Let 7 : M — C be a Lefschetz fibration with fibre dimen-
sion n > 0, and X C C its (finite) set of critical values.
From the symplectic geometry of such fibrations one
obtains a rich algebraic structure, which we will now try
to characterize axiomatically. The description is madeé
up of three different “animals”.
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A worm is an oriented path v in C, not necessarily em- /
bedded, which intersects X precisely at its two end-
points. To each worm ~ is associated a Z-graded chain 4
complex C, = (Cy,,), with the following properties:

Homotopy invariance: With respect to homotopies in
the given class of paths (endpoints fixed, and cannot
pass over points of X).

Symmetry: Reversing orientation dualizes the chain
complex, more precisely C_, = CY[-n]. We denote the
duality pairing by (:,-).

Small loops: If v is a short path from a critical value to
itself, then C, = Ke @ K¢, with |e| =0, [t| =n, and van-
ishing differential. K is our coefficient field, char(K) = 0.



A spider o is a star-shaped graph with d 4+ 1 > 3 edges,
mapped to C like this:

The spider’'s feet lie on 2, and otherwise it is disjoint
from 2. The map to C must be an embedding near the
central vertex, so that the legs are naturally cyclically
ordered. Note that one can associatetoo asetofd-+1
worms i, ...,7vq+1 as follows:

The associated algebraic datum is that every spider o
gives rise to a canonical linear map of degree 2 —d — n,



(one can use orie__ntation-reversal to think of this in a
variety of ways, for instance as a distinguished element

of ® C—’Yj) "

Cyclic invariance: This is really implicit in our defin-
ition, since o does not a priori come with an absolute
ordering of the ~;, only a cyclic one.

Homotopy invariance: as before. 8

Small spiders: If o lies near'a single critical value, then
ce = 0 if d > 2. In the remaining case d = 2, we have
cs(e,e,t) = 1, with all other combinations of generators
vanishing for degree reasons.

Lopsided spiders: If two adjacent edges of o are iso-
topic, so that ~; is homotopic to a small loop, then the
resulting map

co : (Ke & Kt) ®®C’% — K
ik ;
satisfies c,(e,---) = 0 if d > 2, and cy(e,z,y) = (z,y) for
d=2.

Coboundary:

§lco) = Z (e, Cov).

Here ¢ is the induced differential on @ CY, and the sum
is over all splittings of o into ¢’ and ¢”, which share two
adjacent edges (d=d +d" —1).
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Example: If d = 2, there are no splittings, so ¢, de-
scends to a map on cohomology

H(cy,) ® H(cy,) = H(c—v,). (1)

If d = 3, there are two splittings. The resulting formula
shows that (1) is associative, even though the underlying
cochain level map may not be.

Interpretation: fix a base point z € C\ X. Consider
the set ObC = {X,} which has one element for each
homotopy class of paths & going from z to a critical value
of = (we call these vanishing paths). Given two vanishing
paths, form v = &1 o (—&o) and define home(Xg,, Xe,) =
C,. Write p$ for the differential 6, on this. Spiders
centered at z give rise to further operations

H(é . hom(‘f(XEd—u de) @i
++ - @ home(Xg,, Xe,) = home(Xeg,, Xe,)[2 — d]

which have the following properties:



Homotopy associativity:

—q+1
Z:]::u’(i i (a'd)"'7/-1‘((13(ap+qr°"ap+1)aap7°'-7a'1) =0,

~ (2)
where the sum is over all p and gwithq > 1, d—qg+1 > 1.

Unitality: The canonical elements e = e¢ € home(X¢, X¢)
satisfy p2(e,a) = pS(a,e) = +a, and pé(aq,...,a1) =0 if
d # 2 and at-least one a; = e.

Cyclic symmetry: There is a nondegenerate pairing
(-,-) between home(Xe,, X¢,) and home(X,, Xe,), such that
the expressions (ag+1,pué(aq,...,a1)) are cyclically sym-
metric.

These are merely reformulations of the axioms. The
first two make € into a (strictly unital) A.-category,
and the last one means that C is cyclic.




Variants: (1) The cohomological category H(C) has
the same objects as C, morphisms H(home(Xe,, Xe,)) =
H(C,), and composition (1). This is a genuine category
(graded, linear over K). -

(2) Take a basis of vanishing paths X = {&1,...,&n}, One
for each critical value:

%3

One can then consider the full subcategory B C € formed
using only the collection (X1i,...,Xm), Xi = X,.

(3) As before but we place our base point near infin-
ity, and use a basis of vanishing paths which go in-
wards from there. This is then canonically ordered. The
directed A.-subcategory A C B has

home(Xj,Xk;) .7 y 4 k)
homA(Xj,Xk) =< K-e ] — k,
0 Jj > k.

By passing to the directed subcategory, we lose nothing
on the level of morphism spaces and their cohomology
(due to orientation-reversal duality). But since u9 =
O for d > m —1, we do lose a lot of information on
composition maps.



"For the final piece of data we consider ladybugs, which
consist of a body (an embedded disc D C C with dD N
> = (), containing at least one point of X in the interior),
together with a head (marked boundary point of D), and
d+ 1 > 1 spider-like legs joining 8D (but not the head)
to . Again, one can associate to each ladybug a set
of d + 1" worms +,, which are now canonically ordered.

&

Our final piece of structure is this: every ladybug gives
rise to a linear map of degree n — d,

d+1
o] . ®C%. — K.

i=1



Homotopy invariance: As always.

Coboundary: §(cg) is obtained by pairing other spiders
and ladybugs (with the same body D) as follows.

o W

In particular, if d = 0 then cg is a degree 0 cocycle in
Cy, v = —vy1. We have not finished the ladybugs axioms
yet, but here is an update of the

Interpretation: Recall that the category C defined above
involved a choice of base point z. Up to equivalence, z is
irrelevant, but a loop [A\] € 71 (C\ Z, z) yields a nontrivial
monodromy automorphism

Gr:C—C.

defined by dragging vanishing paths around the loop. If
A is the boundary of an embedded disc D, and we take z
to be the head, then all possible ways of attaching legs




and the resulting cg define a natural transformation, in
the sense of A-functors,

Np 9,\ — Idpe.

The next axiom can be conveniently formulated in this
language:

Composition: Splitting of a disc D into two pieces D/,
D" eeppeamerets vields two natural transformations which
satisfy Np = Np o Rg,(Np»). 4

We now return to the more elementary’viewpoint of
directly looking at the operations cg.

Small ladybugs: Suppose that D is a small disc con-
taining a single critical value, and that the legs of the

ladybug remain nearby, so one gets

cs : (Ke @ Kt)®4H! — K. ﬁ
This is zero for all d # 1; and for d =1, c(t®1t) = 1,
with other coefficients vanishing for degree reasons.

Lopsided ladybugs: Suppose that two adjacent legs of
the ladybug are homotopic, so that

cs: (Ke @ Kt) ® (X Cy, — K. v
i#k
If d > 0, then cg(e,---) = 0. '



The remaining axiom is the most crucial, but also the
most complicated one. Suppose that we have three (not

necessarily distinct) critical values, and worms kg,Kx1

joining them:

We then draw additional worms ~g,~v1, A, as follows:




The three basic operations in this context are

p? 2 Cry ® Cry — Cho

(note the specific choice of cyclic ordering of the edges)‘ !

and a distinguished cocycle

c e C_,




Claim: From the previous axioms we know that the
composition of chain maps,
c.oc Ho, Tn (3)

is canonically nullhomotopic. Step 1: applying the ho-
motopy associativity of u? = u2, rewrite (3) as
-

c.ec. B o 0. B0 (4)

Graphicélly, this uses the coboundary axiom involving
the splittings
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Step 2: Consider the first map in (4). An application
of the coboundary axiom for ladybugs shows that

N\

is homotopic to zero, proving our claim. Denote the
resulting chain homotopy by h.

Triangle: The total complex of

Cno ®CK,1 © C% 4 (C") 071
\——/
h

is acyclic.



This means that we have a long exact sequence

- H(Cry) ® H(Cr,) — H(Cy,) — H(Chy) -+~

intuitively drawn as a (categorified) *skein relation”;
however, the-acyclicity statement is ' more precise than
the long exact sequence, since it includes the construc-
o ors. || 0l

To interpret the triangle in categorical terms, we need
to formally enlarge € by introducing “chain complexes” .
The outcome, denoted by Tw(C) D €, is the A,-category
of twisted complexes. The underlying cohomological
category D(C) = H(Tw(C)) is (mis-)called the derived
category of C; it is an ordinary triangulated K-linear
category. The same formal enlargement also works
for functors and natural transformations. For any ob-
ject X € Tw(C), one can introduce the twist functor
Tx : Tw(C) —» Tw(C),

Tx(Y) = Cone (homTw(e)(X, Y)X — Y).
This comes with a natural transformation zd — T'x.

9



Take a disc D conta‘ining a single point of . Choose a
base point z € 9D. We then have:

/'-E-

the As-category Tw(C);
a preferred object X, in it;
the automorphism Tw(SG,) : Tw(C) — Tw(C);

the natural transformation Tw(Np) : Tw(SG,) — Idpye)-

Corollary: (of the “triangle” axiom) Tw(G,)~! is iso-
morphic to T, as an As-functor, in a way which is
compatible with the respective natural transformations
from the identity functor to each.

Theorem: (1) The Ax-category C can be reconstructed
from the subcategory B given by any basis of vanishing
cycles.

(2) Tw(B) — Tw(C) is an equivalence. In particular,
D(B) is independent of the choice of basis of vanishing

cycles.

(3) If A C B is the directed subcategory, then D(A) is
also independent of the choice of basis.



Some geometry: By a Lefschetz fibration we (offi-
cially) mean

b i smooth projective variety
Lo X ample line bundle

50,800 € H°(L) linearly independent sections
Xp =45 (D), 00-3—1(0), M = X\Xoo,

T = 80/Sc0c - M — C

with the following additional properties: X is a normal
crossing divisor; Xp should be smooth near XoNX., and
should intersect each stratum of X, transversally; most
importantly, = should have only nondegenerate critical
points (locally modelled on z%+4-- —I—a:n 1), at most one
in each fibre. Finally, to get Z—gradlngs on the algebraic
structures, one should assume that L 3C®d for some d,
which makes M *“Calabi- Yau”

¥

Equip L with a metric that_glves rlse to a Kahler form on
X, and restrict that tooM. Then, any two smooth fibres
M, =7n1(2), z€e C\ I, are symplectlcally isomorphic.
In fact, parallel transport along apath a:[0;1] - C\ X
gives an isomorphism ¢q @ Myg) — Ma(l), which varies
continuously with a. If ¢ : [0;1] — is an embed-
ded vanishing path, so 5‘1(2) = {1} then the lim-
iting behaviour of parallel transport gives rise to the
Lefschetz thimble A¢, which is a Lagrangian D**! c M,
m(Dg) = £(10; 1]), 98¢ = Ag N Mygo)

€,






Ve = 0A¢ is called the associated vanishing cycle, and
is a Lagrangian sphere in M) (this is also defined if
¢ is not embedded). If £ is a vanishing path, and \ a
loop doubling around it, then the monodromy ¢, is the
Dehn twist (Picard-Lefschetz transformation) along Ve,
written as 7y,.

2

A basis X = (£1,...,&n) of vanishing paths gives rise to
a basis V = (V4,...,V,) of vanishing cycles. Symplecti-
cally, ' 4

(fibre M,, with basis V)
<= (Lefschetz fibration =, with basis X).



In particular, one can reconstruct M from (M,,V).

Obtaining the algebraic structure: Take a worm «
and cut it into two, so that it consists of a pair (&o, 1)
of vanishing paths starting at the same point 2. From
that, one gets two Lagrangian spheres Vg,V C M..
The chain complex C, is the associated Floer complex
CF*(Vg,, Vg,), generated by intersection points z € VNV,
(after perturbation to general position), with the differ-
ential given by counting holomorphic “bigons” on M,
with boundaries on our Lagrangian spheres (mod trans-
lation).




Similarly, the legs of a spider o give rise to a cyclically
ordered collection of vanishing cycles Vg,..., V., C M,,
and we define ¢, by counting holomorphic (d 4 1)-gons
(where the domain can have any complex structure).

Finally, given a ladybug g with body D, we consider
n~1(D) and take holomorphic sections of this, with bound-
ary conditions in the vanishing cycles indicated by the
legs of 8. The moduli spaces of such sections provide

Cg.




Dictionary: We will now translate our terminology into
conventional symplectic topology terms. Given a sym-
plectic manifold @ with ¢1(Q) = 0, there is a cyclic
As-category F(Q), the Fukaya category, whose objects
are closed Lagrangian submanifolds L C Q. Morphism 4
spaces and composition maps are again given by Floer
complexes CF*(Lo, L1) and holomorphic polygons. Hence,
our previous C is the full Ax-subcategory of F(M,) whose
objects are vanishing cycles V¢ for the given Lefschetz
fibration = : M — C.

Any symplectic automorphism ¢ of @ gives rise to an 4
automorphism ¢, of F(Q). In our case, we had a loop \
in C\ X, AX(0) = A(1) = z; the automorphism of F(M.)
induced by the monodromy map ¢, preserves the sub-
category C. Restrict it and take the inverse, to get the
previously mentioned functor G,.

What about natural transformations Np? One pos-
sible way to understand this is to also consider the
“Closed string” theory. For every automorphism ¢ of
Q, there is a chain complex CF'(¢), whose cohomology
is called fixed point Floer cohomology HF(¢). For in-
stance, HF(idg) = H*(Q;K). A general construction,
the open-closed string map, says that any element of
HF(¢) induces a natural transformation id — ¢, Of Aeo-
functors.

If we have a disc D C C, and X\ parametrizes 8D, then
we first get a natural element of HF(¢5'), which then
gives rise to the natural transformation Np between the
functors G,,Id : € — C.



