(Y) — DCoh(Z). There
is a corresponding functor (M, M) — F(M.), and the
idea is that F(M, M,) should be constructed entirely
from that.

Guessing the answer: Let # : M — C be a Lefschetz

fibration. Take a basis V = (V4,..., V) of vanishing

cycles, V; C M.. We can also form the repeated bases,
vk — (Vl(k) =Vi,...,. Vv =y,

) m

‘/rfﬁf)-l - Vl’ R VQ(:;:L) = ‘/m;

k _ (k) :
Vv((k—)l)m—l—l - Vl’ sace Vkm - V;n)’

0



geometrically, these form a basis of vanishing cycles for
the k-fold cover M(k) of M branched along M.

broncl\ad

Cover
—~—

Set

B = full A.-subcategory of F(M;) with objects Vj,
A = directed A -subcategory with the same objects,
A®) = the same as A, but now with V*)

B has finitely many objects, but an a priori unbounded
number of higher order A -operations pd. In contrast,
each A®) has only up to pg*m1 (and can be computed
from B). Note that on the derived level, A is equivalent
to(g(M,Moo) [Lecture 2]; the same applies to A®*) and
MYV,

Define a new A.-category (in fact dg-category) A. Its
objects are A1,...,4A,,. To define the morphism spaces,

consider
CO(A, A1) = @) homan (VP V1] ® -
e ® homﬂm(ViEi), Vz'r(k))[l]

2



where the sum goes over all »r and 3 =19 <11 < -+ <
ir = (k—1)m +1; in the special case j =1 and k =
1, there is also an extra one-dimensional summand for
r = 0. Each C®) carries a differential inherited from the
Aoo-structure of A% (bar complex). Moreover, there
are natural degree —1 chain maps C*) — ¢*+1) which
insert the identity morphism V;(k) = Vz(fr)n in all possible
positions:

.m.m.
v, V, V,
. \\/c\'&ccvevd-\o\

Vi Vi Va® VY, Y,

Define
homz (D, ) = P P (A, &)V [2k - 2],
k>1

with the combined (dualized) differential. Product struc-
ture is induced by the obvious tensor coproduct

c® — @ cWec®
i+j=k+1

Conjecture: HH*(A,A) & SH*(M).



Remarks: (1) The left hand side can be “written down”

(as opposed to *“algorithmically computed”) in essen- /4

tially any given case, starting with a knowledge of B C
F(M.) [Lecture 2]. Some examples, such as the mirror
of CP2, have been checked in this way.

(2) The right hand side depends only on M, whereas
a priori, the left hand side depends on w and on the
choice of vanishing cycles. Here is one nontrivial check
(for simplicity, in dim¢M = 2): attach a 1-handle to the
fibre boundary, and a new critical point to the fibration,
whose vanishing cycle V,,41 is disjoint from the previous
ones and goes through our 1-handle. This gives a new
fibration & : M — C, however the total space M = M
remains the same (symplectically, which is the level on
which the construction works). The category B gets
enlarged by a new (orthogonal) summand corresponding
to Viu+1, but the resulting new object of A is isomorphic

to zero, hence HH*(A, A) is unchanged.
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