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Motivation

X
π1←− X × X

π2−→ X

P ∈ Db
coh(X × X )

Mukai: Rπ2∗(P
L
⊗ π∗1( · ))

FMT ⇔ equivalence.

moduli of vector bundles, Db
coh(X );

In higher-dimensional birational geometry,
Db

coh(X ) is used to study MMP.

Most results about FMT assume smoothness, but MMP leads to
singular varieties.
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Elliptic fibrations

k algebraically closed, characteristic zero,
X ,S schemes

reduced, connected;

separated, of finite type over k.

q : X −→ S

projective, flat;

with section σ : S → X , Σ := σ(S)

fibers are integral Gorenstein curves
of arithmetic genus one.

We allow X to be singular.
Neither X nor S needs to be Gorenstein.
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The result

X ×S X
π1−−−−→ X

π2

y yq

X
q−−−−→ S

P := I∆ ⊗ π∗1OX (Σ)⊗ π∗2OX (Σ)

FMP(E•) := Rπ2∗(P
L
⊗ π∗1(E•))

Theorem

FMP : D–
coh(X )→ D–

coh(X ) equivalence.

Same is true for Db
coh,D

+
coh,Dcoh.
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Proof – preliminaries

Starting point: S = Spec(k), X smooth elliptic curve

Mukai’s result: [1] ◦ FMP ◦FMP ∼= (−1)∗

where (−1) : X → X is “taking the inverse”.

Theorem (Burban, K.)

[1] ◦ FMP ◦FMP ∼= i∗

Assumptions: S = Spec(k) and i : X → X is “taking the inverse” on the
smooth locus of X .
Involution i : X → X exists for elliptic fibrations with section.
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Proof

Idea: understand
[1] ◦ i∗ ◦ FMP ◦FMP = FMQ•

by restricting to fibers.

Xs
js−−−−→ Xy yq

Spec(k)
s−−−−→ S

Lemma

With P•s := L(js × js)
∗P•, we have js∗ ◦ FMP•

s
∼= FMP• ◦js∗.

=⇒ FMQ• ◦js∗ ∼= js∗
=⇒ ∀x ∈ X FMQ•(k(x)) ∼= k(x)
Bridgeland lemma =⇒ Q• ∼= δ∗L, L ∈ Pic(X )
=⇒ FMP ◦FMP ∼= [−1] ◦ i∗ ◦ (q∗N ⊗ · )
=⇒ FMP is an equivalence.
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Duality

Grothendieck-Verdier duality gives:

RHomX (FMP( · ),OX )
and

FMP(RHomX ( · ,OX ))

are equal up to [1] ◦ i∗ ◦ (q∗N ⊗ · );
S Gorenstein, then DX := RHomX ( · ,OX ) is a dualizing functor;

S = Spec(k), then

DX ◦ FMP ∼= [1] ◦ i∗ ◦ FMP ◦DX .
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The smooth case

Let E be a smooth elliptic curve. For coherent sheaves, we have:

locally free⇐⇒ torsion free

stable⇐⇒ simple

indecomposable =⇒ semi-stable

homological dimension of Coh(E) is 1,
i.e. Exti (F ,G ) = 0 ∀ i > 1;

simple structure of Db
coh(E): any object is the direct sum of its

cohomology sheaves;

important tool: Serre Duality
∀ F ,G ∈ Coh(E) : Exti (F ,G ) ∼= Ext1−i (G ,F )∗
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Comparison

smooth singular

homological dim of Coh(E) 1 ∞
Serre duality holds in general if one object is perfect

torsion free implies locally free yes no

indecomposable coherent
sheaves are semi-stable

yes no

any indecomposable complex is
isomorphic to a shift of a sheaf

yes no
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Stability and HNF

E irreducible singular curve of arithmetic genus one over k, algebraically
closed, characteristic zero. 0 6= F ∈ Coh(E)

slope µ(F) = deg(F)/ rk(F)

phase ϕ(F) ∈ (0, 1] such that
− deg(F) + i · rk(F) ∈ R>0 · exp(iπϕ(F))

ϕ(O) = 1/2, ϕ(k(x)) = 1

F semi-stable ⇐⇒ ∀ 0 6= G ⊂ F : ϕ(G) ≤ ϕ(F).

Any F ∈ Coh(E) has a HNF

0 ⊂ Fn ⊂ Fn−1 ⊂ . . . ⊂ F0 = F

such that the factors Ai = Fi/Fi+1 are semi-stable and

ϕ(An) > ϕ(An−1) > . . . > ϕ(A0).
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Stability on Db
coh(E)

ϕ(F [n]) := ϕ(F) + n for n ∈ Z and F ∈ Coh(E).

slicing P(ϕ) = { semi-stable sheaves of phase ϕ}

Theorem (Bridgeland; GKR)

0 6= X ∈ Db
coh(E) has a HNF, unique up to isomorphism,

0 // FnX
∼=
����
��
��

· · · F2X // F1X

����
��
��

// F0X = X

����
��

��
�

An

+

VV------

A1

+

XX222222

A0

+

XX222222

with 0 6= Ai ∈ P(ϕi ) and ϕ+(X ) = ϕn > ϕn−1 > . . . > ϕ1 > ϕ0 = ϕ−(X ).
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general: ϕ−(X ) > ϕ+(Y ) =⇒ Hom(X ,Y ) = 0

curve case:
ϕ−(X ) < ϕ+(Y ) < ϕ−(X ) + 1⇒ Hom(X ,Y ) 6= 0

The main tool to prove this are Seidel-Thomas twists:

TE : Db
coh(E)→ Db

coh(E)

given by RHom(E ,F )⊗ E → F → TE (F )
+→

TE is an equivalence, if E is spherical, i.e. perfect and

Hom(E ,E [i ]) =

{
k if i = 0, 1

0 otherwise.
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F = Tk(p0)TOTk(p0)

F ∼= FMT with kernel I∆ ⊗ π∗1O(p0)⊗ π∗2O(p0)[1]

Theorem (Bruzzo et al.)

F preserves semi-stability.

Our proof uses

the degree zero case (math.AG/0401437);

FF = i∗[1] (math.AG/0401437);

DF = i∗FD[1] (math.AG/0410349).
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S̃L(2, Z)-action

S̃L(2, Z) = 〈A,B,T | ABA = BAB, (AB)6 = T 2,AT = TA,BT = TB〉, a
central extension of SL(2, Z), acts on Db

coh(E) by

A 7→ TO, B 7→ Tk(p0), T 7→ [1].

Corollary

S̃L(2, Z) acts transitively on the set of non-zero slices P(ϕ).

P(ϕ)
∼=−−−−→ P(1) { coherent torsion sheaves}x x

P(ϕ)s
∼=−−−−→ P(1)s {k(x) | x ∈ E} stable objects
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Structure of P(ϕ)

Objects in P(ϕ) have JHF with stable JH-factors;

Indecomposable objects have a single JH-factor;

We call the unique non-perfect element in P(ϕ)s the extreme stable
element of phase ϕ;

E.g. k(s) ∈ P(1)s , if s ∈ E is the singular point;

stable objects are either perfect or extreme;

F(P(ϕ)) = P(ϕ + 1
2).

2 1 0 −1t

CohE[1] CohE CohE[−1]
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Shadows

The shadow of an indecomposable object is the set of all JH-factors of
HN-factors, connected by line segments.

2 1 0 −1

CohE[1] CohE CohE[−1]rX1

rX2

r r rX3 r rX4 rX5

Theorem

If X is indecomposable and not semi-stable, then all direct summands of
its HN-factors are non-perfect.
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Indecomposable Objects

Corollary

There exist four types of indecomposable objects in Coh(E):

1 semi-stable with perfect JH-factor;

2 semi-stable, perfect but with extreme JH-factor;

3 semi-stable and not perfect;

4 not semi-stable, all HN-factors without a perfect summand.

2 1 0 −1

rX1

rX ′
1

r r rX4 rX2,3
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Stability Conditions – Definition

Definition (Bridgeland)

(W ,R) stability condition

W : K(E)→ C homomorphism of groups;

R is a compatible slicing, i.e.
I R(t + 1) = R(t)[1],
I Hom(A1,A2) = 0, if t1 > t2 and Ai ∈ R(ti ),
I 0 6= X ∈ Db

coh(E) has a HNF with Ai ∈ R(ϕi ),
I W (A) ∈ R>0 exp(iπt), if A ∈ R(t).
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Relative FMT – singular case
Db

coh(E) for irreducible singular curves of genus one

Comparison smooth – singular, I
Standard stability
Stability conditions
Comparison smooth – singular, II

Stability Conditions – Classification

Theorem

G̃L
+
(2, R) acts simply transitive on Stab(E).

G̃L
+
(2, R) = all pairs (A, f ) with A ∈ GL+(2, R) and f : R→ R such that

f is strictly increasing, f (t + 1) = f (t) + 1 and A and f induce the same
mapping on (R2 \ {0})/R∗ = S1 = R/2Z.

(A, f ) · (W ,R) := (A−1 ◦W ,R ◦ f )

Main tool: we describe all t-structures on Db
coh(E).
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Comparison smooth – singular, II

Common features

1 F ∈ Coh(E) is stable if and only if End(F ) ∼= k.

2 Any spherical object is a shift of a stable vector bundle or of a
structure sheaf k(x) at a smooth point x ∈ E.

3 The category of semi-stable sheaves of a fixed slope is equivalent to
the category of coherent torsion sheaves. Such an equivalence is
induced by an auto-equivalence of Db

coh(E).

4 With Aut0 = 〈Aut(E),Pic0(E), [2]〉, there is an exact sequence of
groups

0→ Aut0 → Aut(Db
coh(E))→ SL(2, Z)→ 0.

5 G̃L
+
(2, R) acts transitively on Stab(E).

6 Stab(E)/Aut(Db
coh(E)) ∼= GL+(2, R)/ SL(2, Z).
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